A model-free analysis of Pseudomonas aeruginosa ferricytochrome c(551) dynamics based on (15)N R(1), (15)N R(2), and [(1)H]-(15)N heteronuclear nuclear Overhauser effect data is reported. The protein backbone is highly rigid (< S(2)>=0.924+/-0.005) and displays little variation in picosecond-nanosecond time scale dynamics over the structure. The loop structure containing the axial methionine ligand (loop 3) displays anomalous rigidity, which is attributed to its high proline content. Also reported are protection factors calculated from hydrogen-exchange rates. These data reveal that loop 3 residues, including the axial methionine, are protected from exchange as a result of long-range hydrogen-bonding interactions. These results are contrasted with data reported for Saccharomyces cerevisiae iso-1-ferricytochrome c, which displays higher overall flexibility (< S(2)>=0.80+/-0.07), greater variation of dynamics as a function of structure, and low protection factors for loop 3. This analysis reveals that heme proteins with similar functions and topologies may display diverse dynamical properties.

Backbone dynamics and hydrogen exchange of Pseudomonas aeruginosa ferricytochrome c(551) / Russell, Bs; Zhong, L; Bigotti, Mg; Cutruzzola', Francesca; Bren, K. L.. - In: JBIC. - ISSN 0949-8257. - 8:1-2(2003), pp. 156-166. [10.1007/s00775-002-0401-z]

Backbone dynamics and hydrogen exchange of Pseudomonas aeruginosa ferricytochrome c(551).

CUTRUZZOLA', Francesca;
2003

Abstract

A model-free analysis of Pseudomonas aeruginosa ferricytochrome c(551) dynamics based on (15)N R(1), (15)N R(2), and [(1)H]-(15)N heteronuclear nuclear Overhauser effect data is reported. The protein backbone is highly rigid (< S(2)>=0.924+/-0.005) and displays little variation in picosecond-nanosecond time scale dynamics over the structure. The loop structure containing the axial methionine ligand (loop 3) displays anomalous rigidity, which is attributed to its high proline content. Also reported are protection factors calculated from hydrogen-exchange rates. These data reveal that loop 3 residues, including the axial methionine, are protected from exchange as a result of long-range hydrogen-bonding interactions. These results are contrasted with data reported for Saccharomyces cerevisiae iso-1-ferricytochrome c, which displays higher overall flexibility (< S(2)>=0.80+/-0.07), greater variation of dynamics as a function of structure, and low protection factors for loop 3. This analysis reveals that heme proteins with similar functions and topologies may display diverse dynamical properties.
2003
01 Pubblicazione su rivista::01a Articolo in rivista
Backbone dynamics and hydrogen exchange of Pseudomonas aeruginosa ferricytochrome c(551) / Russell, Bs; Zhong, L; Bigotti, Mg; Cutruzzola', Francesca; Bren, K. L.. - In: JBIC. - ISSN 0949-8257. - 8:1-2(2003), pp. 156-166. [10.1007/s00775-002-0401-z]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/393105
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 38
social impact