LEE- Elektrik Mühendisliği-Doktora

Bu koleksiyon için kalıcı URI

Gözat

Son Başvurular

Şimdi gösteriliyor 1 - 5 / 11
  • Öge
    Yüksek güçlü IGBT'ler için kapı sürme devresi
    (Lisansüstü Eğitim Enstitüsü, 2023-04-27) Tanrıverdi, Osman ; Yıldırım, Deniz ; 504112006 ; Elektrik Mühendisligi
    IGBT anahtarlama elemanlarının SOA (Emniyetli çalışma bölgesi İng: Safe Operating Area) bölgesi içerisinde çalışması, sistemdeki di_C/dt'den (kollektör akım değişim hızı) kaynaklı gürültülerin azaltılması, anahtarlama kayıplarının ve bunun sonucu oluşan IGBT'lerin sıcaklık değişimlerinin kontrolünün yapılabilmesi için kapı sürme devrelerinin tasarımı büyük önem taşımaktadır. IGBT anahtarlama geçişlere bakıldığında iki önemli elektriksel stres görülmektedir: Bunlardan birincisi, iletime geçiş esnasında IGBT paralel diyotundan dolayı oluşan yüksek akım aşımlarıdır. İkincisi ise kesime geçiş esnasında sistemdeki kaçak endüktanslardan dolayı IGBT uçlarında oluşan gerilim aşımlarıdır. IGBT'lerin anahtarlandığı çevirici sistemini etkileyen diğer önemli bir etken olan elektromanyetik yayınım durumu bu iki problemden kaynaklanmaktadır. Sürekli çalışmada ise jonksiyon sıcaklığı ve sıcaklıktaki değişimler sistem güvenliğini etkilemektedir. Yüksek ve çok fazla aralıkta değişen sıcaklıklar IGBT'lerde ömür problemine neden olmaktadır. Sıcaklık artışlarında IGBT'nin anahtarlama kayıplarını azaltmak sıcaklık değişimini azaltmak için gerekli bir durumdur. Bu tez çalışması IGBT'lerde aktif kapı sürme algoritması ile yukarıda bahsedilen elektriksel ve termal etkenleri iyileştirmektedir. Akım ve gerilim değişimlerinin kontrolünü birbirinden bağımsız yapmak suretiyle IGBT anahtarlama kayıplarını yalnızca gerilim değişimini değiştirerek düşürmek bu tez çalışmasının temel algoritmasını oluşturmaktadır. Yalnızca gerilim hızını değiştirmek IGBT kesime geçiş sırasında gerilim ve akım aşımlarını ve sistemdeki EMI (Elektromanyetik Girişim İng: Electromagnetic Interference) problemlerini değiştirmez. Çünkü bu hususlar akım değişim hızının değişimiyle alakalıdırlar. Tez çalışması kapsamında IGBT iletime ve kesime geçiş aralıkları kollektör akımı ve kollektör-emiter gerilimi ve kapı gerilimi açısından incelenmiştir. Anahtarlama geçişlerinin her bir aralığına etkiyen faktörler incelenmiş ve formülleriyle verilmiştir. IGBT aktif sürme algoritması IGBT kapı gerilimini uygun anahtarlama aralıklarında istenilen seviyeye getirmeye dayalı çalışmaktadır. Bu davranışı görmek adına öncelikle ANSYS Simplorer ortamında benzetim çalışması yapılmıştır. Benzetim çalışması ile IGBT'nin anahtarlama geçişleri örnek bir modül için nominal akım ve gerilim değerlerinde incelenmiştir. Bunun için de örnek modülün benzetim ortamında modellemesi gerçeklenmiştir. Çalışmada IGBT'nin geçişleri inceleneceği için yapılan modelleme dinamik modellemedir. Modellemenin doğruluğunu analiz etmek için gerçek ortamda IGBT tetiklenmiş, dalga şekilleri çıkartılmıştır. Aynı elektriksel değerlerde benzetim ortamında dalga şekilleri çıkartılmış, gerçek verilerle karşılaştırılmıştır. Tez çalışması kapsamında tamamıyla analog köntrollü bir aktif sürüş tekniği geliştirilmiş ve bir donanım üzerinde gerçeklenmiştir.
