Formamide has been recognized in the literature as a key species in the formation of the complex molecules of life, such as nucleobases. Furthermore, several studies reported the impact of mineral phases as catalysts for its decomposition/polymerization processes, increasing the conversion and also favoring the formation of specific products. Despite the progresses in the field, in situ studies on these mineral-catalyzed processes are missing. In this work, we present an in situ UV-Raman characterization of the chemical evolution of formamide over amorphous SiO2 samples, selected as a prototype of silicate minerals. The experiments were carried out after reaction of formamide at 160 ◦C on amorphous SiO2 (Aerosil OX50) either pristine or pre-calcined at 450 ◦C, to remove a large fraction of surface silanol groups. Our measurements, interpreted on the basis of density functional B3LYP-D3 calculations, allow to assign the spectra bands in terms of specific complex organic molecules, namely, diaminomaleonitrile (DAMN), 5-aminoimidazole (AI), and purine, showing the role of the mineral surface on the formation of relevant prebiotic molecules.

Monitoring the reactivity of formamide on amorphous SiO2 by in-situ UV-Raman spectroscopy and DFT modeling

Pantaleone S.;Balucani N.;
2020

Abstract

Formamide has been recognized in the literature as a key species in the formation of the complex molecules of life, such as nucleobases. Furthermore, several studies reported the impact of mineral phases as catalysts for its decomposition/polymerization processes, increasing the conversion and also favoring the formation of specific products. Despite the progresses in the field, in situ studies on these mineral-catalyzed processes are missing. In this work, we present an in situ UV-Raman characterization of the chemical evolution of formamide over amorphous SiO2 samples, selected as a prototype of silicate minerals. The experiments were carried out after reaction of formamide at 160 ◦C on amorphous SiO2 (Aerosil OX50) either pristine or pre-calcined at 450 ◦C, to remove a large fraction of surface silanol groups. Our measurements, interpreted on the basis of density functional B3LYP-D3 calculations, allow to assign the spectra bands in terms of specific complex organic molecules, namely, diaminomaleonitrile (DAMN), 5-aminoimidazole (AI), and purine, showing the role of the mineral surface on the formation of relevant prebiotic molecules.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1478527
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact