Effect of the addition of functionalized TiO2 nanotubes and nanoparticles on properties of experimental resin composites

Nenhuma Miniatura disponível

Data

2020-12-01

Autores

Freitas Guimaraes, Genine Moreira de
Bronze-Uhle, Erika Soares
Lisboa-Filho, Paulo Noronha [UNESP]
Piovezan Fugolin, Ana Paula
Sanches Borges, Ana Flavia
Gonzaga, Carla Castiglia
Pfeifer, Carmem Silvia
Furuse, Adilson Yoshio

Título da Revista

ISSN da Revista

Título de Volume

Editor

Elsevier B.V.

Resumo

Objective. To evaluate the influence of the addition of functionalized and non-functionalized TiO2 nanostructures on properties of a resin composite. Methods. TiO2 nanostructures were synthesized and functionalized, using 3(aminopropyl)triethoxysilane (APTMS) and 3-(trimethoxysilyl)propyl methacrylate (TSMPM). Characterizations were performed with XRD, EDS, TEM, and TGA. Resin composites containing Bis-GMA/TEGDMA, CQ, DABE, and barium-aluminum silicate glass were produced according to TiO2 nanostructure (nanotube or nanoparticle), concentration (0.3 or 0.9 wt%), and functionalization (APTMS or TSMPM). The resin composite without nanostructures was used as control. The amount of fillers was kept constant at 78.3 wt% for all materials. The degree of conversion (DC at 0 h and 24 h), maximum polymerization rate (Rp(max)), and Knoop microhardness (KHN before and after ethanol softening) were evaluated. Data were analyzed with two-way ANOVA with repeated measures and Tukey's HSD (a = 0.05). Results. TGA results demonstrated that functionalizations were effective for both nanostructures. For DC, resin composites, time and interaction effect were significant (p < 0.001). Higher DC was found for 0.3-wt%-functionalized-nanotubes at 24 h. For nanoparticles, only 0.9-wt%-non-functionalized and 0.3-wt%-APTMS-functionalized showed DC similar to the control and all other groups showed higher DC (p < 0.05). Rpmax was higher for 0.3-wt%APTMS-nanotubes, which corresponded to higher DC after 24 h. The lowest Rpmax occurred for 0.9-wt%-TSMPM-nanotubes, which showed smaller DC at 0 h. For KHN, resin composites, ethanol softening and interaction effect were significant (p < 0.001). KHN decreased after ethanol softening all groups, except for 0.3-wt%-TSMPM-nanotubes, 0.9-wt%-TSMPMnanotubes, and 0.3-wt%-non-functionalized-nanoparticles. Conclusion. The resin with 0.3-wt%-TSMPM-nanotubes showed higher DC after 24 h, while being the most stable material after the ethanol softening. Significance. The addition of functionalized TiO2 nanostructures in resin-based materials may improve the properties of the material. (C) 2020 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

Descrição

Palavras-chave

Titanium dioxide, Nanostructures, Functionalization, Polymer structure, Methacrylates

Como citar

Dental Materials. Oxford: Elsevier Sci Ltd, v. 36, n. 12, p. 1544-1556, 2020.