ite the enormous progress occurred in the last 10 years, the Gamma-Ray Bursts (GRB) phenomenon is still far to be fully understood. One of the most important open issues that have still to be settled is the afterglow emission above 10 keV, which is almost completely unexplored. This is due to the lack of sensitive enough detectors operating in this energy band. The only detection, by the BeppoSAX/PDS instrument (15-200 keV), of hard X-ray emission from a GRB (the very bright GRB 990123), combined with optical and radio observations, seriously challenged the standard scenario in which the dominant mechanism is synchrotron radiation produced in the shock of a ultra-relativistic fireball with the ISM, showing the need of a substantial revision of present models. In this respect, thanks to its unprecedented sensitivity in the 10-80 keV energy band, Simbol-X, through follow-up observations of bright GRBs detected and localized by GRB dedicated experiments that will fly in the >2010 time frame, will provide an important breakthrough in the GRB field.

Unveiling GRB hard X-ray afterglow emission with Simbol-X

FRONTERA, Filippo;
2007

Abstract

ite the enormous progress occurred in the last 10 years, the Gamma-Ray Bursts (GRB) phenomenon is still far to be fully understood. One of the most important open issues that have still to be settled is the afterglow emission above 10 keV, which is almost completely unexplored. This is due to the lack of sensitive enough detectors operating in this energy band. The only detection, by the BeppoSAX/PDS instrument (15-200 keV), of hard X-ray emission from a GRB (the very bright GRB 990123), combined with optical and radio observations, seriously challenged the standard scenario in which the dominant mechanism is synchrotron radiation produced in the shock of a ultra-relativistic fireball with the ISM, showing the need of a substantial revision of present models. In this respect, thanks to its unprecedented sensitivity in the 10-80 keV energy band, Simbol-X, through follow-up observations of bright GRBs detected and localized by GRB dedicated experiments that will fly in the >2010 time frame, will provide an important breakthrough in the GRB field.
2007
Amati, L.; Maiorano, E.; Palazzi, E.; Landi, R.; Frontera, Filippo; Masetti, N; Nicastro, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/521726
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact