The analysis of contact degradation in a not controlled atmosphere (air) at different temperatures in microstructures with electrostatic actuation is the main topic of this study. Different types of devices are subjected to 1 million impact cycles at three different temperatures (25 °C, 40 °C and 55 °C). The electrical properties are shown and the results are explained: a major operating temperature lead to a more reliable contact because the membrane internal stress decreases with the temperature, lowering the restoring force of the switch. The use of modified floating metal in the fabrication of the devices can improves the reliability of the contact producing a significant improvement in the lifetime.

Reliability of capacitive RF MEMS switches subjected to repetitive impact cycles at different temperatures

BARBATO, MARCO;CESTER, ANDREA;MENEGHESSO, GAUDENZIO
2014

Abstract

The analysis of contact degradation in a not controlled atmosphere (air) at different temperatures in microstructures with electrostatic actuation is the main topic of this study. Different types of devices are subjected to 1 million impact cycles at three different temperatures (25 °C, 40 °C and 55 °C). The electrical properties are shown and the results are explained: a major operating temperature lead to a more reliable contact because the membrane internal stress decreases with the temperature, lowering the restoring force of the switch. The use of modified floating metal in the fabrication of the devices can improves the reliability of the contact producing a significant improvement in the lifetime.
2014
44th European Solid State Device Research Conference (ESSDERC)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3100107
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact