Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel gene. CF mutations like deltaF508 cause both a mistrafficking of the protein and a gating defect. Other mutations, like G551D, cause only a gating defect. Our aim was to find chemical compounds able to stimulate the activity of CFTR mutant proteins by screening a library containing approved drugs. Two thousand compounds were tested on Fischer rat thyroid cells coexpressing deltaF508-CFTR and a halide-sensitive yellow fluorescent protein (YFP) after correction of the trafficking defect by low-temperature incubation. The YFP-based screening allowed the identification of the antihypertensive 1,4-dihydropyridines (DHPs) nifedipine, nicardipine, nimodipine, isradipine, nitrendipine, felodipine, and niguldipine as compounds able to activate deltaF508-CFTR. This effect was not derived from the inhibition of voltage-dependent Ca2+ channels, the pharmacological target of antihypertensive DHPs. Indeed, methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-2(trifluoromethylphenyl)pyridine-5-carboxylate (BayK-8644), a DHP that is effective as an activator of such channels, also stimulated CFTR activity. DHPs were also effective on the G551D-CFTR mutant by inducing a 16- to 45-fold increase of the CFTR Cl- currents. DHP activity was confirmed in airway epithelial cells from patients with CF. DHPs may represent a novel class of therapeutic agents able to correct the defect caused by a set of CF mutations.

Antihypertensive 1,4-dihydropyridines as correctors of the cystic fibrosis transmembrane conductance regulator channel gating defect caused by cystic fibrosis mutations / Pedemonte, Nicoletta; Diena, Tullia; Caci, Emanuela; Nieddu, Erika; Mazzei, Mauro; Ravazzolo, Roberto; Zegarra-Moran, Olga; Galietta, Luis J. V.. - In: MOLECULAR PHARMACOLOGY. - ISSN 0026-895X. - 68:6(2005), pp. 1736-1746. [10.1124/mol.105.015149]

Antihypertensive 1,4-dihydropyridines as correctors of the cystic fibrosis transmembrane conductance regulator channel gating defect caused by cystic fibrosis mutations

Galietta, Luis J. V.
2005

Abstract

Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel gene. CF mutations like deltaF508 cause both a mistrafficking of the protein and a gating defect. Other mutations, like G551D, cause only a gating defect. Our aim was to find chemical compounds able to stimulate the activity of CFTR mutant proteins by screening a library containing approved drugs. Two thousand compounds were tested on Fischer rat thyroid cells coexpressing deltaF508-CFTR and a halide-sensitive yellow fluorescent protein (YFP) after correction of the trafficking defect by low-temperature incubation. The YFP-based screening allowed the identification of the antihypertensive 1,4-dihydropyridines (DHPs) nifedipine, nicardipine, nimodipine, isradipine, nitrendipine, felodipine, and niguldipine as compounds able to activate deltaF508-CFTR. This effect was not derived from the inhibition of voltage-dependent Ca2+ channels, the pharmacological target of antihypertensive DHPs. Indeed, methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-2(trifluoromethylphenyl)pyridine-5-carboxylate (BayK-8644), a DHP that is effective as an activator of such channels, also stimulated CFTR activity. DHPs were also effective on the G551D-CFTR mutant by inducing a 16- to 45-fold increase of the CFTR Cl- currents. DHP activity was confirmed in airway epithelial cells from patients with CF. DHPs may represent a novel class of therapeutic agents able to correct the defect caused by a set of CF mutations.
2005
Antihypertensive 1,4-dihydropyridines as correctors of the cystic fibrosis transmembrane conductance regulator channel gating defect caused by cystic fibrosis mutations / Pedemonte, Nicoletta; Diena, Tullia; Caci, Emanuela; Nieddu, Erika; Mazzei, Mauro; Ravazzolo, Roberto; Zegarra-Moran, Olga; Galietta, Luis J. V.. - In: MOLECULAR PHARMACOLOGY. - ISSN 0026-895X. - 68:6(2005), pp. 1736-1746. [10.1124/mol.105.015149]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/739044
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? ND
social impact