  • Öge
    Yenilikçi bir aşırı modülasyon tekniği ve kompleks akım kontrolörü tasarımı ile algılayıcısız cer motoru kontrolü
    (Lisansüstü Eğitim Enstitüsü, 2023-03-15) Altıntaş, Gökhan ; Kocabaş, Derya Ahmet ; 504172013 ; Elektrik Mühendisliği
    Günümüzde tercih edilen kara yolu ulaşım araçları oldukça gelişmiş yapıdadır. Özellikle elektrikli araçlara olan ilginin artması ve toplumlar tarafından benimsenen çevreci hedefler araştırmaları bu yöne kaydırmıştır. Raylı ulaşımda kullanılan araçların çekiş kuvvetleri elektrik motorları tarafından sağlanmaktadır. Bu motorlar cer motoru olarak adlandırılırken kontrollerinde yüksek kalkış torku, maksimum güç ve geniş bir hız aralığında çalışma hedeflenir. Endüstriyel motor kontrol uygulamalarında klasik akım kontrolörleri, hız-tork hesaplama işlemleri ve modülasyon teknikleri yüksek anahtarlama frekansı sayesinde yeterliyken cer motorlarının kontrolünde yüksek güçten dolayı anahtarlama frekansı kısıtlıdır. Kısıtlanan anahtarlama frekansı dolayısıyla motor kontrol uygulamasında örnekleme frekansı da düşüktür bu durum da kontrol, ölçüm ve çıkış işaretlerinin çözünürlüğünün ve kararlılığının düşük olmasına neden olur. Tüm bunlardan dolayı klasik yaklaşımların dışına çıkmak gerekmektedir. Bu tez raylı sistemlerde kullanılan araçlarda hareketi sağlayan cer motorlarının kontrolünde yaşanan problemlerin, zorlukların çözümüne yönelik olarak üç ayrı yaklaşım ortaya koymaktadır. Tez kapsamında yapılan ilk çalışma DA bara geriliminden en yüksek oranda faydalanabilmek için bir modülasyon algoritması tasarımıdır. Modülasyon algoritması uzay vektör darbe genişlik modülasyonunu kare dalgaya kadar genişleterek DA bara geriliminden en yüksek faydalanma oranını sağlar. Yüksek hassasiyet ile çözülmesi gereken uzay vektör denklemlerini doğrusal bölgedeki halleriyle aşırı modülasyon bölgesinde aynı şekilde kullanmak mümkün değildir. Geliştirilen modülasyon algoritmasında doğrusal olmayan bölge iki alt bölgeye ayrılarak ilk bölgede referans gerilim vektörünün genliği düzenlenirken ikinci bölgede hem genlik, hem de açı düzenlenmektedir. Özellikle 2. aşırı modülasyon bölgesinde kararlılığı sağlamak, istenen hassasiyete erişmek, evirici çıkışında düzgün bir gerilim dalga formu elde etmek ve istenmeyen etkileri bastırmak için geliştirilen modülasyon algoritmasında sanal bir "değiştirilmiş açı" terimi ifade edilmiştir. Yeni hesaplanan değiştirilmiş açı, referans gerilim vektörünü, uzay vektörü altıgeni içinde tutarak cer motoru kontrolünün kararlı çalışmasını sağlar. Ayrıca, önerilen yöntem doğrusal modülasyondan aşırı modülasyona ve sonrasında da aşırı modülasyondan kare dalga modülasyonuna kadar düzgün bir çalışma ve çalışma bölgeleri arasında yumuşak bir geçiş sağlar. Önerilen yöntemde örnekleme frekansı, anahtarlama frekansının iki katı olarak seçilmiştir ve böylece modülasyon sinyali hesaplamalarında örnekleme periyodunun yer almaması sağlanmıştır. Hesaplama süresinin düşürülmesiyle kesme tabanlı yazılım akışında kesme süresiyle iç içe geçme durumu yaşanmasının önüne geçilmiş olur. Geliştirilen yöntem dijital kontrol ünitesinde TI C2000 TMS320F28335 işlemcisi üzerinde koşturularak raylı araç cer motoru test düzeneği ile test edilmiştir. Düşük anahtarlama frekansı temelli geliştirilen teorik yaklaşımların deney düzeneğinde elde edilen sonuçlar ile uyumlu olduğu gösterilerek geliştirilen yöntemin performansı değerlendirilmiştir. Geliştirilen yöntem sadece raylı araçlarda kullanılan cer motorlarının kontrolünde değil, otomotiv gibi benzer çekiş kontrol isterlerinin yer aldığı uygulamalar için de uygundur. Tez kapsamında gerçekleştirilen ikinci çalışma, cer motorlarında kullanılan hız sensörlerinden kaynaklı sorunları bertaraf edebilmek için sensörsüz cer motoru kontrolü üzerine olmuştur. Asenkron motorlu çekiş sistemlerinde motorlarda kullanılan kodlayıcılardan kaynaklı bozulmalar ve işaret değişimleri meydana gelebilmektedir. Ayrıca bu işaretler filtrelenerek meydana gelen gecikmeler ve bozulmalar yüksek güçlü sistemlerde anahtarlama-örnekleme frekansının düşük olması dolayısıyla cer motoru kontrol algoritmasını özellikle de cer motoru dinamik davranışını oldukça yüksek şekilde etkilemektedir. Ek olarak, tork büyüklüğünün de kestiriminin yapılması ve tren kontrol yönetim sisteminden gelen tork isteğini başarılı şekilde takip edip edemediğini değerlendirilmesi gerekmektedir. Tüm bunlar göz önüne alınarak endüklenen gerilim tabanlı hız ve tork gözleyicisi geliştirilmiştir. Gözleyicide, yalnızca ölçülen faz akımlarını kullanarak endüklenen gerilimi tahmin etmek için asenkron motorun RST-αβ-dq matematiksel modeli kullanılmıştır. Kestirim sürecinin herhangi bir noktasında gecikme etkisi yaratmamak için yazılımsal filtre kullanılmamıştır. Örnekleme frekansı anahtarlama frekansının iki katı seçilerek örneklemenin anahtarlama gürültülerini içermemesi için DGM çıkışlarının etkinleştirilmediği durumlarda gerçekleştirilmesi amaçlanmıştır. Ayrıca, gözleyicinin dört bölgede çalışmasını sağlamak için gözleyiciye otomatik açı düzeltme metodolojisi uygulanmıştır. Bu tarz uygulamaların en büyük problemi olan sıfır hızdan motor kalkışını başarılı bir şekilde sağlayabilmek için bir motor kalkış stratejisi uygulanmıştır. Geliştirilen yaklaşım cer motoru deney düzeneğinde test edilerek sonuçların beklentilerle örtüştüğü görülmüştür. Tez kapsamında geliştirilen son çalışma ise cer motoru kontrolünde uygulanan alan yönlendirmeli kontrol stratejisinin en önemli birimi olan akım kontrolörü tasarımıdır. Düşük anahtarlama frekansı/stator besleme gerilimi frekansı oranı, kuvvetli çapraz bağlantı ve yetersiz bozucu performansı nedeniyle klasik PI kontrolörleriyle gerçekleştirilemeyen cer motoru akım kontrolünü gerçekleştirebilmek için değiştirilmiş yapıda bir kontrolör yapısı geliştirilmiştir. Klasik kontrol yaklaşımı dışında kontrol ve sistem modeli kompleks vektör gösterimiyle ifade edilmiştir. Böylece sistem derecesi düşürülerek analizler ve tasarımlar daha uygun şekilde yapılmıştır. Alan yönlendirmeli kontrol stratejisiyle asenkron motor stator akımı birbirinden 90o faz farklı d-q olmak üzere iki akım bileşenine dönüştürüldüğünde senkron hızda dönen eksen takımına geçilmesinden dolayı d ve q gerilim referansı ifadelerinde birbirine etki eden çapraz bağlantı bileşenleri ortaya çıkar. Ayrıca dijital motor kontrol uygulamalarında hesaplamadan, örneklemeden kaynaklı ve DGM doğası gereği gecikmeler mevcuttur. Ek olarak düşük frekanslı ve DA işaretleri bastırmak cer motoru kontrol uygulamasından beklenen çıktılardır. Tüm bunlar göz önüne alınarak düşük anahtarlama-örnekleme frekansı uygulamalarında kullanılabilecek çapraz bağlantı giderme performansı yüksek ve gecikmeleri kompanze edecek bir dijital kompleks akım kontrolörü önerilmiştir. Önerilen kontrolörde çapraz bağlantıyı gidermek için klasik uygulamaların aksine kontrolör iç yapısını düzenleyerek kontrolör sıfırının sistem kutbuna götürülmüştür. Geliştirilen kontrolöre düşük frekanslı ve DA işaretleri sönümleyebilmesi için sistemin toplam direncini artırmak amacıyla aktif sönümleme direnci de eklenmiştir. Akım kontrolörünün başarım testleri farklı çalışma koşullarında cer motoru dinamometresinde gerçekleştirilmiştir. Bir raylı aracın hızlanma, yavaşlama, yüklenme koşulları dinamometrede gerçekleştirilerek akım kontrolörünün iyi sonuçlar verdiği görülmüştür. Geliştirilen kontrolörün yüksek takip performansı, gecikme kompanzasyonu, çapraz bağlantı giderme ve dinamik sertlik özellikleri sayesinde diğer çekiş uygulamalarında ve diğer çekiş motoru türlerinde de başarıyla uygulanabilecek boyutta olduğu gösterilmiştir. Sonuç olarak cer motorlarının kontrolünde yaşanan problemler irdelenmiş ve bu problemlerden en önemlilerine yenilikçi yaklaşımlarla çözüm önerilmiştir. DA bara geriliminden maksimum fayda sağlayabilmek için uzay vektör darbe genişlik modülasyonu düşük örnekleme frekansında yenilikçi bir yaklaşımla aşırı modülasyon bölgesine genişletilerek kare dalga modülasyonuna başarılı şekilde geçilmiştir. Cer motorlarının en önemli iki büyüklüğü olan hız ve tork için endüklenen gerilim tabanlı kestirim algoritması tasarlanarak uygulanmıştır. Tasarlanan yapı ile çekiş sistemi maliyeti azaltılabilir ve sensör kaynaklı hatalardan dolayı işletmenin kesilmesi önlenebilir. Düşük anahtarlama frekansı dolayısıyla anahtarlama frekansı/stator besleme gerilimi frekansı oranının düşük olması nedeniyle ortaya çıkan problemleri ortadan kaldırmak için cer motorları kontrolünde kompleks vektörlerle ifade edilen akım kontrolörü önerilmiştir. Önerilen kontrolör çapraz bağlantı giderme ve referans takibi konusunda yüksek performansa sahiptir.
  • Öge
    A novel artificial intelligence based energy management system for microgrids
    (Graduate School, 2023-06-19) Aksoy, Necati ; Genç, V. M. İstemihan ; 504182007 ; Electrical Engineering
    In many countries, including our own, large amounts of electrical power are generated where the energy source is located, while it is consumed in areas with large industries and populations. This distance between energy generation and consumption leads to the transmission of energy, which results in the waste of energy as heat and increases energy costs. Microgrids have emerged as a solution to energy use by applying the principle of energy generation and consumption at the same place. Microgrids are small-scale electrical grids that can use distributed energy resources in conjunction with conventional grids. They can combine solar panels or plants, wind turbines, energy storage systems, generators, and the utility grid. This reduces energy loss during transmission, improves energy efficiency, and allows energy to be used efficiently. In addition, microgrids that operate in small settlements such as university campuses, military facilities, towns, or neighborhoods can work in "island mode" without a connection to the utility grid when needed. Many microgrids are currently operated using classical control methods and operate in certain size that has only been determined using optimization methods. This limits the efficiency that can be achieved during the operation of the microgrid and makes it difficult to follow new trends in energy storage technologies. The crux and significance of this thesis revolves around the notion that contemporary energy storage technologies can be utilized efficiently within the system, and that the existing artificial intelligence technology can serve as the foundation of the microgrid energy management system. The energy management system designed in this structure reduces energy waste, lowers costs, improves efficiency, and improves grid stability, while also producing effective solutions for energy demand by controlling the use of various sources together. Moreover, this energy management system contributes to reducing carbon emissions while allowing for the easy adaptation of new technologies. In light of all these advantages, this thesis presents an artificial intelligence-based energy management system design for microgrids. To further explain the concept of artificial intelligence, it encompasses machine learning algorithms as a subset, while machine learning includes deep learning algorithms and concepts. In this thesis, microgrid applications of various sizes and properties are examined, and a microgrid simulation model was created at commonly used sizes. This simulation model assumed a microgrid applied to a university campus, with a solar power plant and wind turbines serving as renewable energy sources. The energy management system being designed predicts the power that these sources will generate, using the up-to-date prediction algorithms within artificial intelligence. When designing, the focus is initially on predicting the power that solar and wind turbines will generate, using five years of meteorological data collected at five-minute intervals. The meteorological dataset, consisting of nine different data types, has undergone a series of data pre-processing. Missing data is filled in accordance with the characteristics of the dataset, and outliers are removed. The characteristics of this dataset were analyzed with different graphs and their suitability for training was examined. The labeled data consisting of the generation values at the same region and at the same time/minute intervals were added to the meteorological data set that was deemed suitable for training. Seven prediction models were developed using four prevalent machine learning methods and three novel algorithms based on the gradient boosting machine to predict the power generated by the solar power plant. These prediction models were trained separately using the training dataset made suitable for training. The results obtained from these seven prediction models were presented in both graphical and tabular formats. In addition to comparing which algorithm gave how successful results for this study, the computation costs were also compared. The designed energy management system must also predict the power generated from wind turbines. In this regard, prediction models were created using three different machine learning algorithms, and the results were obtained. These prediction models were compared using various performance metrics. This study conducted within this thesis, which achieved successful results, offers new approaches and unique results to the literature on the prediction of the power generation of renewable energy sources. An artificial intelligence-based energy management system should provide not only energy efficiency but also low energy costs and profitability for the user. The widespread use of dynamic electricity pricing should also be considered, which is determined based on the relationship between countrywide generation and consumption level. In this thesis, it is assumed that the microgrid simulation model developed is located in a country where dynamic pricing is applied. A five-year dataset was created from actual dynamic pricing data obtained from open-source platforms and analyzed. The dataset was examined, preprocessed, and made ready for the training of prediction models. Four deep learning algorithms with memory cell structures were selected for this study. Using these algorithms and the training dataset, price prediction models were developed, and the results were obtained. The learning performances, error values, and accuracies of the models were presented comparatively. These innovative prediction models were integrated into the designed energy management system. Knowing the power demand from a microgrid makes operational decisions more appropriate and robust. The load demand at which time of the day is an important parameter. Knowing the load demand in advance affects decisions regarding resource utilization. Considering this fact, the energy management system designed should also be able to predict load demand. To this end, load demand prediction models were developed using four deep learning methods with memory cell structures similar to price prediction. Actual load values obtained from open sources were scaled according to the simulation model of the microgrid created. Deep learning models were trained using the five-year load dataset, and the results were obtained. The results were presented comparatively using many performance metrics. As a result of this study, successful prediction models were developed and integrated into the designed energy management system. An artificial intelligence-based energy management system uses many prediction models described above. The theoretical and mathematical foundations of all machine learning and deep learning methods used are provided in the second chapter of this thesis. The energy management system described requires an additional controller to manage the microgrid in addition to human management. In this context, this thesis proposes another artificial intelligence-based controller. Data-driven control methods that have replaced classical control methods are popular topics nowadays. This thesis focuses on machine learning-based control methods of this type. In this context, reinforcement learning, which is one of the three main branches of machine learning, is investigated and its foundations are given. Reinforcement learning is the general name for methods based on the principle of controlling the system without the need for a mathematical model of the system. It is possible to separate this concept into methods based on table creation and methods using deep neural networks. In this thesis, controller agents using both types of methods are created. The agent, which will learn to control the system in reinforcement learning, needs to optimize itself. This optimization process is done through trial and error. For the agent to be able to take the best version through these trials, the system it will control, which is a microgrid environment model in this thesis, must have specific characteristics. Five different control agents were designed specifically for the energy management system, three of which were temporal-difference-based and two were deep reinforcement learning-based. Three environment models designed specifically for the microgrid are proposed in this thesis to enable these agents to train themselves. These environment models with unique reward strategies present a new approach to the literature. These environment models that use renewable energy sources, load demand, and dynamic prices for the training of agents have shown quite successful results in terms of energy management. The trained reinforcement learning agents have learned to manage the microgrid and offer considerable profitability to the user. The energy management system whose design steps are explained in this thesis uses many different artificial intelligence algorithms. These artificial intelligence models created, trained, and successful results achieved have been consolidated under a single graphical interface in this thesis. A unique graphical interface has been designed, and all prediction models and control agents have been integrated into this design. This interface design, which consists of seven pages in total, offers many variables and control actions related to the microgrid to the user. The user can see the powers that will be generated for the future, load demand, and the price. In addition, the user can apply many control actions to the microgrid through this interface. The user, who can also see many real-time parameters, can analyze the performance of prediction models and control agents through relevant pages. In conclusion, this thesis proposes an artificial intelligence-based energy management system that contains many current and innovative algorithms for microgrids and uses them uniquely. Artificial intelligence-based prediction models determine the decisions that an artificial intelligence-based control agent will make. This agent, which learns to select the correct control actions for the microgrid, presents the determined control action to the user through the designed interface. Additionally, the originally designed energy management system interface allows the user to see many parameters related to the microgrid in advance. This thesis proposes an energy management system that contributes to the literature with its original approach and can be used in real-world applications.
  • Öge
    Data-driven prediction and emergency control of transient stability in power systems towards a risk-based optimal power flow operation
    (Graduate School, 2022-09-30) Jafarzadeh, Sevda ; Genç, V. M. İstemihan ; 504172009 ; Electrical Engineering
    Cost-efficient and reliable operation of power systems is one of the main concerns of the utilities. The large disturbances and major blackouts occurred in last two decades such as the blackout that took place on 14 August 2003 in the Midwest and Northeast US have ruinous and costly effect for millions of customers. The development of a proper stability prediction and control scheme for an emergency condition is the main objective of this study. In this study, a novel framework using two different approaches is proposed and investigated for real-time transient stability prediction (TSP) in power systems where the signals obtained from PMUs are utilized. The first proposed method is based on signal processing and machine learning approaches which take the computed energy of PMU signals in a window of measurements as an input to a classifier to predict the stability of the system. Several types of classifiers, which are multi-layered perceptrons (MLPs), decision trees (DT), and Naïve Bayes (NB) classifiers, are employed. Two alternative approaches of choosing the window of measurements used for TSP are developed, where an MLP-based fault detection process is also proposed to form the proper window of measurements. One approach is to use a fixed window of only post-fault measurements, whereas the other approach is to use an expanding window of measurements covering pre-fault, fault-on and post-fault stages. Utilization of the energy concept in TSP gives the flexibility to process signals in different sizes while providing predictions that are robust to measurement noises and missing data. It also makes feature selection methods directly applicable, making the TSP possible with fewer PMUs. The proposed methods are applied to two different test systems and a large-scale model of the Turkish power system. In the second approach, a novel methodology based on Koopman mode analysis is proposed to predict the transient stability of a power system in real-time. The method assesses the stability of the system based on a sliding sampling window of PMU measurements, and it detects the evolving instabilities by predicting future samples and investigating the computed Koopman eigenvalues. This approach is also able to identify alarm conditions, which include slowly evolving instabilities that may not be detected by predicting future samples in a limited time horizon. Identifying these conditions provides additional time to prepare a proper set of emergency control actions to be performed when necessary. Using the proposed method, groups of coherent generators that play a role in the evolving instabilities can also be identified, contributing to the design of a defensive islanding scheme for unstable cases. The efficacy of the proposed approach is demonstrated by simulating its performance with three test systems of different scales. Economical operation condition of the power system and its reliability are two contradicting issues. Reliable operation of the power system can lead to a high-cost operation, while economical operation of the power system might result in an unreliable operation of the power system. In this thesis, a novel methodology for the optimal power flow in a power system is proposed to ensure its reliable and cost-effective operation. The methodology adopts a risk-constrained optimal power flow and develops an efficient procedure to design corrective control actions including load shedding and mechanical torque reduction of generators in emergency conditions using reinforcement learning (RL). Reinforcement learning is a type of decision making tool which enables us to determine a set of proper control actions for different operating conditions and contingencies and to implement them in real-time. Since the training process of the RL-based agent is excessively time-consuming for large power systems, because of the enormity of their actions' spaces, an approach based on dynamic mode decomposition which limits the action space during the training process of agent is proposed. The proposed scheme is implemented on two test systems including a small-sized two-area power system and the 127-bus WSCC test system. A considerable amount of operating costs of the power systems corresponds to the fuel cost of the generation units. Therefore, fuel-cost minimization of the power system plays a crucial role in the economic operation of the power system. Furthermore, various faults and contingencies on the power systems might cause irrecoverable results such as widespread blackouts and following loss of money. Considering both fuel cost and reliability level of the system, it can be concluded that it is crucial to provide an optimal power flow solution with acceptable reliability for a given loading condition. Accordingly, the risk level of the system's operating points should be investigated properly. In this study, instead of rotor angle trajectory-based severity indices, the cost of the emergency control action is taken as a severity of the contingency. Using the cost of emergency control actions provided by the trained reinforcement learning-based agent as risk of the operating point, a risk-based optimization problem has been formulated. Two optimization techniques are employed to find the solution of the formulated optimization problem. The first one is Genetic Algorithm, GA, which is one of the well-known populated-based optimization techniques and the second one is Hooke–Jeeves method which is one of the well-known examples of pattern search local approaches. In these algorithms, the candidate solutions are evaluated with both cost function and constraints. The optimum operating points with and without risk constraints has been obtained for the two area and 127-bus test systems using both Genetic algorithm and Hooke-Jeeves method and the results are discussed.
  • Öge
    Batarya şarj uygulamalarında kullanılan LLC rezonans çeviricilerde optimum verim eldesi için yeni bir yöntem
    (Lisansüstü Eğitim Enstitüsü, 2022-08-15) Çalışkan, Eser ; Üstün, Özgür ; 504112010 ; 504112010
    Dünya genelindeki nüfus artışı ve globalleşme, mobilite kavramını tetiklemiştir. Mobilite ile yeni teknolojilerin hayatımıza girmesi kaçınılmaz olmuştur. Yeni teknolojilerin hayatımıza girmesi her geçen gün artan enerji talebini beraberinde getirmektedir. Günümüzde ulaşımda enerji talebinin büyük bir kısmı petrol ve petrol türevleri olan yakıtlar tarafından karşılanmakta olup gelecekte alternatif enerjilerin kullanıma alınmasını zorunlu kılmaktadır. Hayatın birçok alanında mobil olma ihtiyacının yanı sıra bunun bir sonucu olarak ortaya çıkan enerji gereksiniminin de mobiliteye hizmet edecek şekilde taşınabilir ve paylaşımlı olması kaçınılmazdır. Mobiliteye en çok hizmet eden cihazların başında elektrikli araçlar gelmekte olup her geçen gün yeni bir model piyasaya sürülmektedir. Elektrikli araçlar ve neredeyse tüm mobil cihazlarda enerji ihtiyacı büyük çoğunlukla dahili bataryalar ile sağlanmakta olup şarj ve deşarj işlemleri ile enerji paylaşımı sağlanabilmektedir. Batarya şarj ve deşarj döngüsünde enerji kayıplarının en az seviyeye indirilebilmesi için kullanılan güç çeviricisi tüm çalışma bölgesinde en yüksek verim ile çalıştırılmalıdır. Güç elektroniği çeviricisinin mümkün olan en yüksek verim ile çalıştırılabilmesi amacıyla farklı kontrol yöntemleri ve devre topolojileri geliştirilmektedir. Bu doktora tez çalışmasında, yeni tip GaN anahtarlama elemanları kullanılan bir LLC rezonans çeviriciye yönelik yeni bir verim optimizasyonu yöntemi üzerinde durulmuştur. Hafif elektrikli araçlar için tüm batarya şarj sürecinde en yüksek verim ile güç akışı kontrolünün en iyileştirilmesi amacıyla yeni bir verim optimizasyonu algoritması geliştirilmiştir. Klasik kontrol yöntemi olan frekans modülasyonu (FM), ölü zaman kontrolüne dayanan S-PWM ve kesintili çalışma modları LLC rezonans çeviricinin verim değerinin tüm batarya şarj sürecinde mümkün olan en yüksek seviyede kalması amacıyla birlikte kullanılmıştır. İlk olarak potansiyel batarya şarj topolojileri incelenmiş olup ardından bir rezonans çevirici kullanılarak klasik bir batarya şarj sürecine ait grafik verilerek şarj bölgeleri ve temel verim problemi ele alınmıştır. Düşük ve yüksek yük durumları arasındaki farklar ve rezonans çeviricinin çalışma karakteristiği birlikte değerlendirilerek özellikle düşük yük durumlarında çevirici veriminin düşmesine ait detaylar aktarılmıştır. Problemin tanımının ardından GaN tipi anahtarlar kullanılan bir LLC rezonans çevirici ile alakalı teorik altyapıya değinilmiş olup yapılan detay tasarımlar, hesaplamalar, elektronik kartlara ait şema ve baskı devre çizimleri, VHDL blokları ve tasarımları, kart testleri ve doğrulaması verilmiştir. LLC rezonans çevirici tasarımlarını takiben üç farklı anahtarlama ve kontrol yöntemine ilişkin modelleme ve benzetim çalışmalarına yer verilmiştir. Benzetim çalışmalarında temel çalışma prensipleri ve modeller, batarya şarj işlemi ve temel dalga şekilleri verilmiştir. Benzetim çalışmalarının ardından yapılan tasarım detaylarına göre üretilen ve entegre edilen deney düzeneği üzerinde üç farklı anahtarlama yöntemine ait testler gerçekleştirilmiştir. Deneysel testlerin sonuçlarına göre iteratif olarak önerilen verim takibi algoritması iyileştirilmiştir. Sonuç olarak önerilen algoritmanın batarya şarj sürecine uygulanması ve oluşturduğu etki tartışılmıştır. Önerilen verim takibi algoritması ile batarya şarj sürecinde kullanılan LLC rezonans çeviricinin toplam verim değerinde özellikle düşük yük durumlarında %25'e varan artış gözlenmiştir. Tez çalışmasında, yeni bir verim takip algoritması ortaya koyularak GaN temelli bir LLC rezonans çevirici üzerinde hafif elektrikli araçlara ait bir batarya şarj uygulamasında testleri ve doğrulaması yapılmıştır. Sonuçlar değerlendirilmiş olup gelecek çalışmalar için bir yol haritası çıkarılmıştır.