The Campanian Plain (CP) shallow aquifer (Southern Italy) represents a natural laboratory to validate geochemical methods for differentiating diffuse anthropogenic pollution from natural water-rock interaction processes. The CP is an appropriate study area because of numerous potential anthropogenic pollution vectors including agriculture, animal husbandry, septic/drainage sewage systems, and industry. In order to evaluate the potential for geochemical methods to differentiate various contamination vectors, 538 groundwater wells from the shallow aquifer in Campanian Plain (CP) were sampled. The dataset includes both major and trace elements. Natural water-rock interactions, which primarily depend on local lithology, control the majority of geochemical parameters, including most of the major and trace elements. Using prospective statistical methods in combination with the traditional geochemical techniques, we determined the chemical variables that are enriched by anthropogenic contamination (i.e. NO<inf>3</inf>, SO<inf>4</inf> and U) by using NO<inf>3</inf> as the diagnostic variable for detecting polluted groundwater. Synthetic agricultural fertilizers are responsible for the majority of SO<inf>4</inf> and U pollution throughout the CP area. Both SO<inf>4</inf> and U are present in the groundmass of synthetic fertilizers; the uranium concentration is specifically applicable as a tracer for non-point source agricultural fertilizer contamination. The recognition of non-geological (anthropogenic) inputs of these elements has to be considered in the geochemical investigations of contaminated aquifers.

Inorganic contaminants from diffuse pollution in shallow groundwater of the Campanian Plain (Southern Italy). Implications for geochemical survey

CUOCO, Emilio;TEDESCO, Dario
2015

Abstract

The Campanian Plain (CP) shallow aquifer (Southern Italy) represents a natural laboratory to validate geochemical methods for differentiating diffuse anthropogenic pollution from natural water-rock interaction processes. The CP is an appropriate study area because of numerous potential anthropogenic pollution vectors including agriculture, animal husbandry, septic/drainage sewage systems, and industry. In order to evaluate the potential for geochemical methods to differentiate various contamination vectors, 538 groundwater wells from the shallow aquifer in Campanian Plain (CP) were sampled. The dataset includes both major and trace elements. Natural water-rock interactions, which primarily depend on local lithology, control the majority of geochemical parameters, including most of the major and trace elements. Using prospective statistical methods in combination with the traditional geochemical techniques, we determined the chemical variables that are enriched by anthropogenic contamination (i.e. NO3, SO4 and U) by using NO3 as the diagnostic variable for detecting polluted groundwater. Synthetic agricultural fertilizers are responsible for the majority of SO4 and U pollution throughout the CP area. Both SO4 and U are present in the groundmass of synthetic fertilizers; the uranium concentration is specifically applicable as a tracer for non-point source agricultural fertilizer contamination. The recognition of non-geological (anthropogenic) inputs of these elements has to be considered in the geochemical investigations of contaminated aquifers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/368133
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 36
social impact