Efeito da refrigeração do ar comprimido utilizado em MQL (mínima quantidade de lubrificante) aplicado ao processo de retificação

Carregando...
Imagem de Miniatura

Data

2017-07-21

Autores

Andrade, Ricardo Bega de [UNESP]

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Resumo

O processo de retificação é um processo de usinagem por abrasão que visa principalmente obtenção de superfícies com baixa rugosidade e tolerância dimensional estreita. Essa combinação é possível por causa das múltiplas arestas de corte sem geometria definida que removem material da peça em pequenas penetrações de trabalho. Contudo é um processo que apresenta problemas para a peça, devido à elevada geração de calor. Este calor pode causar alterações metalúrgicas, dentre outras. Por esta razão é necessário utilizar fluido de corte para refrigerar a zona de retificação. Ao mesmo tempo é preciso buscar uma produção mais sustentável em relação à técnica de lubri-refrigeração convencional. Esta técnica vem sendo substituída por outras que visam redução de custo e redução e/ou eliminação do impacto ambiental, sem prejuízos para qualidade da peça. Uma técnica de lubri-refrigeração que vem substituindo a técnica convencional competitivamente é a técnica de Mínima Quantidade de Lubrificação (MQL), que é bem difundida em processos de usinagem com geometria de corte definida (por exemplo, torneamento, fresamento e furação) e com resultados promissores também em processos de retificação. Entretanto, pelo fato da técnica MQL ser menos estudada no processo de retificação, seu desempenho ainda apresenta algumas restrições devido à sua baixa eficiência de refrigeração, que pode ocasionar danos térmicos à peça. Neste sentido, a realização deste trabalho consistiu em substituir o ar à temperatura ambiente do MQL por um ar a menor temperatura. Foi retificado o aço ABNT 4340 temperado e revenido com rebolo convencional de óxido de alumínio. Os experimentos foram realizados para as três diferentes técnicas de lubri-refrigeração (convencional, MQL e MQL com ar frio [MQL+AF]), com velocidade de corte igual a 30 m/s e com velocidade de mergulho variada em três graus de severidade (0,25; 0,50 e 0,75) mm/min. Para promover a redução da temperatura do ar misturado ao MQL, foi utilizado um sistema de refrigeração de ar por tubo de vórtice, visando aumentar a eficiência na retirada de calor do processo. Foram analisadas como variáveis de saída, a viscosidade relacionada ao fluido de corte utilizado nas técnicas MQL, a rugosidade (Ra), circularidade e integridade microestrutural relacionadas à peça, o desgaste relacionado ao rebolo e a potência de retificação relacionada ao processo. As técnicas MQL, nas duas formas de aplicação, apresentaram desempenho superior à técnica convencional. A técnica MQL+AF, mesmo com o ar frio atuando na retirada de mais calor da zona de retificação, apresentou desempenho geral inferior à técnica MQL, devido à influência exercida pela viscosidade do fluido à menor temperatura de aplicação.
The grinding process is an abrasion machining process that is mainly aimed at obtaining surfaces with low roughness and narrow dimensional tolerance. This combination is possible because of the multiple cutting edges without defined geometry that remove material from the workpiece at small work penetrations. However, it is a process that presents problems for the workpiece, due to the high generation of heat. This heat can cause metallurgical changes, among others. For this reason it is necessary to use cutting fluid to cool the grinding zone. At the same time it is necessary to seek a more sustainable production compared to the conventional lubri-cooling technique. This technique has been replaced by others that aim at cost reduction and reduction and/or elimination of environmental impact, without any damage to the quality of the part. A lubri-cooling technique that is replacing the conventional technique, competitively, is the Minimum Quantity of Lubricant (MQL) technique, which is well diffused in machining processes with defined cutting geometry (for example, turning, milling and drilling) and with promising results also in grinding processes. However, due the MQL technique is less studied in the grinding process, its performance still presents some restrictions due to its low cooling efficiency, which can cause thermal damage to the part. In this sense, the accomplishment of this work consisted in replacing the air at the ambient temperature of the MQL by air at a lower temperature. The quenched and tempered ABNT 4340 steel was ground with conventional aluminum oxide grinding wheel. The tests were carried out for three different lubri-cooling techniques (conventional, MQL and MQL with cold air [MQL + AF]), with a cutting speed of 30 m/s and a plunge speed varied in three degrees of severity (0.25, 0.50 and 0.75) mm/min. To promote the reduction of the temperature of the air mixed to the MQL, a vortex tube air cooling system was used aiming to increase the heat removal efficiency of the process. As output variables were analyzed the viscosity related to the cutting fluid used in MQL techniques, the roughness, roundness and microstructural integrity related to the workpiece, the wear related to the grinding wheel and the grinding power related to the grinding process. The MQL techniques, in both forms of application, presented superior performance to the conventional technique. The MQL+AF technique, even with the cold air acting to remove more heat from the grinding zone, presented worst general performance than the MQL technique, due to the influence exerted by the viscosity of the fluid at the lower application temperature.

Descrição

Palavras-chave

Retificação cilíndrica, Rebolo de óxido de alumínio, Mínima quantidade de lubrificante (MQL), MQL com ar frio, Influência da viscosidade do fluido, Cylindrical grinding, Oxide aluminum grinding wheel, Minimum quantity of lubricant (MQL), MQL with cold air, Influence of fluid viscosity

Como citar