Arches, vaults and pillars generally experience eccentric normal force. As a consequence, the classical theories of masonry collapse, developed for concentrically compressed brickwork, are not directly applicable. In this paper experimental data on solid clay brick and lime-mortar masonry prisms, eccentrically loaded, are presented. Comparing the results to the response of a FEM model, some hints on the collapse mechanism of masonry show that the edge effects greatly affect the load carrying capacity of the brickwork. Besides, the plane section assumption is found to be acceptable up to the ultimate compressive strength, allowing relatively simple models to be used for arch-type structures.

Compressive strength of solid clay brick mansory under eccentric loading

BRENCICH, ANTONIO;GAMBAROTTA, LUIGI;
2002-01-01

Abstract

Arches, vaults and pillars generally experience eccentric normal force. As a consequence, the classical theories of masonry collapse, developed for concentrically compressed brickwork, are not directly applicable. In this paper experimental data on solid clay brick and lime-mortar masonry prisms, eccentrically loaded, are presented. Comparing the results to the response of a FEM model, some hints on the collapse mechanism of masonry show that the edge effects greatly affect the load carrying capacity of the brickwork. Besides, the plane section assumption is found to be acceptable up to the ultimate compressive strength, allowing relatively simple models to be used for arch-type structures.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/251164
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact