We analyze the timing of photons observed by the MAGIC telescope during a flare of the active galactic nucleus Mkn 501 for a possible correlation with energy, as suggested by some models of quantum gravity (QG), which predict a vacuum refractive index similar or equal to 1 + (E/M-QGn)(n), n = 1, 2. Parametrizing the delay between gamma-rays of different energies as Delta t = +/-tau E-1 or Delta t = +/-tau E-q(2), we find tau(1) = (0.030 +/- 0.012) s/GeV at the 2.5-sigma level, and tau(q) = (3.71 +/- 2.57) x 10(-6) s/GeV2, respectively. We use these results to establish lower limits M-QG1 > 0.21 X 10(18) GeV and M-QG2 > 0.26 x 10(11) GeV at the 95% C.L. Monte Carlo studies confirm the MAGIC sensitivity to propagation effects at these levels. Thermal plasma effects in the source are negligible, but we cannot exclude the importance of some other source effect.

Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope

BASTIERI, DENIS;BERNARDINI E;DORO, MICHELE;LOMBARDI, SAVERIO;MARIOTTI, MOSE';PASCOLI, DONATELLA;PRANDINI, ELISA;
2008

Abstract

We analyze the timing of photons observed by the MAGIC telescope during a flare of the active galactic nucleus Mkn 501 for a possible correlation with energy, as suggested by some models of quantum gravity (QG), which predict a vacuum refractive index similar or equal to 1 + (E/M-QGn)(n), n = 1, 2. Parametrizing the delay between gamma-rays of different energies as Delta t = +/-tau E-1 or Delta t = +/-tau E-q(2), we find tau(1) = (0.030 +/- 0.012) s/GeV at the 2.5-sigma level, and tau(q) = (3.71 +/- 2.57) x 10(-6) s/GeV2, respectively. We use these results to establish lower limits M-QG1 > 0.21 X 10(18) GeV and M-QG2 > 0.26 x 10(11) GeV at the 95% C.L. Monte Carlo studies confirm the MAGIC sensitivity to propagation effects at these levels. Thermal plasma effects in the source are negligible, but we cannot exclude the importance of some other source effect.
File in questo prodotto:
File Dimensione Formato  
Probing quantum gravity.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 266.03 kB
Formato Adobe PDF
266.03 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2433674
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 223
  • ???jsp.display-item.citation.isi??? 185
social impact