A two-photon mechanism for cooling atoms below the Doppler temperature is analyzed. We consider the magnesium ladder system (3s(2))S-1(0)->(3s3p)P-1(1) at 285.2 nm followed by the (3s3p)P-1(1)->(3s3d)D-1(2) transition at 880.7 nm. For the ladder system quantum coherence effects may become important. Combined with the basic two-level Doppler cooling process this allows for reduction of the atomic sample temperature by more than a factor of 10 over a broad frequency range. First experimental evidence for the two-photon cooling process is presented and compared to model calculations. Agreement between theory and experiment is excellent. In addition, by properly choosing the Rabi frequencies of the two optical transitions a velocity independent atomic dark state is observed.

Two-photon cooling of magnesium atoms

MALOSSI, Nicola;
2005-01-01

Abstract

A two-photon mechanism for cooling atoms below the Doppler temperature is analyzed. We consider the magnesium ladder system (3s(2))S-1(0)->(3s3p)P-1(1) at 285.2 nm followed by the (3s3p)P-1(1)->(3s3d)D-1(2) transition at 880.7 nm. For the ladder system quantum coherence effects may become important. Combined with the basic two-level Doppler cooling process this allows for reduction of the atomic sample temperature by more than a factor of 10 over a broad frequency range. First experimental evidence for the two-photon cooling process is presented and compared to model calculations. Agreement between theory and experiment is excellent. In addition, by properly choosing the Rabi frequencies of the two optical transitions a velocity independent atomic dark state is observed.
2005
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/287020
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 27
social impact