Electromagnetically-heated metal nanoparticles can be exploited as efficient heat sources at the nanoscale. The assessment of their temperature is, however, often performed indirectly by modelling their temperature-dependent dielectric response. Direct measurements of the optical properties of metallic nanoparticles in equilibrium with a thermodynamic bath provide a calibration of their thermo-optical response, to be exploited for refining current thermoplasmonic models or whenever direct temperature assessments are practically unfeasible. We investigated the plasmonic response of supported Au nanoparticles in a thermodynamic bath from room temperature to 350 °C. A model explicitly including the temperature-dependent dielectric function of the metal and finite-size corrections to the nanoparticles' permittivity correctly reproduced experimental data for temperatures up to 75 °C. The model accuracy gradually faded for higher temperatures. Introducing a temperature-dependent correction that effectively mimics a surface-scattering-like source of damping in the permittivity of the nanoparticles restored good agreement with the data. A finite-size thermodynamic effect such as surface premelting may be invoked to explain this effect.

Plasmonics of Au nanoparticles in a hot thermodynamic bath

Magnozzi M.;FERRERA, MARZIA;Mattera L.;Canepa M.;
2019-01-01

Abstract

Electromagnetically-heated metal nanoparticles can be exploited as efficient heat sources at the nanoscale. The assessment of their temperature is, however, often performed indirectly by modelling their temperature-dependent dielectric response. Direct measurements of the optical properties of metallic nanoparticles in equilibrium with a thermodynamic bath provide a calibration of their thermo-optical response, to be exploited for refining current thermoplasmonic models or whenever direct temperature assessments are practically unfeasible. We investigated the plasmonic response of supported Au nanoparticles in a thermodynamic bath from room temperature to 350 °C. A model explicitly including the temperature-dependent dielectric function of the metal and finite-size corrections to the nanoparticles' permittivity correctly reproduced experimental data for temperatures up to 75 °C. The model accuracy gradually faded for higher temperatures. Introducing a temperature-dependent correction that effectively mimics a surface-scattering-like source of damping in the permittivity of the nanoparticles restored good agreement with the data. A finite-size thermodynamic effect such as surface premelting may be invoked to explain this effect.
File in questo prodotto:
File Dimensione Formato  
11567_947302_Magnozzi_Nanoscale_2019_947302.pdf

accesso aperto

Tipologia: Documento in Pre-print
Dimensione 4.55 MB
Formato Adobe PDF
4.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/947302
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 25
social impact