Strain tuning emerged as an appealing tool for tuning of fundamental optical properties of solid-state quantum emitters. In particular, the wavelength and fine structure of quantum dot states can be tuned using hybrid semiconductor-piezoelectric devices. Here, we show how an applied external stress can directly impact the polarization properties of coupled InAs quantum dot-micropillar cavity systems. In our experiment, we find that we can reversibly tune the anisotropic polarization splitting of the fundamental microcavity mode by approximately 60 μ eV . We discuss the origin of this tuning mechanism, which arises from an interplay between elastic deformation and the photoelastic effect in our micropillar. Finally, we exploit this effect to tune the quantum dot polarization optomechanically via the polarization-anisotropic Purcell effect. Our work paves the way for optomechanical and reversible tuning of the polarization and spin properties of light-matter-coupled solid-state systems.

Optomechanical tuning of the polarization properties of micropillar cavity systems with embedded quantum dots / Gerhardt, Stefan; Moczała-Dusanowska, Magdalena; Dusanowski, Łukasz; Huber, Tobias; Betzold, Simon; Martín-Sánchez, Javier; Trotta, Rinaldo; Predojević, Ana; Höfling, Sven; Schneider, Christian. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 101:24(2020). [10.1103/PhysRevB.101.245308]

Optomechanical tuning of the polarization properties of micropillar cavity systems with embedded quantum dots

Trotta, Rinaldo;
2020

Abstract

Strain tuning emerged as an appealing tool for tuning of fundamental optical properties of solid-state quantum emitters. In particular, the wavelength and fine structure of quantum dot states can be tuned using hybrid semiconductor-piezoelectric devices. Here, we show how an applied external stress can directly impact the polarization properties of coupled InAs quantum dot-micropillar cavity systems. In our experiment, we find that we can reversibly tune the anisotropic polarization splitting of the fundamental microcavity mode by approximately 60 μ eV . We discuss the origin of this tuning mechanism, which arises from an interplay between elastic deformation and the photoelastic effect in our micropillar. Finally, we exploit this effect to tune the quantum dot polarization optomechanically via the polarization-anisotropic Purcell effect. Our work paves the way for optomechanical and reversible tuning of the polarization and spin properties of light-matter-coupled solid-state systems.
2020
Quantum Dot
01 Pubblicazione su rivista::01a Articolo in rivista
Optomechanical tuning of the polarization properties of micropillar cavity systems with embedded quantum dots / Gerhardt, Stefan; Moczała-Dusanowska, Magdalena; Dusanowski, Łukasz; Huber, Tobias; Betzold, Simon; Martín-Sánchez, Javier; Trotta, Rinaldo; Predojević, Ana; Höfling, Sven; Schneider, Christian. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 101:24(2020). [10.1103/PhysRevB.101.245308]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1453822
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact