Experimental devices based on vibration testing are employed as non-destructive procedures for evaluating implants osseointegration. Their behaviour was evaluated considering the outcome of numerical analysis. The purpose was to use the finite element method for assessing the ability of frequency analysis in detecting the degree of oral implant osseointegration. A threedimensional model of a mandible was obtained from tomographic survey. A single implant was considered in canine region. Two configurations were analysed, with and without a mass linked to the implant as a cantilever, reproducing experimental devices. Simulation consisted of analysing the response to impulse forces for different osseointegration levels, thus evaluating the biomechanical efficiency of the implant-bone compound. A good correlation between frequency response and osseointegration level was obtained. This was carried out by providing an impulse excitation of the implant that resulted in a vibration pattern. Within the limit of finite element analysis, the outcomes showed that numerical investigation provides understanding the behaviour of testing devices based on frequency measurements, confirming the potential of vibrations technique as non-invasive analysis for osseointegration process.

A numerical approach to resonance frequency analysis for the investigation of oral implant osseointegration

NATALI, ARTURO;PAVAN, PIERO;
2006

Abstract

Experimental devices based on vibration testing are employed as non-destructive procedures for evaluating implants osseointegration. Their behaviour was evaluated considering the outcome of numerical analysis. The purpose was to use the finite element method for assessing the ability of frequency analysis in detecting the degree of oral implant osseointegration. A threedimensional model of a mandible was obtained from tomographic survey. A single implant was considered in canine region. Two configurations were analysed, with and without a mass linked to the implant as a cantilever, reproducing experimental devices. Simulation consisted of analysing the response to impulse forces for different osseointegration levels, thus evaluating the biomechanical efficiency of the implant-bone compound. A good correlation between frequency response and osseointegration level was obtained. This was carried out by providing an impulse excitation of the implant that resulted in a vibration pattern. Within the limit of finite element analysis, the outcomes showed that numerical investigation provides understanding the behaviour of testing devices based on frequency measurements, confirming the potential of vibrations technique as non-invasive analysis for osseointegration process.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2436062
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact