The use of process analytical technologies (PAT) to ensure final product quality is by now a well established practice in pharmaceutical industry. To date, most of the efforts in this field have focused on development of analytical methods using spectroscopic techniques (i.e., NIR, Raman, etc.). This work evaluated the possibility of using the parameters derived from the processing of in-line raw compaction data (the forces and displacement of the punches) as a PAT tool for controlling the tableting process. To reach this goal, two commercially available formulations were used, changing the quantitative composition and compressing them on a fully instrumented rotary pressing machine. The Heckel yield pressure and the compaction energies, together with the tablets hardness and compaction pressure, were selected and evaluated as discriminating parameters in all the prepared formulations. The apparent yield pressure, as shown in the obtained results, has the necessary sensitivity to be effectively included in a PAT strategy to monitor the tableting process. Additional investigations were performed to understand the criticalities and the mechanisms beyond this performing parameter and the associated implications. Specifically, it was discovered that the efficiency of the apparent yield pressure depends on the nominal drug title, the drug densification mechanism and the error in pycnometric density. In this study, the potential of using some parameters derived from the compaction raw data has been demonstrated to be an attractive alternative and complementary method to the well established spectroscopic techniques to monitor and control the tableting process. The compaction data monitoring method is also easy to set up and very cost effective.

Use of in-die powder densification parameters in the implementation of process analytical technologies for tablet production on industrial scale

CASETTARI, LUCA;
2014

Abstract

The use of process analytical technologies (PAT) to ensure final product quality is by now a well established practice in pharmaceutical industry. To date, most of the efforts in this field have focused on development of analytical methods using spectroscopic techniques (i.e., NIR, Raman, etc.). This work evaluated the possibility of using the parameters derived from the processing of in-line raw compaction data (the forces and displacement of the punches) as a PAT tool for controlling the tableting process. To reach this goal, two commercially available formulations were used, changing the quantitative composition and compressing them on a fully instrumented rotary pressing machine. The Heckel yield pressure and the compaction energies, together with the tablets hardness and compaction pressure, were selected and evaluated as discriminating parameters in all the prepared formulations. The apparent yield pressure, as shown in the obtained results, has the necessary sensitivity to be effectively included in a PAT strategy to monitor the tableting process. Additional investigations were performed to understand the criticalities and the mechanisms beyond this performing parameter and the associated implications. Specifically, it was discovered that the efficiency of the apparent yield pressure depends on the nominal drug title, the drug densification mechanism and the error in pycnometric density. In this study, the potential of using some parameters derived from the compaction raw data has been demonstrated to be an attractive alternative and complementary method to the well established spectroscopic techniques to monitor and control the tableting process. The compaction data monitoring method is also easy to set up and very cost effective.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11576/2610593
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact