The present research deals with the collection and structural elucidation of an unknown component, accounting for about 35% of the essential oil obtained upon distillation of the leaves of Eugenia uniflora L., harvested during summer (January, 2017) in Paraná State (Southern Brazil). A multidimensional gas chromatographic preparative system, based on the coupling of three GC systems equipped with apolar, PEG and ionic liquid-based stationary phases, was successfully applied for the isolation of the chromatographic band relative to the unknown molecule. The use of wide-bore columns allowed for an increased sample capacity compared to conventional micro-bore columns, thus the injection of a neat sample was feasible, greatly reducing the total collection time. A higher chromatographic efficiency was afforded by the use of a multidimensional approach in the heart-cut mode, exploiting the different selectivity of three stationary phases, which ensured the attainment of a highly pure fraction. In only five runs, more than 3 milligrams were collected, with an average purity greater then 95%. Finally, the unknown component was subjected to nuclear magnetic resonance spectroscopy, mass spectrometry and condensed phase Fourier-transform infrared spectroscopy, leading to the identification of 6-ethenyl-6-methyl-3,5-di(prop-1-en-2-yl)cyclohex-2-en-1-one. The presented approach has been demonstrated to be effective for the isolation and structural elucidation of unknown molecules in complex samples, which will allow for further in-depth studies, like biological evaluation or pharmacological tests.

Collection and identification of an unknown component from: Eugenia uniflora essential oil exploiting a multidimensional preparative three-GC system employing apolar, mid-polar and ionic liquid stationary phases

Sciarrone D.;Schepis A.;De Grazia G.;Rotondo A.;Mondello L.
2019-01-01

Abstract

The present research deals with the collection and structural elucidation of an unknown component, accounting for about 35% of the essential oil obtained upon distillation of the leaves of Eugenia uniflora L., harvested during summer (January, 2017) in Paraná State (Southern Brazil). A multidimensional gas chromatographic preparative system, based on the coupling of three GC systems equipped with apolar, PEG and ionic liquid-based stationary phases, was successfully applied for the isolation of the chromatographic band relative to the unknown molecule. The use of wide-bore columns allowed for an increased sample capacity compared to conventional micro-bore columns, thus the injection of a neat sample was feasible, greatly reducing the total collection time. A higher chromatographic efficiency was afforded by the use of a multidimensional approach in the heart-cut mode, exploiting the different selectivity of three stationary phases, which ensured the attainment of a highly pure fraction. In only five runs, more than 3 milligrams were collected, with an average purity greater then 95%. Finally, the unknown component was subjected to nuclear magnetic resonance spectroscopy, mass spectrometry and condensed phase Fourier-transform infrared spectroscopy, leading to the identification of 6-ethenyl-6-methyl-3,5-di(prop-1-en-2-yl)cyclohex-2-en-1-one. The presented approach has been demonstrated to be effective for the isolation and structural elucidation of unknown molecules in complex samples, which will allow for further in-depth studies, like biological evaluation or pharmacological tests.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3150714
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact