
Supplement to the Wetlands Technical Memorandum

PREPARED FOR:	Colorado Department of Transportation
PREPARED BY:	Shonna Sam/CH2M HILL
COPIES:	Andrea Garcia, Shonna Sam, File 187824_US_24_Corridor
DATE:	June 9, 2011

The following graphic supersedes Exhibit 2 in the Technical Memorandum for Wetlands.

Wetland Delineation

US 24 West

CDOT Project No. NH 0242-040 Project Control No. 187824

Colorado Department of Transportation

January 2011

Contents

1
2
2
4
5
6
6
6
7
11
11
13
14
15

Tables

Table 1	Wetlands and Other Waters of the United States within the Study Area
Table 2	Vegetation Summary Table for Wetlands
Table 3	Wetlands and Other Waters of the United States Impacts

Figures

Figure 1	Project Study Area
Figure 2	Proposed Action

Appendices

Appendix A	Wetland Atlas
Appendix B	Site Photographs
Appendix C	Wetland Dataforms

1.0 Introduction

The Federal Highway Administration (FHWA), in cooperation with the Colorado Department of Transportation (CDOT), is preparing an Environmental Assessment (EA) for the US 24 West Project (project) in El Paso County, Colorado. The project would improve a 4-mile segment of United States Route 24 West (US 24) beginning on the east end of the Interstate 25 (I-25) and US 24 intersection near downtown Colorado Springs and extending west to the southeastern boundary of Manitou Springs (**Figure 1**). The legal location of the project is Township 14 south, Range 67 West, and Sections 14, 13, 11, 10, 4, and 3.

The purpose of this wetland delineation technical memorandum is to summarize potential impacts on existing wetlands and waters of the United States located within the project study area. Both the No Action Alternative and the Proposed Action (described in Sections 2.0 and 3.0, respectively) are evaluated. The analysis that follows has been prepared in accordance with Executive Order 11990, "Protection of Wetlands," 23 Code of Federal Regulations (CFR) 771, 23 CFR 777, and Technical Advisory T6640.8A.

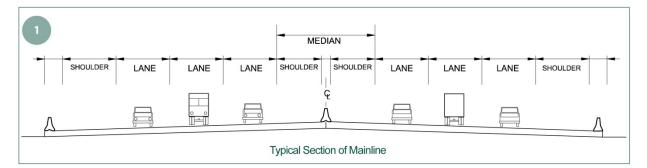
FIGURE 1 Project Study Area

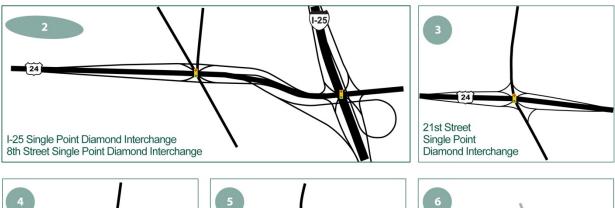
2.0 No Action Alternative

The No Action Alternative consists of existing transportation facilities and committed transportation projects that would occur regardless of whether the Proposed Action is constructed. The No Action Alternative would not make any improvements to the existing condition beyond those already planned and funded. The projects listed below are shown in existing adopted transportation plans and are locally funded projects.

- 8th Street Intersection Improvements. Lengthens turn lanes and acceleration and deceleration lanes on US 24, and widens 8th Street north and south of US 24.
- 8th Street Bridge Replacement. Replaces the existing four-lane bridge structure over Fountain Creek at 8th Street.
- **21st Street Roadway Improvements.** Includes the widening of 21st Street south of US 24 to four 12-foot travel lanes with dedicated turn lanes, extended acceleration lane, and curb and gutter. Geometric improvements to the US 24/21st Street intersection will also be constructed.
- **21st Street Bridge Replacement.** Replaces the existing four-lane bridge structure over Fountain Creek.
- **25th Street Bridge Replacement.** Replaces the existing two-lane bridge structure over Fountain Creek at 25th Street.
- **Midland Trail Extension.** Extends Midland Trail between 21st Street and Manitou Avenue to connect with Manitou Springs' Creekside Trail.

Under the No Action Alternative, improvements to intelligent transportation systems (for example, variable message signs) would be implemented as part of the congestion management program. Existing bus routes and service would continue as they are today, and bike and pedestrian facilities would only be extended or improved as local funds and grants allow.


3.0 Proposed Action


The Proposed Action would provide additional capacity on US 24 by building additional travel lanes, two new interchanges, and one new overpass. The Proposed Action includes rebuilding several cross-streets, replaces bridges over Fountain Creek, and includes modifications to Fountain Creek's channel at each bridge crossing. Sidewalks would be built at all intersections and interchanges. The Proposed Action would also accommodate a park and ride facility and two future local access points along the route, which would be built by others. The Proposed Action is illustrated in **Figure 2**.

A single point diamond interchange is proposed at the Cimarron Interchange. This interchange design differs from what was originally presented in the *I-25 Improvements through the Colorado Springs Urbanized Area EA* (I-25 EA) (FHWA and CDOT, 2004). Since the I-25 EA was approved, new opportunities have been identified to improve existing and future traffic operations, making this improved design now feasible.

FIGURE 2 Proposed Action

US 24 in the project area would be built to have eight through-lanes, four in each direction, east of 8th Street, and six through-lanes, three in each direction, from 8th Street to a point west of 31st Street. New interchanges are proposed at 8th and 21st Streets.

Intersection upgrades are proposed at 26th Street. The intersection of US 24 and 31st Street would be widened, as would the intersection with Colorado Avenue to the north. South of US 24, 31st Street would be rebuilt to align with the highway intersection.

At the west end of the corridor, an overpass would be built to carry US 24 over Ridge Road. Ridge Road would be widened between High Street and Colorado Avenue. The west end of the Proposed Action is approximately 1,800 feet west of the Ridge Road overpass where the overpass connects to the existing highway. Because there is not an existing or future congestion problem between Ridge Road and Manitou Avenue, no changes are proposed west of Ridge Road.

Accommodations would be made for the following features that will be built by others in the future:

- At 15th Street, an overpass would be constructed to carry 15th Street over US 24 and Fountain Creek, and connect to the street network of Old Colorado City and Gold Hill Mesa. This overpass would include ramps on the east side to connect to the 8th Street intersection. Between the ramps and Colorado Avenue, 15th Street would be reconstructed to provide pedestrian features such as sidewalks.
- At Ridge Road, ramps providing direct access to US 24 would be constructed to convert the overpass to a tight diamond interchange.
- At 31st Street, a park and ride facility would be constructed in the northeast quadrant of the intersection, with access from Colorado Avenue.

As described in Chapter 4 of the EA, the Proposed Action also includes various mitigation measures such as the construction of a greenway and the extension of some trails. The Proposed Action is illustrated in **Figure 2**.

4.0 Methodology

A wetland and waters of the United States delineation was conducted by CH2M HILL wetland scientists Bill Knapp and Brian Lee on January 15, 2009. A second wetland delineation was conducted near the proposed I-25/Cimmaron St. interchange in January 2011. Wetlands were identified and delineated following methods outlined in the 1987 United States Army Corps of Engineers (USACE) *Wetland Delineation Manual* (USACE, 1987) and the *Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Great Plains Region* (USACE, 2008). The *Draft Interim Great Plains Supplement* was created by the USACE in March 2008, as part of a nationwide effort to address regional wetland characteristics and improve the accuracy and efficiency of wetland delineation procedures. This supplement is applicable to the Great Plains Region, which consists of all or significant portions of eleven states: Colorado, Kansas, Minnesota, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming. Wetland indicators as described in the Draft Great Plains Supplement (USACE, 2008) are used to assess the presence of wetlands within an area. The indicators include hydrophytic vegetation, hydric

soils, and wetland hydrology. The locations of wetlands and waters of the United States are provided in the Wetland Atlas in **Appendix A.** Site photographs are presented in **Appendix B**. Wetland determination data sheets are provided in **Appendix C**.

Wetland Vegetation

Hydrophytic (wetland) vegetation includes those plants typically adapted for life in saturated soil conditions. To determine if wetland vegetation is present, percent vegetative cover and Plant Indicator Status (Reed, 1988 and Reed et al., 1993) for dominant species are identified for plant species within the sample plot (2-meter radius). Vegetation canopy cover for all vegetative layers (tree, shrub, woody vine, and herbaceous) is estimated to determine the dominant vegetation and to characterize each plant community sampled. Dominant species within the sample area are classified using the Plant Indicator Status (Reed, 1988 and Reed et al., 1993) to determine if there is a predominance of wetland plants within the community. Plant indicator status is broken down into the following categories:

- **Obligate Wetland Plants (OBL).** Species that almost always (>99 percent probability) occur in wetlands.
- **Facultative Wetland Plants (FACW).** Species that usually (67 to 99 percent probability) occur in wetlands.
- **Facultative Plants (FAC).** Species that are equally likely (33 to 67 percent probability) to occur in wetlands or uplands.
- Facultative Upland Plants (FACU). Species that usually (67 to 99 percent probability) occur in uplands.
- Not Listed. Species with no designated wetland indicator status and assumed to be upland.
- **No Indicator.** Species for which insufficient information was available to determine an indicator status, or species that were not considered by the review panel.
- * tentative assignment based on limited information or conflicting review.

If more than 50 percent of the dominant species within a sample plot are OBL, FACW, or FAC indicator, the hydrophytic vegetation criteria are satisfied (USACE, 2008).

It is important to note that wetland plant communities in drainages may fail a test based on dominant species. Therefore, vegetation may be required to be re-evaluated with the Prevalence Index. The Prevalence Index, which takes into consideration all plant species in the community uses a weighted-average wetland indicator status for all plant species occurring within the sampling plot, where each indicator status category is given a numeric code and weighted by abundance (percent cover). This index is a more comprehensive analysis of the hydrophytic status of the community than one based on fewer dominant species (USACE, 2008). In addition, plant morphological adaptations can be used to distinguish certain wetland plant communities in the Great Plains region when hydric soil and wetland hydrology are present (USACE, 2008).

Following determination of wetland vegetation, plant communities were classified according to the United States Fish and Wildlife Service (USFWS) classification system (Cowardin et al., 1979).

Hydric Soils

Hydric soils were field identified on the basis of hydric soil indicators including gleying, low chroma colors, presence of redoximorphic features, sulfuric odor, and inundation and saturation levels. A Munsell Soil Color Chart was used to determine soil matrix and redox concentration colors at sample locations in consultation with the Field Indicators of Hydric Soils in the United States Manual (USDA, 2008 and NRCS, 2008).

In most cases, all mineral layers above any of the indicators must have a dominant chroma of 2 or less, or the layers with dominant chroma of more than 2 must be less than 6 inches thick to meet any hydric soil indicators. Hydric soil indicators pertaining to conditions within the Great Plains are present in three groups (all soil textures, sandy soils, and loam and clayey soils). Soil indicators associated with the three groups are as follows (USACE, 2008):

- All soil textures. Histosol, Histic Epipedon, Stratified Layers, Black Histic, Hydrogen Sulfide, 1 cm muck, Depleted Below Dark Surface, and Thick Dark Surface.
- **Sandy soils**. Textures of loamy fine sand and coarser, including Sandy Mucky Mineral, Sandy Gleyed Matrix, and Stripped Matrix.
- Loamy and clayey soils. Loamy very fine sand and finer textures, including Loamy Mucky Mineral, Loamy Gleyed Matrix, Depleted Matrix, Redox Dark Surface, Depleted Dark Surface, Redox Depressions, and Vernal Pools.

Wetland Hydrology

Wetland hydrology encompasses all hydrologic characteristics of areas that are periodically inundated or have soils saturated to the surface for sufficient duration during the growing season. Primary field indicators for wetland hydrology described in the 2008 Supplement (USACE, 2008) include the presence of standing water, saturated soil within 12 inches of the soil surface, high water table, water marks (nonriverine), sediment deposits (nonriverine), drift deposits (nonriverine), surface soil cracks, inundation visible on aerial imagery, water-stained leaves, salt crust, biotic crust, aquatic invertebrates, hydrogen sulfide odor, oxidized rhizospheres along living roots, presence of reduced iron, and recent iron reduction in plowed soils. Secondary indicators include water marks (riverine), sediment deposits (riverine), drift deposits (riverine), drainage patterns, dry-season water table, thin muck surface, crayfish burrows, saturation visible on aerial imagery, shallow aquitard, and FAC-neutral test. One primary wetland hydrology indicator or two secondary hydrology indicators are required to meet the wetland hydrology criteria (USACE, 1987 and USACE, 2008).

Data Collection and Processing

Wetland boundaries and locations were recorded using a hand-held Trimble Geo XT global positioning system (GPS) capable of sub-foot accuracy. Collected GPS data was differentially corrected using a geographical information system software program and

projected into established project mapping for use as representative figures and impact analysis.

5.0 Existing Conditions

The project study area is located within a well-established urban setting comprised of various residential and commercial properties including single-family homes, mobile homes, gas stations, motels, commercial retailers, and associated roadways. Urban development has been present in this location for more than 50 years. US 24 and Fountain Creek intersect a few times within the study area, but are parallel throughout the majority of the corridor.

Fountain Creek shows obvious signs of heavy erosion along portions of the stream banks and downcutting within the channel. Portions of this waterway have been altered through man-made improvements including concrete walls and boulder/concrete rip rap. A well established hardwood riparian zone is present along the banks of Fountain Creek throughout the majority of the study area that is primarily comprised of cottonwood species (*Populus deltoids*, ssp. *monilifera*, and *Populus angustifolia*), green ash (*Fraxinus pennsylvanica*), Siberian elm (*Ulmus pumila*), box-elder (*Acer negundo*), western snowberry (*Symphoricarpos occidentalis*), chokecherry (*Prunus virginiana*), peachleaf willow (*Salix amygdaloides*), sandbar willow (*Salix exigua*), and minor occurrence of ponderosa pine (*Pinus ponderosa*).

One wetland was identified within project boundaries during the January 2009 onsite survey. The wetland was comprised of a palustrine emergent complex primarily occurring within the floodplain of Fountain Creek. During an additional survey in January 2011, two additional wetlands were delineated along the banks of Monument and Fountain Creeks along the I-25 corridor.

Portions of Fountain Creek in the eastern end of the study corridor, near the intersection of US 24 and 8th Street, contained marginal wetland conditions. Fountain Creek and its floodplain were recently altered within this area during construction of the Springs Community Improvement Program (SCIP) Flood Control Project in 2003. The City of Colorado Springs undertook this project to expand the conveyance of flood discharges, improve safety and protect property. One outcome of the project was to return the stream to a more natural appearance and function.

Soils test pits and a close review of onsite conditions were conducted and then cross referenced with standards established in the 1987 USACE Delineation Manual manual and the *Draft Interim Great Plains Supplement* (USACE, 2008) prior to making the decision that the area does not meet all three wetland criteria. Data collected at this location is located in Datasheet UPL 2 in **Appendix C**. Despite being disqualified as a wetland, this area appears to be in a state of transition towards a more established hydric ecosystem, and could potentially meet all three criteria within the next few years. Because this area was not delineated, it does not appear in the Wetland Atlas in **Appendix A**.

In addition, stream restoration work was performed near the Gold Hill Mesa area in 2010. Impacts to this area were permitted separately. Onsite mitigation measures, including the incorporation of fish habitat features within Fountain Creek, were completed.

All wetland locations identified during surveys are assumed to be jurisdictional under the USACE standards due to a potential nexus with Fountain Creek, which is a relatively permanent waterway and tributary to Monument Creek. Identified wetland locations are described in further detail below and **Table 1** provides a summary of wetlands present within the study area. The locations of wetlands and Waters of the United States can be seen in the Wetlands Atlas in **Appendix A**. Site photographs can be seen in **Appendix B**. Wetland data forms are included in **Appendix C**.

Site ID	Acres within Study Area	USACE Jurisdictional?*	Wetland Type**	Comment
Wetland 1	0.02-	Yes	Emergent	Wetland located on a terrace within the Fountain Creek floodplain
Wetland 2	0.04	Yes	Emergent/ Scrub Shrub	Wetland located on a terrace under a pedestrian bridge adjacent to Monument Creek (along I- 25)
Wetland 3	0.13	Yes	Emergent/ Scrub Shrub	Wetland located on a terrace under a pedestrian bridge adjacent to Fountain Creek (along I-25)
Fountain Creek	Over 10	Yes	N/A	Fountain Creek includes both the stretch along US 24 as well as the stretch below the confluence with Monument Creek
Monument Creek	Over 10	Yes	N/A	Monument Creek changes to Fountain Creek below the confluence with Fountain Creek.
Bear Creek	Less than 0.5	Yes	N/A	Bear Creek flows under I-25 to its confluence with Fountain Creek

TABLE 1

*All wetlands assumed as jurisdictional under USACE standards. An official on-site jurisdictional determination would be needed from a USACE representative to confirm final jurisdictional status.

** Cowardin, L.M. et al., 1979. *Classification of Wetland and Deepwater Habitats of the United States.* USFWS, Biological Services Program; FWS/OBS-79/31.

Plant communities represented in the wetlands consist of vegetation typical of palustrine systems according to the Cowardin classification system. Wetlands of the emergent class are typically associated with grasses, sedges, rushes, and forbs. **Table 2** displays vegetation identified in the wetlands in the study area.

Common Name	Scientific Name*	Wetland Indicator Status**	
Bluejoint reedgrass	Calamagrostis canadensis	OBL	
Cattail	Typha latifolia	OBL	
Curly Dock	Rumex crispus	FACW	
Emory's sedge	Carex emoryii	OBL	
Poison Hemlock	Conium maculatum	FACW	
Narrowleaf Cattail	Typha angustifolia	OBL	
Red top	Agrostis gigantea	NI	
Reed Canary Grass	Phalaris arundinacea	FACW+	
Soft stem bulrush	Schoenoplectus tabernaemontani	OBL	
Sandbar willow	Salix exigua	OBL	

TABLE 2

Vegetation Summary Table for Wetlands

*Scientific Names based on nomenclature provided by Weber and Whittman, 1996.

**Wetland indicators based on Reed, 1998 (Region 5) Central Plains Species.

Wetland 1

Wetland 1 is a 0.02 acre palustrine emergent wetland located within the banks and floodplain of Fountain Creek near 13th Street. This wetland location occurs near a confluence between Fountain Creek and an unnamed drainage near the southern border of US 24 in the SCIP Flood Management Area constructed in 2000. The unnamed drainage is piped under US 24 from an unknown location to the north, and likely is primarily a stormwater drainage feature. Wetland 1 is within the proposed ROW of the new alignment of US-24 and would likely be an impacted feature.

Dominant wetland vegetation includes sandbar willow (*Salix exigua*), reed canary grass, and narrowleaf cattail. Other plants in the wetland area include curly dock (*Rumex crispus*), and poison hemlock (*Conium maculatum*).

Wetland hydrology indicators observed at time of survey included water-stained leaves, drainage patterns typical in wetlands, oxidized rhizospheres along root channels, and a positive FAC-neutral test. This location appears to be seasonally flooded.

The ground at this sample location was disturbed in 2000 during construction activities for the SCIP Flood Management Project resulting in areas of disturbed and atypical soil conditions. Soils from 0 to 6 inches were a dark reddish brown (5YR 3/3) silty clay loam; soils from 6 to 12+ inches were a dark brown (7.5YR 3/3) silty clay loam with few, distinct strong brown (7.5YR 4/6) redoximorphic features. The soils within this sample plot were considered as problematic due to ground disturbance activities from construction in 2000, and were assumed, under natural conditions; to be hydric based on strength of wetland vegetation and hydrology indicators.

Wetland 2

Wetland 2 is a 0.04 acre palustrine emergent/ scrub-shrub wetland complex located on a terrace under a pedestrian bridge along the banks and floodplain of Monument Creek. This wetland is perched above the channel of Monument Creek by about 5 feet, but is located just downstream of a rip-rap drop structure that contains a secondary channel that appears to overtop into the wetland area during high flow events. Wetland 2 is within the proposed ROW of the new alignment of I-25 but is not expected to be impacted.

Dominant wetland vegetation includes sandbar willow, reed canary grass, and cattail (*Typha latifolia*). Other plants in the wetland area include curly dock, softstem bulrush (*Schoenoplectus tabernaemontani*), bluejoint reedgrass (*Calamagrostis canadensis*), and red top (*Agrostis gigantea*).

Wetland hydrology indicators observed at time of survey included water-stained leaves, drainage patterns typical in wetlands, rafted debris, oxidized rhizospheres along root channels, standing water within part of the wetland, and a soil profile saturated to the surface. This location appears to be seasonally flooded, receiving overflow water associated with a secondary channel next to a rip-rap drop structure located just upstream.

Soils from 0 to 7 inches were a typical 10YR3/2 sandy loam with two percent 7.5YR4/6 redoximorphic features; soils from 7 to 12+ inches were a 10YR3/3 coarse sand a gravel layer no redoximorphic features. Due to the the redoximorphic features located in the upper 7 inches of the soil profile, soils within Wetland 2 are considered hydric.

Wetland 3

Wetland 3 is a 0.13 acre palustrine emergent/ scrub-shrub wetland area located on a terrace along the banks and floodplain of Fountain Creek. Like wetland 2, this wetland is perched above the channel of Fountain Creek by about 5 feet, but is located just downstream of a riprap drop structure that contains a secondary channel that appears to overtop into the wetland area during high flow events. Wetland 3 is within the proposed ROW of the new alignment of I-25 but is not expected to be impacted.

Dominant wetland vegetation was sandbar willow. Other plants in the wetland area include curly dock, Emory's sedge (*Carex emoryii*), reed canary grass, and cattail.

Wetland hydrology indicators observed at time of survey were similar to those found in wetland 2. These included water-stained leaves, drainage patterns typical in wetlands, rafted debris, oxidized rhizospheres along root channels, standing water within part of the wetland, and a soil profile saturated to the surface. This location appears to be seasonally flooded, receiving overflow water associated with a secondary channel next to a rip-rap drop structure located just upstream. Several overland flow paths can be seen leading out of the wetland and back into Fountain Creek at various points along the creek edge.

Soils from 0 to 4 inches were a 10YR3/3 loamy sand, soils from 4 to 6 inches were a 10YR3/3 loamy sand, and soils from 6 to 12 inches were 10YR3/3 loamy sand. No redoximorphic features were found within the soil profile, however, due to the high sand content, this area may be considered a naturally problematic soil type. Due to the strong presence of wetland vegetation and hydrologic indicators, this area may be considered a naturally problematic wetland.

Fountain Creek

As described above, Fountain Creek is a jurisdictional water of the United States that runs through a developed area of Manitou Springs before reaching its confluence with Monument Creek. Downcutting is evident along the creek channel. The fringe along Fountain Creek provides a variety of habitat types. Habitat types mapped by USGS include Montane Shrubland, Pinon-Juniper Woodlands, Riparian Woodlands, Grassland, and Rock (USGS, 2010). Much of the creek is lined with a riparian fringe of hardwood trees such as cottonwoods and Russian olives. Small pockets of wetland vegetation are present along the edges of the channel. A brief description of the local habitats available at each impacted segment of Fountain Creek is presented in **Table 4** below.

Impacts to the creek will occur as a result of cut and fill activities within the channel from bridge upgrade and replacement work and realignment of US 24. These areas are shown in the Wetland Atlas in **Appendix A**.

Monument Creek

Monument Creek is a perennial tributary of Fountain Creek. Monument Creek has a confluence with Fountain Creek just north of the Cimmaron St. bridge. Impacts to the creek may occur as a result of cut and fill activities within the channel from bridge/culvert upgrade and replacement work and realignment of the Cimmaron St. bridge. These areas are shown in the Wetland Atlas in **Appendix A**.

Bear Creek

Bear Creek is a perennial tributary of Fountain Creek. The creek flows under I-25 via a box culvert. Impacts to the creek will occur as a result of cut and fill activities within the channel from bridge/culvert upgrade and replacement work and realignment of I-25. These areas are shown in the Wetland Atlas in **Appendix A**.

Functions and Values

Wetland functions and values for Wetland 1were determined based on the Functional Assessment of Colorado Wetlands (FACWet) Method (Johnson et al., 2010). A FACWet analysis was not performed for Wetland 2 or Wetland 3 because they are would not be impacted by the project and thus any functional values placed on them would have no bearing on project plans. Data sheets for wetland functions and values for Wetland 1 are located in **Appendix B**.

The functions and values of wetland 1 are limited due to its size and location within the landscape. The composite FCI Score from the FACWet analysis is 0.77, which is considered to be functioning.

6.0 Impacts

Impacts discussed in this section are based on 15 percent design build. The Proposed Action would result in 0.02 acre of permanent wetland impacts.

Impacts to Fountain Creek, Monument Creek, and Bear Creek are anticipated in proposed bridge replacement locations, totaling 5.17 acres and 8,220 linear feet. The waters of the US would be temporarily impacted during construction. While these areas would be disturbed

during construction, the acreage of waters of the US would be permanently enlarged as a result of widening the channel for the Proposed Action. The adverse impact, therefore, is temporary during construction, while the permanent, long-term impact would be beneficial as the waters of the US would be substantially increased in size and improved in quality.

Channel improvements included in the Proposed Action would widen drainage areas, stabilize embankments, and add drop structures. The wider channel would provide a greater opportunity for wetlands and riparian vegetation to re-establish. The wider drainage channels and drop structures also would distribute and dissipate flows to reduce scour and erosion in the channels, which would reduce sedimentation and improve the quality of waters of the US.

In addition to stream widening, rip-rap improvements would be added to the base of the creek and the elevation of the creek profile would be changed to accommodate adequate flood volumes under each bridge to be improved.

Realignment of Fountain Creek represents a minor impact to waters of the US, especially when weighed against the benefits associated with improved stream function, flood conveyance, bank stability, and riparian habitat potential.

All of these improvements are represented by the impact area numbers that appear in **Table 3**. Impacted areas are shown in the Wetland Atlas in **Appendix A**.

Site ID	Acres Impacted	Length (ft) Impacted	Wetland Type**	Comment
Wetland 1	0.02	-	Emergent	Wetland terrace within Fountain Creek floodplain. Impacts associated with US 24 realignment work
A	0.54	895	N/A	Fountain Creek impacts associated with Ridge Road bridge work. A Riparian Woodland fringe along the edges of the channel would also be impacted.
В	0.35	555	N/A	Fountain Creek impacts associated with 31st Street bridge work. A Riparian Woodland fringe along the edges of the channel would also be impacted.
С	0.27	585	N/A	Fountain Creek impacts associated with US 24 realignment work. A Riparian Woodland fringe along the edges of the channel would also be impacted.
D	0.67	1350	N/A	Fountain Creek impacts associated with US 24 realignment work and S 26th Street bridge work. A Riparian Woodland fringe along the edges of the channel would also be impacted.
E	0.83	1255	N/A	Fountain Creek impacts associated with S 21st Street and US 24 bridge work. A Riparian Woodland fringe and a small portion of grassland along the edges of the channel would also be impacted.
F	0.22	650	N/A	Fountain Creek impacts associated with US 24 realignment work. A grassland fringe with rip-rap drop structures along the edges of the channel would also be impacted.

TABLE 3 Wetlands and Other Waters of the United States Impacts TABLE 3

Site ID	Acres Impacted	Length (ft) Impacted	Wetland Type**	Comment
G	1.60	2480	N/A	Fountain Creek impacts associated with S 8th Street and US 24 bridge work. A Riparian Woodland fringe and a small portion of grassland along the edges of the channel would also be impacted.
Н	0.52	180	N/A	Fountain Creek/Monument Creek impacts associated with the Cimmaron St. Bridge replacement. A riparian woodland fringe along the edges of the channel would also be impacted.
I	0.06	40	N/A	Fountain Creek impacts associated with the construction of a loop offramp structure from I-25 to US 24 A riparian woodland fringe along the edges of the channel would also be impacted.
J	0.07	40	N/A	Fountain Creek impacts associated with the construction of a loop offramp structure from I-25 to US 24 A riparian woodland fringe along the edges of the channel would also be impacted.
К	0.02	190	N/A	Bear Creek Impacts associated with a shift in the alignment of I-25 at the location of the current creek crossing. A box culvert currently conveys the creek under I-25
Totals	5.17	8,220		

*All wetlands assumed as jurisdictional under USACE standards. An official on-site jurisdictional determination to confirm final jurisdictional status was not requested.

** Cowardin, L.M. et al., 1979. Classification of Wetland and Deepwater Habitats of the United States. USFWS, Biological Services Program; FWS/OBS-79/31.

7.0 Avoidance and Minimization Measures

The following efforts have been made to avoid and minimize impacts to wetlands and other Waters of the United States:

- The project team considered a variety of design options at 21st Street and ultimately shifted the alignment to the north to avoid impacts to historic properties and Fountain Creek.
- During final design, retaining walls will be placed to minimize impacts to Fountain Creek.
- CDOT will consider appropriate locations for upland buffers in the northwest quadrant of the project area where right-of-way will be purchased for the Proposed Action.

8.0 Conclusion

Three wetlands were delineated within project boundaries during the survey. Wetland 1 is approximately 0.02 acre and is expected to be impacted. Wetlands 2 and 3, 0.04 acre and 0.13 acre, respectively, are not expected to be impacted. The wetlands are all considered to be jurisdictional under USACE standards based on their proximity and potential significant nexus to Fountain Creek. Impacts of 5.17 acres and 8,220 linear feet are anticipated to the Fountain Creek, Monument Creek, and Bear Creek channels as a result of proposed bridge replacements.

Based on the above considerations, it is determined that there is no practicable alternative to the proposed new construction. The Proposed Action includes all practicable measures to minimize harm to Fountain Creek (and associated wetlands) which may result from such use.

A Wetland Finding will be completed during final design and will include a final assessment of impacts and a detailed plan for mitigation. CDOT will obtain a Section 404 permit from the USACE for impacts to wetlands and waters of the US during final design. The USACE has confirmed informally that the Proposed Action could be permitted under a combination of Section 404 General Nationwide Permits and Individual Permits.

Nationwide Permits are often issued by USACE for categories of activities that are similar in nature and have only minimal adverse environmental effects. Final permit applications will be filed during final design.

Under Section 404 permit programs in place today, some segments of the project would qualify for streamlined permitting under the Nationwide Permit #14 for Linear Transportation Projects and Nationwide Permits #27 for Aquatic Habitat Restoration, Establishment, and Enhancement Activities.

9.0 References

Cowardin, L.M. et al. 1979. Classification of Wetlands and Deepwater Habitats of the United States. United States Fish and Wildlife Service. Biological Services Program; FWS/OBS-79/31.

Federal Highway Administration and CDOT. 2004. Federal Highway Administration and Colorado Department of Transportation., *I-25 Improvements Through the Colorado Springs Urbanized Area EA*. March.

Johnson, Brad, et al. 2010. *Functional Assessment of Colorado Wetlands (FACWet) Method.* Prepared for the Colorado Department of Transportation, by the Department of Biology, Colorado State University. Fort Collins, CO. September, 2010.

Macbeth Division of Kollmorgen Instruments Corporation. 1994. Munsell Soil Color Charts. New Windsor, NY.

Reed, Jr., Porter B. 1988. National List of Plant Species That Occur in Wetlands: National Summary. United States Fish & Wildlife Service. Biol. Rep. 88 (24). 244 pp. Amended 1993.

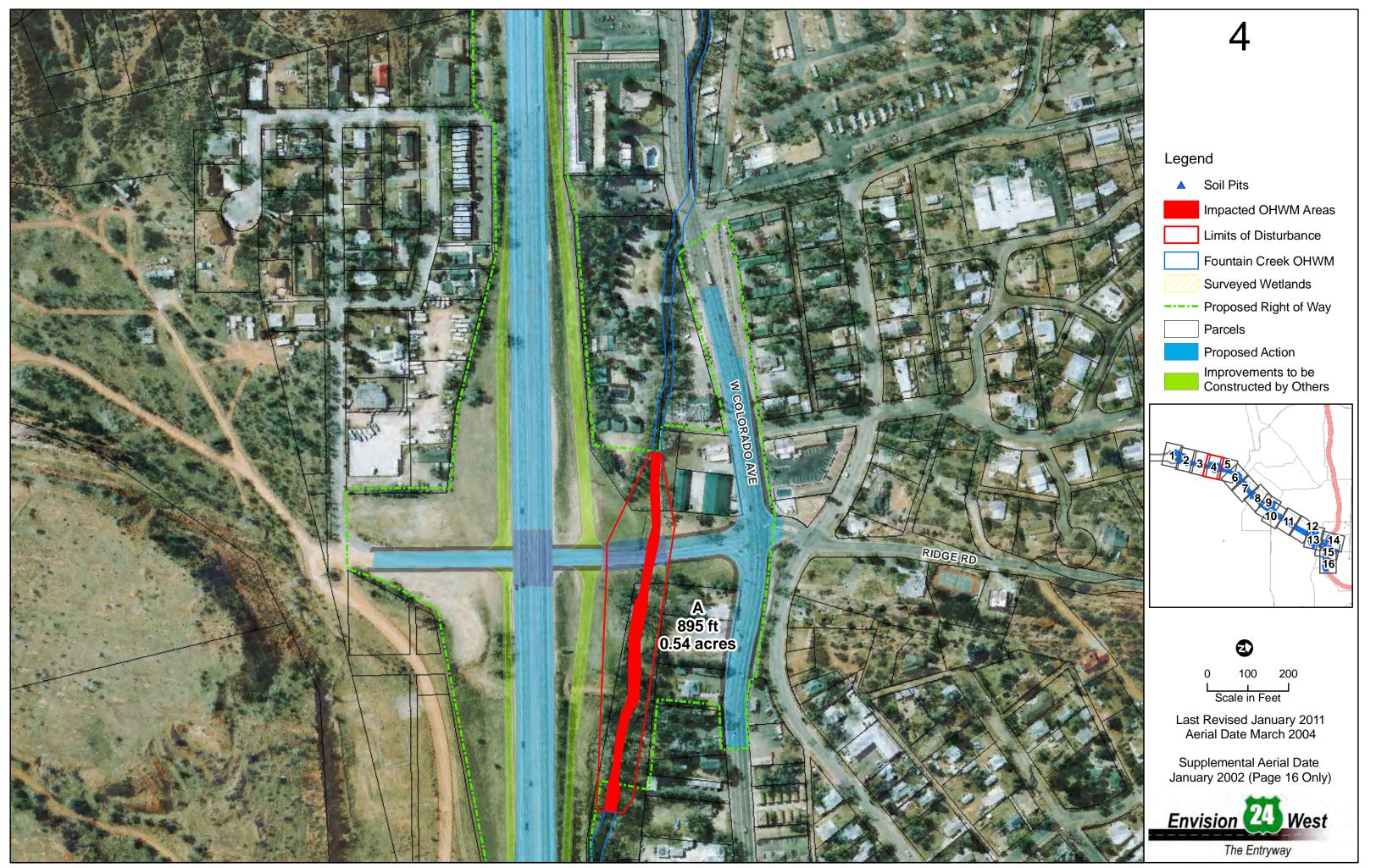
United States Army Corps of Engineers. 1987. *Wetlands Delineation Manual*. Wetlands Research Program Technical Report Y-87-1. United States Army Corps of Engineers Waterways Experiment Station.

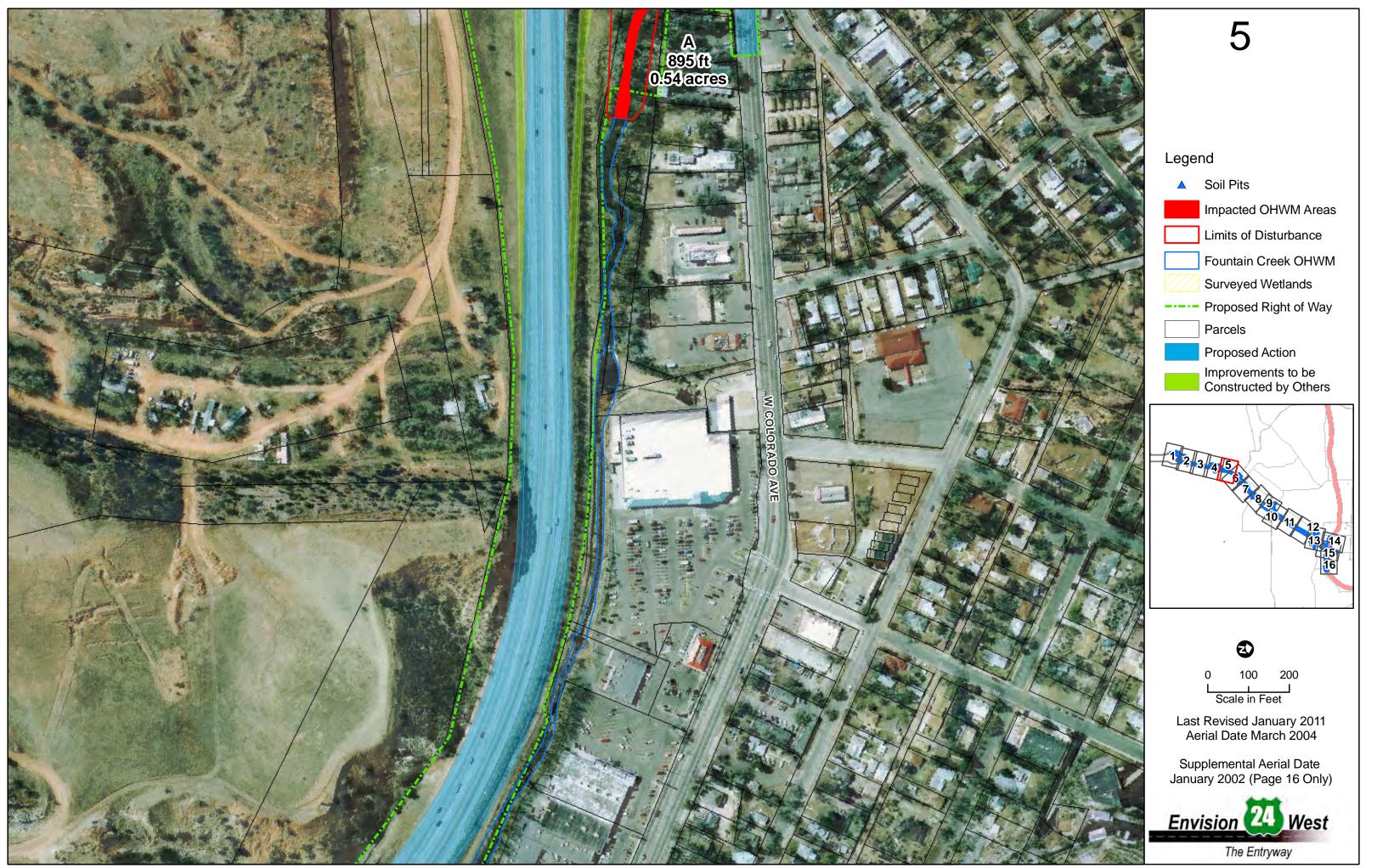
United States Army Corps of Engineers (USACE). 2008. Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Great Plains Region. Vicksburg, Mississippi. March 2008.

United States Department of Agriculture, Natural Resource Conservation Service. 1998. Field Indicators of Hydric Soils in the United States, Version 4.0. G.W. Hurt, Whited, P.M., and Pringle, R.F. (eds.). USDA, NRCS, Ft. Worth, TX.

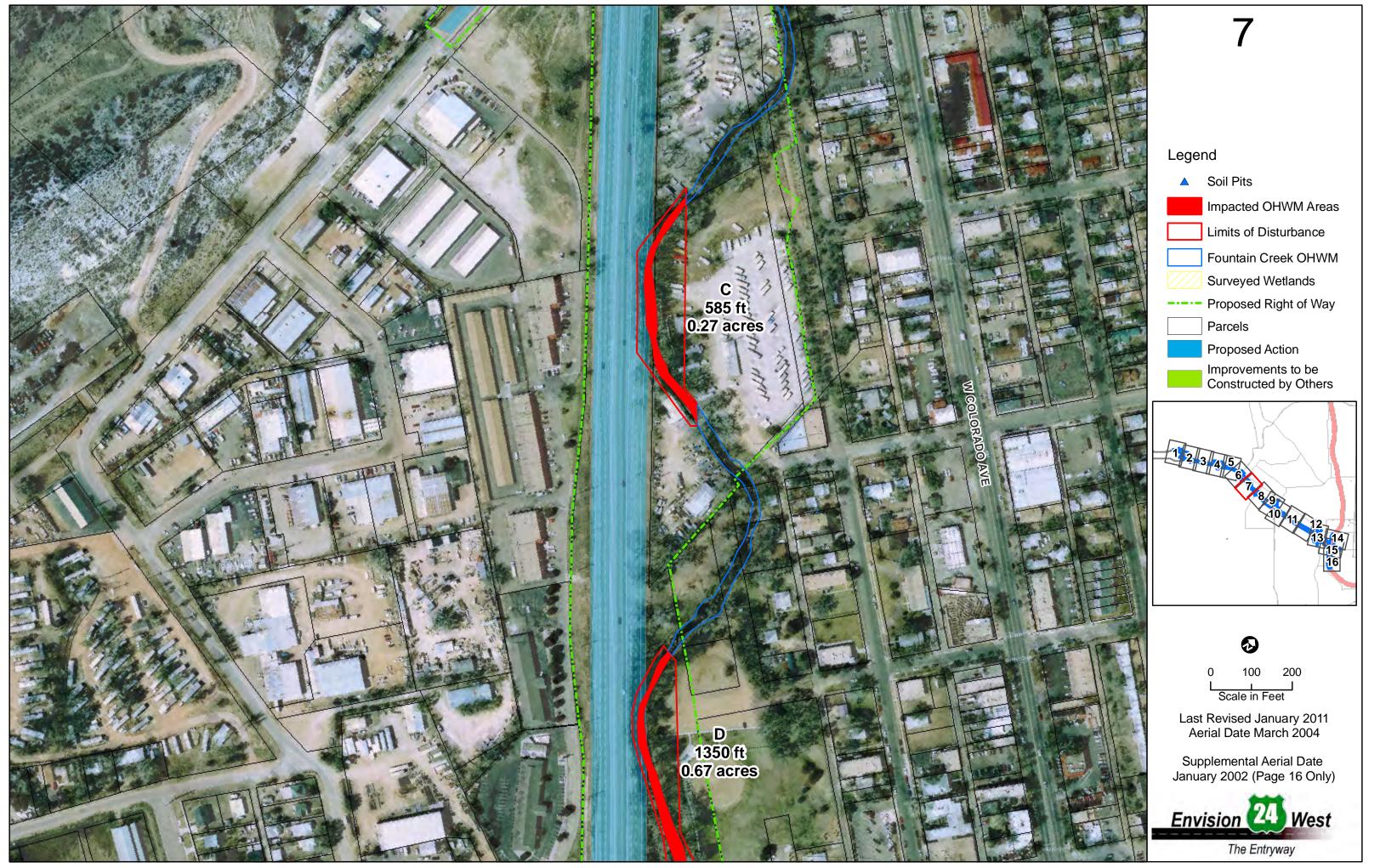
Weber, William A. and Whittman, Ronald C. 1996. Colorado Flora: Eastern Slope. University Press of Colorado. Boulder, Colorado.

APPENDIX A Wetland Atlas



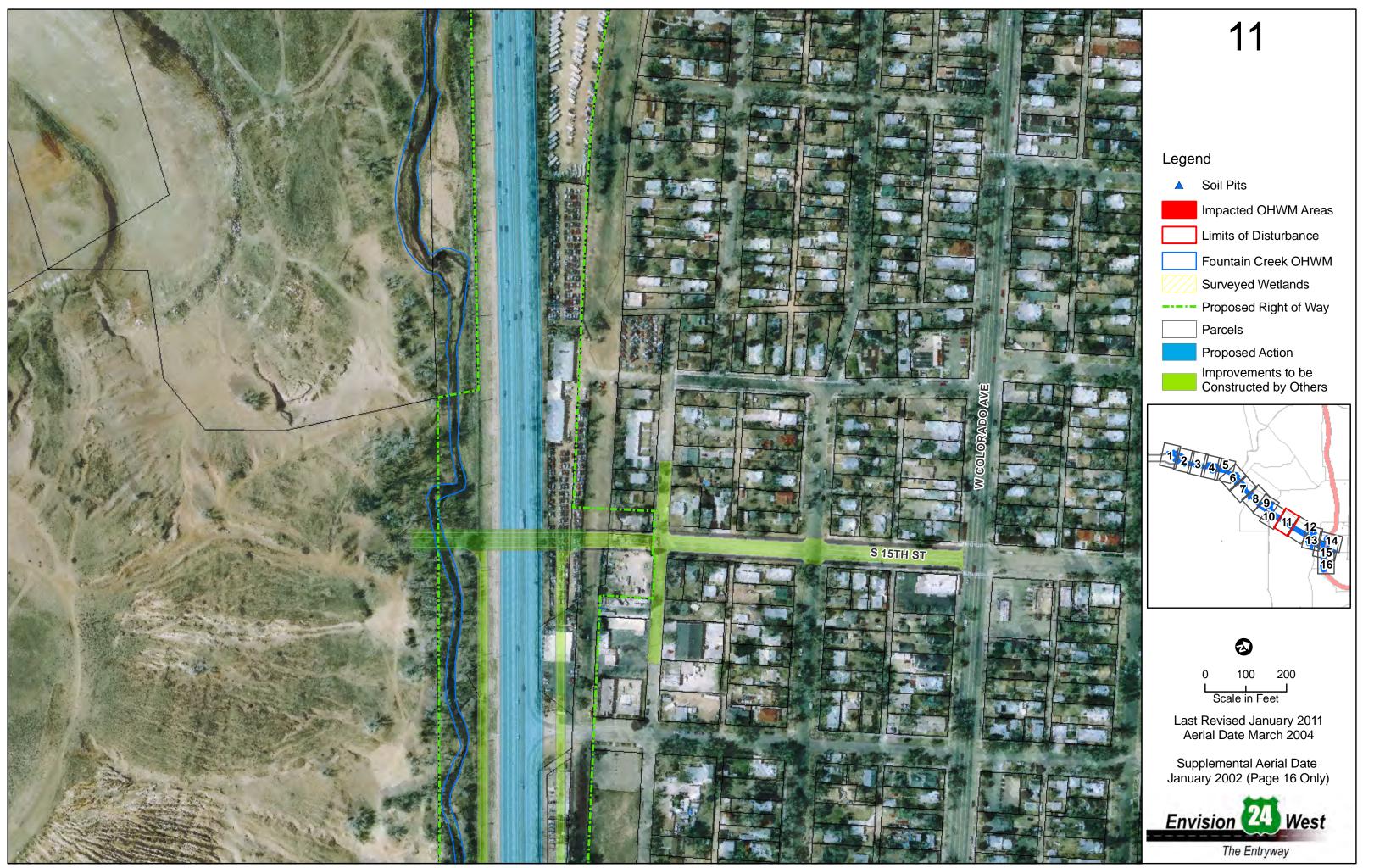

Soil Pits
Impacted OHWM Areas
Limits of Disturbance
Fountain Creek OHWM
Surveyed Wetlands
 Proposed Right of Way
Parcels
Proposed Action
Improvements to be Constructed by Others

Soil Pits
Impacted OHWM Areas
Limits of Disturbance
Fountain Creek OHWM
Surveyed Wetlands
 Proposed Right of Way
Parcels
Proposed Action
Improvements to be Constructed by Others

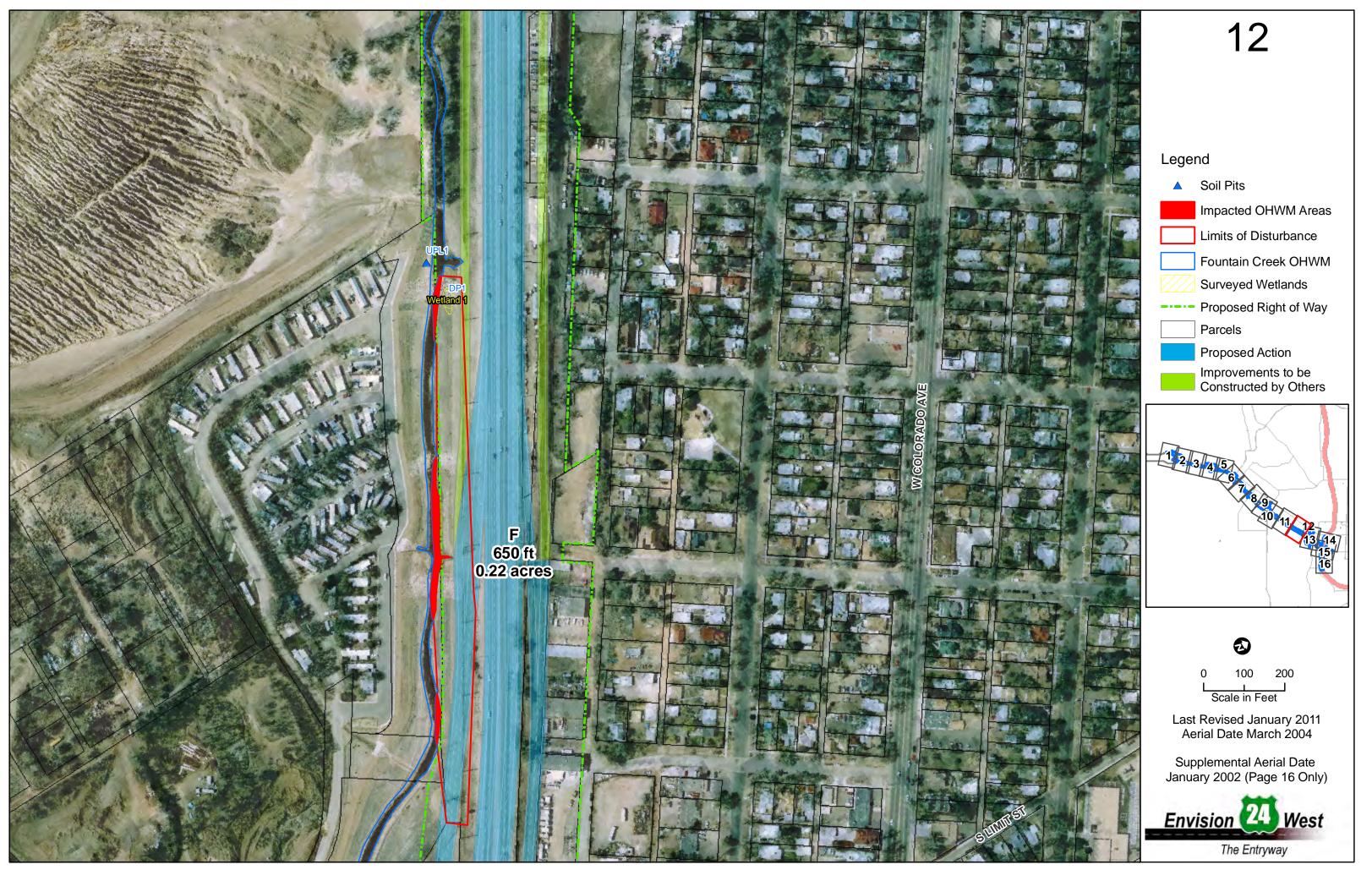

Soil Pits
Impacted OHWM Areas
Limits of Disturbance
Fountain Creek OHWM
Surveyed Wetlands
Proposed Right of Way
Parcels
Proposed Action
Improvements to be Constructed by Others

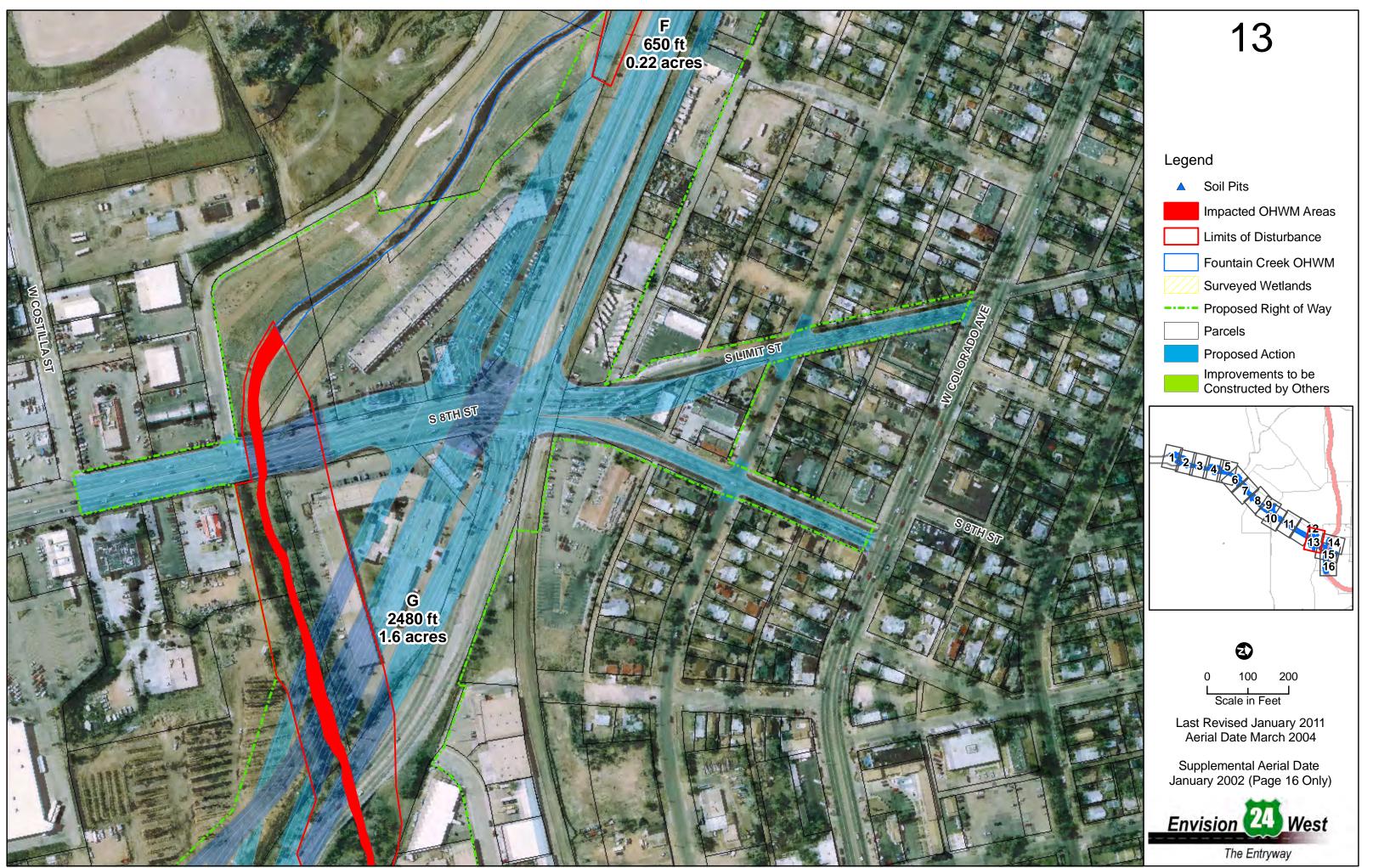
Soil Pits
Impacted OHWM Areas
Limits of Disturbance
Fountain Creek OHWM
Surveyed Wetlands
Proposed Right of Way
Parcels
Proposed Action
Improvements to be Constructed by Others

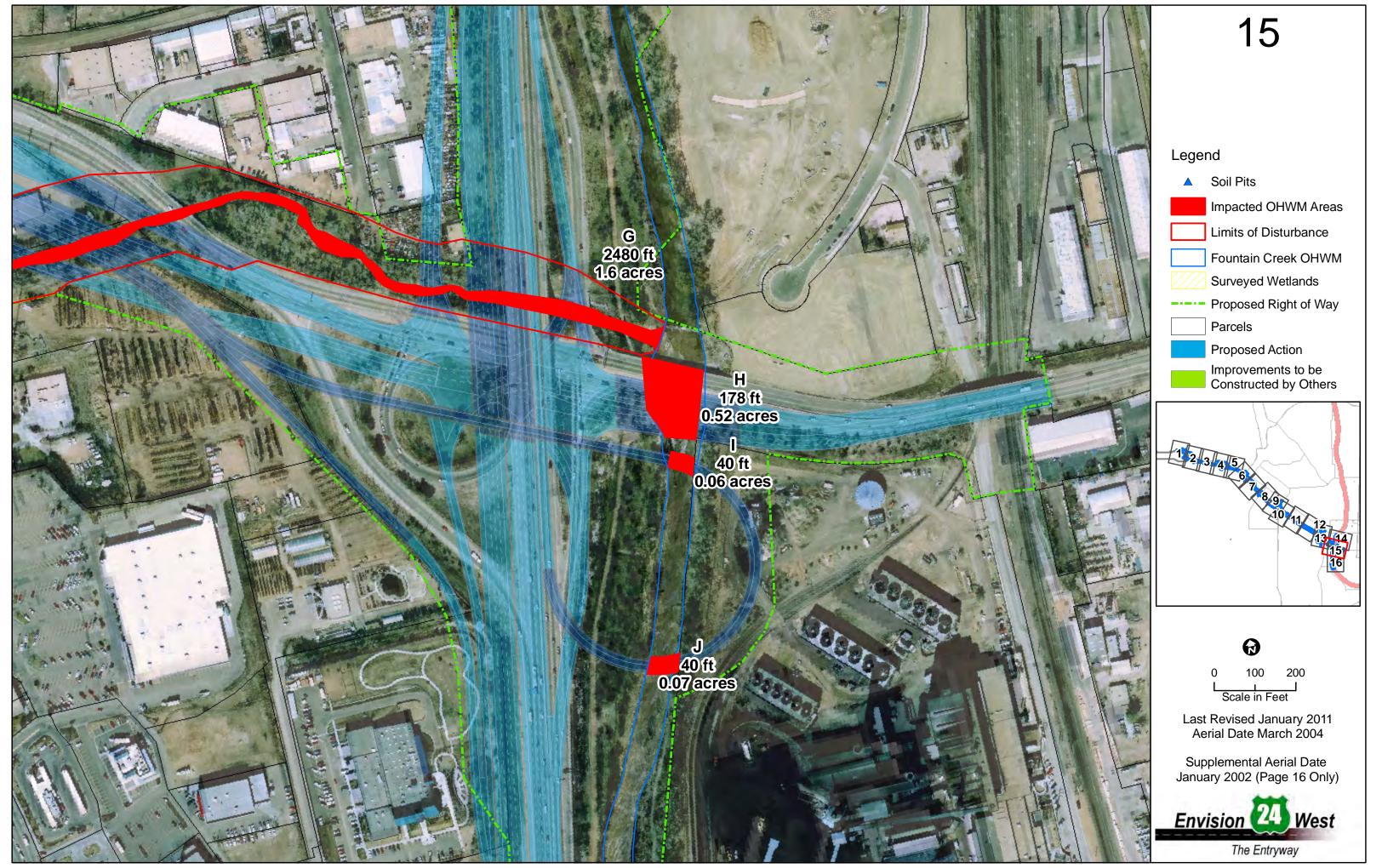
Soil Pits
Impacted OHWM Areas
Limits of Disturbance
Fountain Creek OHWM
Surveyed Wetlands
Proposed Right of Way
Parcels
Proposed Action
Improvements to be Constructed by Others

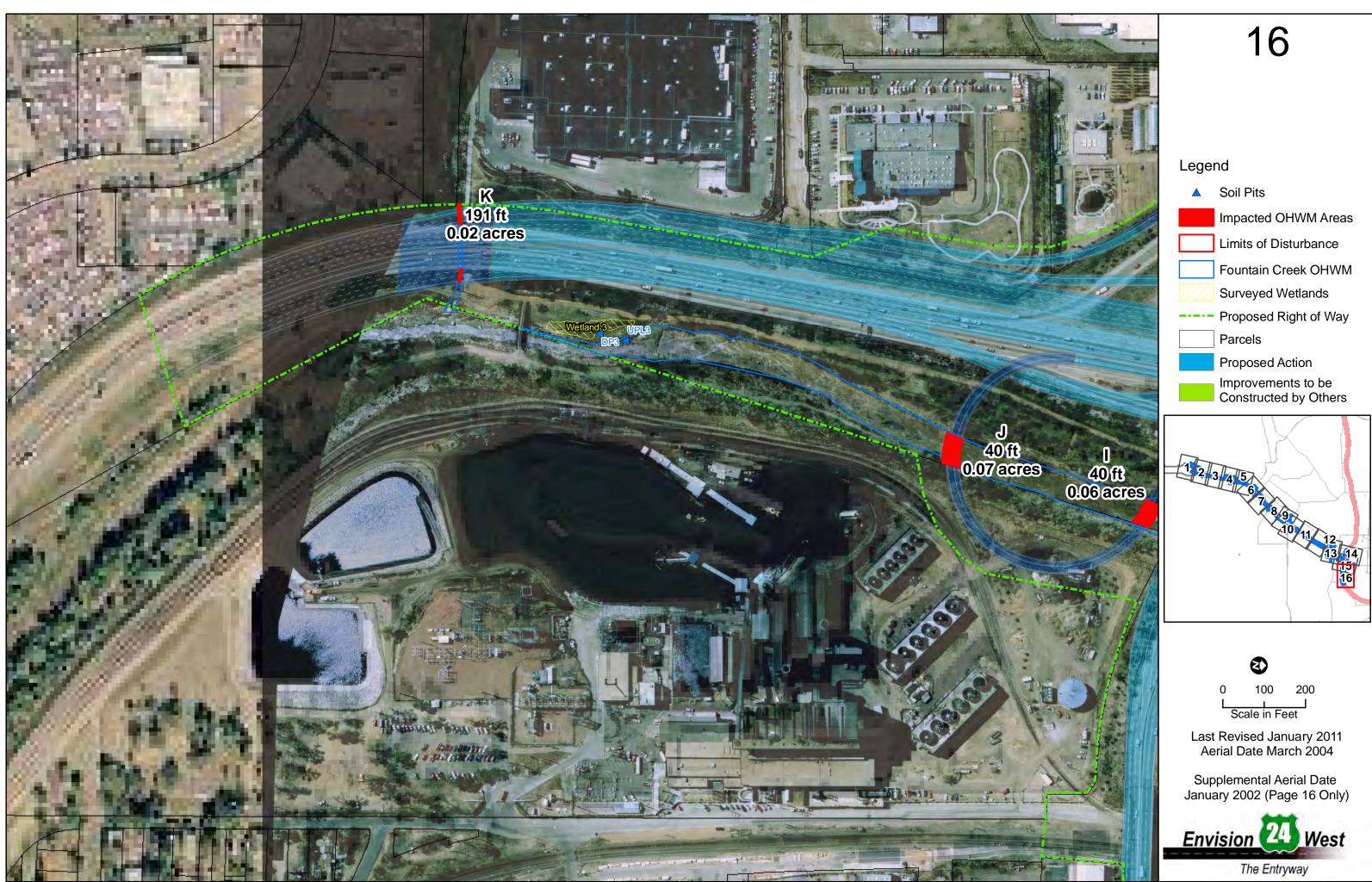


🔺 S	oil Pits
ln	npacted OHWM Areas
	mits of Disturbance
F	ountain Creek OHWM
S	urveyed Wetlands
P	roposed Right of Way
P	arcels
P	roposed Action
	nprovements to be onstructed by Others




s Sc	oil Pits
lm	pacted OHWM Areas
Li	mits of Disturbance
Fc Fc	ountain Creek OHWM
Su	urveyed Wetlands
Pr	oposed Right of Way
Pa	arcels
Pr	oposed Action
	provements to be onstructed by Others


Soil Pits
Impacted OHWM Areas
Limits of Disturbance
Fountain Creek OHWM
Surveyed Wetlands
Proposed Right of Way
Parcels
Proposed Action
Improvements to be Constructed by Others



Soil Pits	
Impacted OHWM Are	eas
Limits of Disturbance	;
Fountain Creek OHW	M
Surveyed Wetlands	
Proposed Right of Wa	ay
Parcels	
Proposed Action	
Improvements to be Constructed by Othe	rs

APPENDIX B Site Photographs

Photo 1: View to the west of Wetland 1 location within the Fountain Creek floodplain.

Photo 2: View to the east of Wetland 1 looking down the center of Fountain Creek showing adjacent riparian (non-wetland) fringe of sandbar willow.

Photo 3: View of erosion along the banks of Fountain Creek near S. 25th St.

Photo 4: View to the east of Fountain Creek and typical existing conditions within the floodplain.

Photo 5: View of the confluence between Fountain Creek and Monument Creek, east of I-25.

Photo 6: View of Wetland 2 on terrace adjacent to Monument Creek and under a pedestrian bridge. Wetland is dominated by cattails.

Photo 7: View of Monument Creek and riparian areas looking south towards Cimmaron St. bridge.

Photo 8: View of Fountain Creek at Cimmaron St. bridge.

Photo 9: View of Wetland 3 looking south at standing water within sandbar willow terrace. Pedestrian bridge in the distance.

Photo 10: Looking east at Bear Creek from pedestrian underpass under I-25. Confluence with Fountain Creek is in the background.

APPENDIX C Wetland Dataforms

Project/Site:	US 24 West			City/County:	С	OS – El Paso	Sam	pling Date:	1/15/09		
Applicant/Owner:	Colorado Depar	rtment of Transpor	tation		State	CO	Sam	pling Point	DP1		
Investigator(s):	B. Knapp ; B. Le	ee		Section, Townsh	iip, Ranç	je: 13, 14	S, 67W				
Landform (hillslope,	terrace, etc.):	Terrace		Local relief	(concav	e, convex, non	ie): Con	cave	Slope (%):	:	0-2
Subregion (LRR):	LRR G		Lat:	38.50.3	Long:	-104.50.49	Datum:	NAD 83			
Soil Map Unit Name	: Ustic Torrifl	uvents, loamy				NWI classif	fication	N/A			
Are climatic / hydrol	ogic conditions of	on the site typical f	or this ti	me of year? Yes	s X	No (lf no, expla	in in Remarks.))		
Are Vegetation,	Soil, X	or Hydrology	X si	gnificantly disturbed	? A	re "Normal Circ	cumstance	s" present?	Yes	No	Х
Are Vegetation,	Soil,	or Hydrology	na	aturally problematic	? (lf	needed, expla	ain any ans	wers in Remar	ks.)		

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Is the Sampled Area within a Wetland? Yes X No

Remarks:

Sample area is on a small terrace located adjacent to the confluence of Fountain Creek and an outfall from under US 24.

VEGETATION

Tree Stratum (Use scientific names.)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:				
1		Species?	Status	Number of Dominant Species That Are OBL, FACW, or FAC: 3	(A)			
2.				Total Number of Dominant	(A)			
3.				Species Across All Strata: 3	(B)			
4.				Percent of Dominant Species	(2)			
Total Cover: Sapling/Shrub Stratum	0			That Are OBL, FACW, or FAC: 100	(A/B)			
1. Salix exigua	10	Y	OBL	Development in development of the set				
2.				Prevalence Index worksheet: <u>Total % cover of:</u> Multiply b	N/:			
3.			<u> </u>	OBL species X1 =	<u>y.</u>			
4.				FACW species X2 =				
5.				FAC species X3 =				
Total Cover:	10	······		FACU species X4 =				
Herb Stratum				UPL species X5 =				
1. Phalaris arundinacea	35	Y	FACW+	Column Totals: (A) (B)			
2. Typha angustifolia	25	Y	OBL					
3. Conium maculatum	15		FACW	Prevelance Index = B/A = (A)	(B)			
4. Rumex crispus	15		FACW					
5.	15			Hydrophytic Vegetation Indicators:				
6.			<u> </u>	X Dominance Test is >50%				
7.		. <u> </u>	·	Prevalence Index is ≤3.0 ¹				
8.	<u> </u>			Morphological Adaptations ¹ (Provide s	upportina			
Total Cover:	90			data in Remarks or on a separate she	et)			
Woody Vine Stratum				Problematic Hydrophytic Vegetation ¹ (Explain)			
1.			¹ Indicators of hydric soil and wetland hydrology must be present.					
2.								
Total Cover:				Hydrophytic Vegetation				
% Bare Ground in Herb Stratum 10	% Cover of	Biotic Crust		Present? Yes X No				
Remarks:								

Salix (Willow) species within sample point were all saplings.

Sampling	Point [.]	DP1
Sampling	F UIIII.	

	Matrix			Redox F	eatures					
Depth (inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks		
0 - 6	5YR 3/3						SiCILm	Silty Clay	Loam	
6 – 12+	7.5 YR 3/3		7.5 YR 4/6			RC,M	SiCILm	Silty Clay		
Hydric Soil I	ncentration, D=Deple		LRRs, unless of	herwise noted	d.)	ng, RC=Roo	t Channel, M=I			
Histosol	(A1)		Sandy Redox	(S5)		2.5 cm	Mucky Peat	or Peat (LRR G, H)	
Histic Ep	oipedon (A2)			Stripped Matrix	x (S6)		5 cm N	lucky Peat or	Peat (LF	RR F)
Black Hi	stic (A3)			Loamy Mucky	Mineral (F1)		Indicate	ors for Proble	matic Hyd	ric Soils ³ :
Hydroge	n Sulfide (A4)			Loamy Gleyed	Matrix (F2)		1 cm Muck (A9) (LRR I, J)			
Stratified	Layers (A5) (LRR F))		Depleted Matri	ix (F3)		Coast Prairie Redox (A16) (LRR F, G, H)			
1 cm Mu	ick (A9) (LRR F, G, H)		Redox Dark Si	urface (F6)		Dark S	urface (S7) (LRR G)	
Depleted	d Below Dark Surface	(A11)		Depleted Dark	Surface (F7)		Reduce	ed Vertic (F1	8)	
Thick Da	ark Surface (A12)			Redox Depres	sions (F8)		Red Pa	arent Materia	l (TF2)	
Sandy M	lucky Mineral (S1)			High Plains De	epression (F16	3)	High Plai	ns Depression (F	16) (LRR H out	side MLRA 72 & 73)
 Sandy G	Bleyed Matrix (S4)			(MLRA 72 &	73 of LRR H)			Explain in Re		
					³ Indicators of	hydrophytic	vegetation and	wetland hyd	rology mu	ust be present
Restrictive L	ayer (if present):									
Type:										
Depth (inches):						HV	dric Soil Prese	ent? Yes	х	No

Soils in this area were recently disturbed within last few years during flood control management construction. Common hydric soil indicators not present; Soils considered hydric based on diversity of hydric vegetation population and presence of wetland hydrology indicators.

Wetland Hydrology Indica	itors:			Secondary Indicators (2 or more required)					
Primary Indicators (any one	indicator	is sufficie	nt)		Surface Soil Cracks (B6)				
Surface Water (A1)			Х	Water-Stained Leaves (B9)	Sparsely Vegetated Concave Surface (B8)				
High Water Table (A2)				Salt Crust (B11)	X Drainage Patterns (B10)				
Saturation (A3)			_	Aquatic Invertebrates (B13)	X Oxidized Rhizospheres along Roots (C3)				
Water Marks (B1)				Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)				
Sediment Deposits (B2)				Dry-Season Water Table (C2)	Saturation Visible on Aerial Imagery (C9)				
Drift Deposits (B3)				Presence of Reduced Iron (C4)	Frost-Heaved Hummocks (C11) (LRR F)				
Algal Mat or Crust (B4)				Thin Muck Surface (C7)	Geomorphic Position (D2)				
Iron Deposits (B5)				Other (Explain in Remarks)	X FAC-Neutral Test (D5)				
Inundation Visible on Ae	erial Imag	ery (B7)	_		Local Survey Data (D8)				
Field Observations:									
Surface Water Present?	Yes	No	Х	Depth (inches):					
Water Table Present?	Yes	No	Х	Depth (inches):					
Saturation Present? (includes capillary fringe)	Yes	No	x	Depth (inches):	Wetland Hydrology Present? Yes X No				
Describe Recorded Data (stro	eam gaug	ge, monitor	ring \	well, aerial photos, previous inspection	is), if available:				
Remarks:									

Project/Site:	US 24 West			City/County:	C	OS – El Paso	Sam	pling Date:	1/15/09		
Applicant/Owner:	Colorado Depar	rtment of Transpor		State	CO	Sam	pling Point	UPL 1			
Investigator(s):	B. Knapp ; B. Le	ee		Section, Towns	Section, Township, Range: 13, 14S, 67W						
Landform (hillslope,	, terrace, etc.):	Terrace		Local relie	f (concav	/e, convex, no	ne): Cor	cave	Slope (%)		0-2
Subregion (LRR):	LRR G		Lat:	38.50.3	Long:	-104.50.49	Datum:	NAD 83			
Soil Map Unit Name	e: Ustic Torrifl	uvents, loamy				NWI class	ification	N/A			
Are climatic / hydrol	logic conditions of	on the site typical f	or this t	ime of year? Ye	s X	No	(If no, expla	in in Remarks.)		
Are Vegetation,	Soil, X	or Hydrology	X si	gnificantly disturbe	d? A	re "Normal Ci	rcumstance	s" present?	Yes	No	Х
Are Vegetation,	Soil,	or Hydrology	na	aturally problemation	? (f needed, exp	lain any ans	wers in Remar	'ks.)		

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes Yes Yes	No No No	X X X	Is the Sampled Area within a Wetland? Yes No
Remarks:				

Sample area is on a small terrace located adjacent to Fountain Creek floodplain.

VEGETATION

Tree Stratum (Use scientific names.)	Absolute	Dominant	Indicator	Dominance Test worksheet:		
1.	% Cover	Species?	Status	Number of Dominant Species That Are OBL, FACW, or FAC	: .	(•)
2.				Total Number of Dominant	· <u>1</u>	(A)
3.				Species Across All Strata:	4	(B)
4.				Percent of Dominant Species	_4	_ (D)
Total Cover: Sapling/Shrub Stratum	0			That Are OBL, FACW, or FAC	: 25	(A/B)
	10	N/				
1. Salix exigua	40	Y	OBL	Prevalence Index worksheet		
2.				Total % cover of:	Multiply by:	
3.				OBL species	X1 =	
4.				FACW species	X2 =	
5.				FAC species	X3 =	
Total Cover:	40			FACU species	X4 =	_
Herb Stratum				UPL species	X5 =	
1. Bromus inermis	30	Y	NI	Column Totals: (A)	(B)	_
2. Pascopyrum smithii	15	Y	FACU	Prevelance Index = B/A =	(A)	(B)
3. Helianthus annuus	15	Y	FACU			_ ()
4.						
5.				Hydrophytic Vegetation Indi	cators:	
6.				Dominance Test is >50%		
7.				Prevalence Index is ≤3.0 ¹		
8.				Morphological Adaptations	¹ (Provide supp	orting
Total Cover:	60			data in Remarks or on a se	parate sheet)	-
Woody Vine Stratum				Problematic Hydrophytic V	egetation ¹ (Exp	lain)
1.				¹ Indicators of hydric soil an	d wetland hydro	ology
···				must be present.		
2.	<u> </u>			Hydrophytic		
Total Cover:				Vegetation		
% Bare Ground in Herb Stratum 40	% Cover of	Biotic Crust		Present? Yes	<u>No</u>	х
Remarks:				1		

Sampling Point: UPL 1

	Matrix			Redox Fe	eatures						
Depth	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks			
(inches) 0 - 2	5 YR 4/4						Sand				
2-3	10 YR 4/6						SiSa	Silty Sand			
3 – 12+	7.5 YR 3/4						Silt				
				·							
	ncentration, D=Deple	tion PM	-Roducod Matrix	² l ocation:	PI - Poro Linir		ot Channel, M=	Matrix			
	ndicators: (Applical					ig, KC-KOC					
Histosol				Sandy Redox (2.5 cm	Mucky Peat or Peat (LRR G, H)			
	. ,		Stripped Matrix				Aucky Peat or Peat (LRR F)				
	Histic Epipedon (A2)				. ,			-			
	Black Histic (A3)			oamy Mucky	. ,		Indicat	ors for Problematic Hydric Soils ³ :			
Hydroge	n Sulfide (A4)		L	Loamy Gleyed Matrix (F2)				1 cm Muck (A9) (LRR I, J)			
Stratified	Layers (A5) (LRR F)	[Depleted Matri	x (F3)		Coast Prairie Redox (A16) (LRR F, G, H)				
1 cm Mu	ick (A9) (LRR F, G, H	l)	F	Redox Dark Su	urface (F6)		Dark Surface (S7) (LRR G)				
Depleted	d Below Dark Surface	(A11)	[Depleted Dark	Surface (F7)		Reduced Vertic (F18)				
Thick Da	ark Surface (A12)		F	Redox Depres	sions (F8)		Red P	arent Material (TF2)			
Sandy M	lucky Mineral (S1)		H	ligh Plains De	pression (F16)	High Pla	ins Depression (F16) (LRR H outside MLRA 72 & 73)			
Sandy G	Sandy Gleyed Matrix (S4) (MLRA 72 & 73 of LRR H)						Other	(Explain in Remarks)			
					³ Indicators of I	nydrophytic	vegetation and	wetland hydrology must be present.			
Restrictive L	ayer (if present):										
Туре:											
Depth (inches):						Hy	dric Soil Pres	ent? Yes No X			

Wetland Hydrology Indicators:					Secor	idary Indicators (2 or more required)		
Primary Indicators (any one indica	tor is sufficie	ent)		-		Surface Soil Cracks (B6)		
Surface Water (A1)			Water-Stained Leaves (B9)		Sparsely Vegetated Concave Surface (B8)			
High Water Table (A2)			Salt Crust (B11)			Drainage Patterns (B10)		
Saturation (A3)			Aquatic Invertebrates (B13)			Oxidized Rhizosphers along Roots (C3)		
Water Marks (B1)			- Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)				
Sediment Deposits (B2)			Dry-Season Water Table (C2)		Saturation Visible on Aerial Imagery (C9)			
Drift Deposits (B3)			Presence of Reduced Iron (C4)			Frost-Heaved Hummocks (C11) (LRR F)		
Algal Mat or Crust (B4)			Thin Muck Surface (C7)			Geomorphic Position (D2)		
Iron Deposits (B5)			Other (Explain in Remarks)			FAC-Neutral Test (D5)		
Inundation Visible on Aerial Im	agery (B7)		<u>-</u>			Local Survey Data (D8)		
Field Observations:			-					
Surface Water Present? Yes	No	Х	Depth (inches):					
Water Table Present? Yes	No	Х	Depth (inches):					
Saturation Present? (includes capillary fringe) Yes	No	x	Depth (inches):	Wetland	l Hydr	ology Present? Yes <u>No X</u>		
Describe Recorded Data (stream g	auge, monito	oring	well, aerial photos, previous inspectio	ons), if availal	ble:			
Remarks:								

Project/Site:	US 24 West			City/County:	C	OS – El Paso	Sampling Date:	1/4/2011	
Applicant/Owner:	Colorado Depar	tment of Transpor	tation	_	State	CO	Sampling Point	DP2	
Investigator(s):	B. Lee			Section, Towns	hip, Ran	ge: 13, 14S	, 67W		
Landform (hillslope,	, terrace, etc.):	Terrace		Local relie	f (concav	e, convex, none)): Concave	Slope (%):	0-2
Subregion (LRR):	LRR G		Lat: 3	38 ° 49' 51"	Long:	-104°50'01" I	Datum: NAD 83		
Soil Map Unit Name	e: Ustic torriflu	ivents, loamy				NWI classific	ation N/A		
Are climatic / hydrol	logic conditions o	on the site typical f	or this tin	ne of year? Ye	s X	No (If	no, explain in Rema	rks.)	
Are Vegetation,	Soil,	or Hydrology	sig	nificantly disturbe	d? A	re "Normal Circu	imstances" present?	Yes X No	1
Are Vegetation,	Soil,	or Hydrology	nat	urally problemation	? (f needed, explair	n any answers in Re	marks.)	

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X No Yes X No Yes X No	Is the Sampled Area within a Wetland?	Yes	x	No		
---	--	--	-----	---	----	--	--

Remarks:

Sample area is located on a terrace along Monument Creek, north of the Monument Creek and Fountain Creek confluence. It is located underneath a pedestrian bridge.

VEGETATION

Tree Stratum (Use scientific names.)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1.	% Cover	Species?	Status	Number of Dominant Species
2.			- <u></u> .	That Are OBL, FACW, or FAC: 2 (A)
3.	. <u></u>		. <u> </u>	Total Number of Dominant
4.				Species Across All Strata: 2 (B)
 Total Cover:	0			Percent of Dominant Species
Sapling/Shrub Stratum				That Are OBL, FACW, or FAC: <u>100</u> (A/B)
1. Salix exigua	40	Y	OBL	
2.				Prevalence Index worksheet:
3.				Total % cover of:Multiply by:OBL speciesX1 =
4.				FACW species X2 =
5.	. <u></u>			FAC species X3 =
Total Cover:	40		. <u> </u>	FACU species X4 =
Herb Stratum				UPL species X5 =
1. Phalaris arundinacea	10	N	FACW+	Column Totals: (A) (B)
2. Typha latifolia	60	<u>Y</u>	OBL	
3. Schoenoplectus tabernaemontani	5		FACW	Prevelance Index = B/A = (A) (B)
4. Rumex crispus	10	<u>N</u>	FACW	
				Indee the dia Manufation Indiantana
5. Calamagrostis canadensis	10	N	OBL	Hydrophytic Vegetation Indicators:
6. Agrostis gigantea	5	Ν	NI	X Dominance Test is >50%
7.				Prevalence Index is ≤3.0 ¹
8.				Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
Total Cover:	100			
Woody Vine Stratum				Problematic Hydrophytic Vegetation ¹ (Explain)
1.				¹ Indicators of hydric soil and wetland hydrology m st be present.
2.				
Total Cover:				Hydrophytic Vegetation
% Bare Ground in Herb Stratum 0	% Cover of	Biotic Crust		Present?
				Yes <u>X</u> No
Remarks:				1
Thick stand of cattails surrounded by some of	her species.			

Sampling Point: DP2

	Matrix			Redox Fe	eatures						
Depth (inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks			
0 - 7	10YR3/2	98	7.5YR4/6	2		RC,M	SaLm	Sandy Loam with some			
7 – 12+	10YR3/3	100		Sand & Mottles and oxid							
							Gravel	channels			
				·							
17			De duce e d Metric	21							
	centration, D=Deple					g, RC=Root	Channel, M=N	latrix.			
Histosol (A				andy Redox (S			2.5 cm	Mucky Peat or Peat (LRR G, H)			
Histic Epi	pedon (A2)		Stripped Matrix (S6) 5 cm Mucky Peat or Peat								
Black Hist	tic (A3)		Loamy Mucky Mineral (F1) Indicators for Problematic Hyd								
Hydrogen	n Sulfide (A4)		Lo	oamy Gleyed I	Matrix (F2)	-	1 cm Muck (A9) (LRR I, J)				
Stratified	Layers (A5) (LRR F)	D	epleted Matrix	(F3)	-	Coast Prairie Redox (A16) (LRR F, G,				
1 cm Muc	ck (A9) (LRR F, G, H	I)	R	edox Dark Sur	face (F6)	-	Dark Surface (S7) (LRR G)				
Depleted	Below Dark Surface	e (A11)	D	epleted Dark S	Surface (F7)	-	Reduce	d Vertic (F18)			
Thick Dar	k Surface (A12)		XR	edox Depress	ions (F8)	-	Red Pa	rent Material (TF2)			
Sandy Mu	ucky Mineral (S1)		— н	igh Plains Dep	pression (F16)	-	High Plain	S Depression (F16) (LRR H outside MLRA 72 & 73)			
Sandy Gle	eyed Matrix (S4)			(MLRA 72 & 7	'3 of LRR H)	-	X Other (E	Explain in Remarks)			
				3	ndicators of h	ydrophytic ve	egetation and	wetland hydrology must be prese			
Restrictive La	iyer (if present):										
Туре:											
Depth (inches	ו (inches):						ic Soil Prese	nt? Yes X No			
Remarks:						1					
Redox depress	sions in upper soil pr	rofile									

Wetland Hydrology Indicators:		Secondary Indicators (2 or more required)									
Primary Indicators (any one indicator is suff	ient)	Surface Soil Cracks (B6)									
X Surface Water (A1)	X Water-Stained Leaves (B9)	Sparsely Vegetated Concave Surface (B8)									
High Water Table (A2)	Salt Crust (B11)	X Drainage Patterns (B10)									
X Saturation (A3)	Aquatic Invertebrates (B13)	X Oxidized Rhizospheres along Roots (C3)									
Water Marks (B1)	— Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)									
Sediment Deposits (B2)	Dry-Season Water Table (C2)	Saturation Visible on Aerial Imagery (C9)									
Drift Deposits (B3)	Presence of Reduced Iron (C4)	Frost-Heaved Hummocks (C11) (LRR F)									
Algal Mat or Crust (B4)	Thin Muck Surface (C7)	Geomorphic Position (D2)									
Iron Deposits (B5)	Other (Explain in Remarks)	FAC-Neutral Test (D5)									
Inundation Visible on Aerial Imagery (B7	_	Local Survey Data (D8)									
Field Observations:											
Surface Water Present? Yes X No	Depth (inches): 12										
Water Table Present? Yes X No	Depth (inches): 12										
Saturation Present? (includes capillary fringe) Yes X No	Depth (inches): surface	Wetland Hydrology Present? Yes X No									
Describe Recorded Data (stream gauge, mor	Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:										
Remarks: Standing surface water just to north drop structure to the north of the wetland area	of test point. Soils are saturated to the surf. Seasonally high flows may enter the wetla	ace. Hydrology appears to originate from overflow from a rip-rap nd area.									

Project/Site:	US 24 West		City/County:	ounty: COS – El Paso			pling Date:	1/4/2011		
Applicant/Owner:	Colorado Department of Transportation				State	CO	Sam	pling Point	UPL 2	
Investigator(s):	B. Lee			Section, Towns	ship, Ran	ge: 13, 14	4S, 67W	_		
Landform (hillslope,	terrace, etc.):	Terrace		Local relie	ef (concav	/e, convex, nor	ne): Con	icave	Slope (%):	0-2
Subregion (LRR):	LRR G		Lat:	38 ° 49' 51"	Long:	-104°50'01"	Datum:	NAD 83		
Soil Map Unit Name	e: Ustic Torrifl	uvents, loamy				NWI classi	fication	N/A		
Are climatic / hydrol	logic conditions of	on the site typical f	or this t	ime of year? Ye	es X	No (If no, expla	ain in Remarks.	.)	
Are Vegetation,	Soil,	or Hydrology	si	ignificantly disturbe	ed? A	re "Normal Cir	cumstance	s" present?	Yes X N	J
Are Vegetation,	Soil,	or Hydrology	n	aturally problemati	c? (f needed, expl	ain any ans	swers in Remai	rks.)	

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes Yes Yes	No No No	X X X	Is the Sampled Area within a Wetland?	Yes	No	<u>x</u>	
Remarks:								

Т

Sample area is on a terrace adjacent to Monument Creek.

VEGETATION

Tree Stratum (Use scientific names.)	Absolute	Dominant	Indicator	Dominance Test worksheet:
1.	% Cover	Species?	Status	Number of Dominant Species
2.			·	That Are OBL, FACW, or FAC: 0 (A)
3.				Total Number of Dominant
4.				Species Across All Strata: 1 (B)
Total Cover:	0		. <u> </u>	Percent of Dominant Species
Sapling/Shrub Stratum	0			That Are OBL, FACW, or FAC: 0 (A/B)
1.				
2.		·	<u> </u>	Prevalence Index worksheet:
	. <u> </u>			Total % cover of: Multiply by:
3				OBL species X1 =
4.				FACW species X2 =
5.				FAC species X3 =
Total Cover:				FACU species X4 =
Herb Stratum	·			UPL species X5 =
1.				Column Totals: (A) (B)
2. Melilotus alba	100	Y	FACU	Prevelance Index = $B/A = (A)$ (B)
3.				
4.	·		·	
5.				Hydrophytic Vegetation Indicators:
6.				Dominance Test is >50%
7.	·		·	Prevalence Index is ≤3.0 ¹
8.				Morphological Adaptations ¹ (Provide supporting
Total Cover:	100		· <u> </u>	data in Remarks or on a separate sheet)
Woody Vine Stratum	100			Problematic Hydrophytic Vegetation ¹ (Explain)
1.				¹ Indicators of hydric soil and wetland hydrology
			<u> </u>	must be present.
2.			<u> </u>	Hydrophytic
Total Cover:				Vegetation
% Bare Ground in Herb Stratum	% Cover of	Biotic Crust		Present? Yes NoX
Remarks:				1
Upland pit location dominated by sweet clove	er			

Sampling Point: UPL 2

Profile Descr	iption: (Describe to	o the dept	h needed to docu	ument the ind	icator or conf	irm the al	sence of indic	ators.)			
	Matrix	(Redox Fe	eatures						
Depth (inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks			
0 - 5	10YR3/3	100						Sandy loan	1		
5 - 10	5YR5/6	100						Gravelly loa			
10-12	10YR4/6	100						Gravelly loa	m		
·					<u> </u>						
					·					·	
					·		·				
¹ Type: C=Cor	ncentration, D=Deple	etion, RM=	Reduced Matrix.	² Location: F	PL=Pore Lining	, RC=Roo	t Channel, M=N	latrix.			
Hydric Soil In	ndicators: (Applica	ble to all I	_RRs, unless oth	erwise noted.	.)						
Histosol	(A1)	S	andy Redox (S	S5)		2.5 cm	Mucky Peat or	Peat (LRR	G, H)		
Histic Ep	ipedon (A2)		S	tripped Matrix	(S6)		5 cm M	ucky Peat or Pe	eat (LRR F))	
Black His	stic (A3)		Lo	oamy Mucky N	/lineral (F1)		Indicato	rs for Problemat	ic Hydric S	oils³:	
Hydroger	n Sulfide (A4)		Lo	oamy Gleyed I	Matrix (F2)		1 cm Muck (A9) (LRR I, J)				
Stratified	Layers (A5) (LRR F	;)	D	epleted Matrix	: (F3)		Coast Prairie Redox (A16) (LRR F,				
1 cm Mu	ck (A9) (LRR F, G, F	I)	R	edox Dark Su	rface (F6)		Dark Surface (S7) (LRR G)				
Depleted	Below Dark Surface	e (A11)	D	epleted Dark S	Surface (F7)		Reduce	d Vertic (F18)			
Thick Da	rk Surface (A12)		R	edox Depress	ions (F8)		Red Pa	rent Material (T	F2)		
Sandy M	ucky Mineral (S1)		— н	igh Plains Dep	pression (F16)		High Plain	s Depression (F16)	(LRR H outside MLF	A 72 & 73)	
Sandy G	leyed Matrix (S4)			(MLRA 72 & 7	'3 of LRR H)		Other (I	Explain in Rema	arks)		
				3	Indicators of hy	drophytic	vegetation and	wetland hydrold	ogy must b	e present.	
Restrictive La	ayer (if present):										
Type:											
Depth (inche	es):					Hy	dric Soil Prese	nt? Yes	Ν	οX	
Remarks:						I				<u> </u>	
Upland soils											

Wetland Hydrology Indicators:				Secondary Indicators (2 or more required)
Primary Indicators (any one indicator is	s sufficie	nt)		Surface Soil Cracks (B6)
Surface Water (A1)			Water-Stained Leaves (B9)	Sparsely Vegetated Concave Surface (B8)
High Water Table (A2)			Salt Crust (B11)	Drainage Patterns (B10)
Saturation (A3)			Aquatic Invertebrates (B13)	Oxidized Rhizosphers along Roots (C3)
Water Marks (B1)			Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)
Sediment Deposits (B2)			Dry-Season Water Table (C2)	Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)			Presence of Reduced Iron (C4)	Frost-Heaved Hummocks (C11) (LRR F)
Algal Mat or Crust (B4)			Thin Muck Surface (C7)	Geomorphic Position (D2)
Iron Deposits (B5)			Other (Explain in Remarks)	FAC-Neutral Test (D5)
Inundation Visible on Aerial Imager	y (B7)			Local Survey Data (D8)
Field Observations:				
Surface Water Present? Yes	No	Х	Depth (inches):	
Water Table Present? Yes	No	Х	Depth (inches):	
Saturation Present? (includes capillary fringe) Yes	 No	x	Depth (inches):	Wetland Hydrology Present? Yes No X
Describe Recorded Data (stream gauge	, monito	ring	well, aerial photos, previous inspection	s), if available:
Remarks: Upland hydrology within flood	plain of o	creel	ς.	

Project/Site:	US 24 West			City/County: COS – El Paso		Sam	oling Date:	1/4/2011		
Applicant/Owner:	Colorado Department of Transportation			State	CO	Sam	oling Point	DP3		
Investigator(s):	B. Lee			Section, Township, Range: 13, 14S, 67W						
Landform (hillslope,	terrace, etc.):	Terrace		Local relief	(concav	e, convex, non	ie): Con	cave	Slope (%):	0-2
Subregion (LRR):	LRR G		Lat:	38 ° 49' 24"	Long:	-104°50'08"	Datum:	NAD 83	_	
Soil Map Unit Name	e: Ustic torriflu	ivents, loamy				NWI classif	fication	N/A		
Are climatic / hydrol	logic conditions of	on the site typical f	or this tii	me of year? Yes	s X	No (lf no, expla	in in Remarks.)	
Are Vegetation,	Soil,	or Hydrology	sig	gnificantly disturbed	1? A	re "Normal Circ	cumstances	s" present?	Yes X N	0
Are Vegetation,	Soil, X	or Hydrology	na	turally problematic	? (l'	needed, expla	ain any ans	wers in Remar	'ks.)	

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X Yes X Yes X	No No No	Is the Sampled Area within a Wetland?	Yes	<u>x</u>	No		
---	-------------------------	----------------	--	-----	----------	----	--	--

Remarks:

Sample area is located on a large sandbar willow wetland terrace along the banks of Fountain Creek (along the I-25 corridor). Hydric soils do not appear to have developed possibly due to high sand content, but the area is considered a naturally problematic wetland due to the presence of strong hydrology and vegetation indicators.

VEGETATION

Tree Stratum (Use scientific names.)	Absolute	Dominant	Indicator	Dominance Test worksheet:
1.	% Cover	Species?	Status	Number of Dominant Species
2.	. <u></u> .		- <u></u>	That Are OBL, FACW, or FAC:(A)
3.				Total Number of Dominant
4.				Species Across All Strata: 2 (B)
Total Cover:	0		. <u></u>	Percent of Dominant Species
Sapling/Shrub Stratum				That Are OBL, FACW, or FAC: <u>100</u> (A/B)
1. Salix exigua	70	Y	OBL	
2.				Prevalence Index worksheet: Total % cover of: Multiply by:
3.				OBL species X1 =
4.				FACW species X2 =
5.				FAC species X3 =
Total Cover:	70			FACU species X4 =
Herb Stratum				UPL species X5 =
1. Phalaris arundinacea	5	Ν	FACW+	Column Totals: (A) (B)
2. Typha latifolia	15	N	OBL	
		Y		Prevelance Index = $B/A = (A)$ (B)
3. Carex emoryii	30		OBL	
4. Rumex crispus	10	Ν	FACW	
5.				Hydrophytic Vegetation Indicators:
6.				X Dominance Test is >50%
7.				Prevalence Index is ≤3.0 ¹
8.				Morphological Adaptations ¹ (Provide supporting
Total Cover:	60			data in Remarks o on a separate sheet)
Woody Vine Stratum				Problematic Hydrophytic Vegetation ¹ (Explain)
1.				¹ Indicators of hydric soil and wetland hydrology must be present.
2.				
Total Cover:	. <u></u>			Hydrophytic Vegetation
% Bare Ground in Herb Stratum 40	% Cover of	Biotic Crust		Present?
		_		Yes <u>X</u> No
Remarks:				•
Area is dominated by sandbar willow.				

Sampling Point: DP3

	Matrix	K		Redox Fe	eatures					
Depth	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks		
(inches) 0 - 4	10YR3/3	100						Loamy sand		
$\frac{0-4}{4-6}$	7.5YR4/4	100			·			Loamy sand		
6 - 12	10YR3/3	100			·			Loamy sand		
					·					
	·									
	·									
71	oncentration, D=Deple	1				g, RC=Root	Channel, M=N	1atrix.		
•	ndicators: (Applica	ible to all								
Histosol	(A1)		S	andy Redox (S	65)		2.5 cm	Mucky Peat or Peat (LRR G, H)		
Histic Ep	pipedon (A2)		s	tripped Matrix	(S6)		5 cm M	ucky Peat or Peat (LRR F)		
Black Hi	istic (A3)		L	oamy Mucky N	lineral (F1)		Indicato	rs for Problematic Hydric Soils ³ :		
Hydroge	en Sulfide (A4)		L	Loamy Gleyed Matrix (F2)				1 cm Muck (A9) (LRR I, J)		
Stratified	d Layers (A5) (LRR F)	D	epleted Matrix	(F3)		Coast Prairie Redox (A16) (LRR F, G, H)			
1 cm Mu	uck (A9) (LRR F, G, H	H)	R	edox Dark Su	face (F6)		Dark Surface (S7) (LRR G)			
Deplete	d Below Dark Surface	e (A11)	D	epleted Dark S	Surface (F7)		Reduce	d Vertic (F18)		
 Thick Da	ark Surface (A12)		R	edox Depress	ions (F8)		Red Pa	rent Material (TF2)		
Sandy N	/lucky Mineral (S1)		— н	igh Plains Dep	pression (F16)		High Plain	IS Depression (F16) (LRR H outside MLRA 72 & 73)		
Sandy Gleved Matrix (S4)				(MLRA 72 & 7	'3 of LRR H)		X Other (I	Explain in Remarks)		
				3	Indicators of hy	ydrophytic v	egetation and	wetland hydrology must be present		
Restrictive I	ayer (if present):									
Туре:										

Hydric soils have not developed in this area... may be due to high sand content in soil profile. Area treated as a wetland with naturally problematic soils due to the strong hydrology and vegetation indicators.

Wetland Hydrology Indicators:				Secondary Indicators (2 or more required)
Primary Indicators (any one indicator is	sufficient)		Surface Soil Cracks (B6)
X Surface Water (A1)		X Water-Stained Leav	/es (B9)	Sparsely Vegetated Concave Surface (B8)
High Water Table (A2)	-	Salt Crust (B11)		X Drainage Patterns (B10)
X Saturation (A3)	-	Aquatic Invertebrate	es (B13)	X Oxidized Rhizospheres along Roots (C3)
Water Marks (B1)	Hydrogen Sulfide O	dor (C1)	Crayfish Burrows (C8)	
Sediment Deposits (B2)	Dry-Season Water	Table (C2)	Saturation Visible on Aerial Imagery (C9)	
Drift Deposits (B3)	Drift Deposits (B3)			Frost-Heaved Hummocks (C11) (LRR F)
Algal Mat or Crust (B4)	-	Thin Muck Surface	(C7)	Geomorphic Position (D2)
Iron Deposits (B5)	-	Other (Explain in Re	emarks)	FAC-Neutral Test (D5)
Inundation Visible on Aerial Imagery	(B7)			Local Survey Data (D8)
Field Observations:				
Surface Water Present? Yes X	No	Depth (inches):	12	
Water Table Present? Yes X	No	Depth (inches):	12	
Saturation Present? (includes capillary fringe) Yes X	No	Depth (inches):	surface	Wetland Hydrology Present? Yes X No
Describe Recorded Data (stream gauge,	monitorin	ig well, aerial photos, pr	evious inspection	ons), if available:
Remarks: Similar to wetland 2. Standing overflow from a rip-rap drop structure to the struc				e saturated to the surface. Hydrology appears to originate from ows may enter the wetland area.

Project/Site:	US 24 West			City/County:	(COS – El Paso	Sampling Da	ate: 1/4/2011	
Applicant/Owner:	Colorado Depar	tment of Transpor	tation	_	State	CO	Sampling Po	oint UPL 3	
Investigator(s):	B. Lee			Section, Tow	/nship, Ran	ge: 13, 14S	5, 67W		
Landform (hillslope	, terrace, etc.):	Terrace		Local re	elief (conca	ve, convex, none	e): Concave	Slope (%)): 0-2
Subregion (LRR):	LRR G		Lat: 3	38 ° 49' 51"	Long:	-104°50'01"	Datum: NAD 8	3	
Soil Map Unit Name	e: Ustic Torrifl	uvents, loamy				NWI classific	cation N/A		
Are climatic / hydro	logic conditions of	on the site typical f	or this tin	ne of year?	Yes X	No (If	no, explain in Re	marks.)	
Are Vegetation,	Soil,	or Hydrology	sig	nificantly distur	bed? A	re "Normal Circu	umstances" prese	ent? Yes X	No
Are Vegetation,	X Soil,	or Hydrology	nat	turally problem	atic? (If needed, explai	n any answers in	Remarks.)	

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X No Yes No Yes No	X Is the Sampled Area within a Wetland? X X	Yes	NoX	_
---	------------------------------	---	-----	-----	---

Remarks:

Sample area is on a large bench covered with sandbar willow. This part of the bench is does not have hydric soil indicators or wetland hydrology. The willows are somewhat discounted because they are able to root very deeply. Upland species present in the understory.

VEGETATION

Tree Stratum (Use scientific names.)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1.		opecies:	Status	Number of Dominant Species That Are OBL, FACW, or FAC: 1 (A)
2.				Total Number of Dominant
3	. <u></u> _			Species Across All Strata: 1 (B)
4				Percent of Dominant Species
Total Cover: Sapling/Shrub Stratum	0			That Are OBL, FACW, or FAC: <u>100</u> (A/B)
1. Salix exigua	90	Y	OBL	
2.				Prevalence Index worksheet:
3.				Total % cover of:Multiply by:OBL speciesX1 =
4.				FACW species X2 =
5.				FAC species X3 =
Total Cover:	90			FACU species X4 =
Herb Stratum				UPL species X5 =
1. Bromus inermis	50	Y	NL	Column Totals: (A) (B)
2. Melilotus alba	20	N	FACU	
3.				Prevelance Index = B/A = (A) (B)
4.	·	<u> </u>		
5.		<u> </u>		Hydrophytic Vegetation Indicators:
6.		<u> </u>		X Dominance Test is >50%
7.				Prevalence Index is ≤3.0 ¹
8.				Morphological Adaptations ¹ (Provide supporting
Total Cover:	70			data in Remarks or on a separate sheet)
Woody Vine Stratum				Problematic Hydrophytic Vegetation ¹ (Explain)
1.				¹ Indicators of hydric soil and wetland hydrology must be present.
2.				
Total Cover:		·		Hydrophytic Vegetation
% Bare Ground in Herb Stratum 30	% Cover of	Biotic Crust		Present? Yes <u>X</u> No
Remarks:				1
Upland pit location dominated by sandbar wil	low			

Sampling Point: UPL 3

Profile Desci	ription: (Describe to	o the dept	h needed to docu	ment the ind	icator or conf	irm the at	sence of indic	ators.)			
	Matrix	c		Redox Fe	eatures						
Depth	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks			
(inches) 0 - 5	10YR3/3	100						Sandy loam			
5 - 12	10YR3/4	100			······		<u> </u>	Sandy loam			
	1011(0/4	100			·		·				
¹ Type: C=Co	ncentration, D=Deple	etion, RM=	Reduced Matrix.	² Location: F	PL=Pore Lining	, RC=Roo	t Channel, M=N	latrix.			
Hydric Soil I	ndicators: (Applica	ble to all I	RRs, unless oth	erwise noted.)						
Histosol	Histosol (A1)			andy Redox (S	\$5)		2.5 cm	Mucky Peat or I	Peat (LRR G	э, Н)	
Histic Ep	pipedon (A2)		s	tripped Matrix	(S6)		5 cm M	ucky Peat or Pe	at (LRR F)		
Black Hi	stic (A3)		Lo	oamy Mucky M	lineral (F1)		Indicato	rs for Problemat	c Hydric Soi	ls ³ :	
Hydroge	n Sulfide (A4)		Lo	Loamy Gleyed Matrix (F2)				uck (A9) (LRR I	, J)		
Stratified	Layers (A5) (LRR F	;)	D	Depleted Matrix (F3)				Coast Prairie Redox (A16) (LRR F, G, H)			
1 cm Mu	ck (A9) (LRR F, G, F	I)	R	Redox Dark Surface (F6)				Dark Surface (S7) (LRR G)			
Depleted	Below Dark Surface	e (A11)	D	Depleted Dark Surface (F7)				Reduced Vertic (F18)			
Thick Da	ark Surface (A12)		R	edox Depressi	ions (F8)		Red Pa	rent Material (T	-2)		
Sandy N	lucky Mineral (S1)		— н	igh Plains Dep	pression (F16)		High Plain	s Depression (F16) (LRR H outside MLRA	72 & 73)	
Sandy G	leyed Matrix (S4)			(MLRA 72 & 7	'3 of LRR H)		Other (I	Explain in Rema	rks)		
				³	ndicators of hy	drophytic	vegetation and	wetland hydrold	gy must be	present.	
Restrictive L	ayer (if present):										
Туре:											
Depth (inche	es):					Hy	dric Soil Prese	nt? Yes	No	X	
Remarks:						I					
Upland soils											

Wetland Hydrology Indicators:		Secondary Indicators (2 or more required)			
Primary Indicators (any one indicator is	s sufficie	nt)		Surface Soil Cracks (B6)	
Surface Water (A1)			Water-Stained Leaves (B9)	Sparsely Vegetated Concave Surface (B8)	
High Water Table (A2)			Salt Crust (B11)	Drainage Patterns (B10)	
Saturation (A3)			Aquatic Invertebrates (B13)	Oxidized Rhizosphers along Roots (C3)	
Water Marks (B1)			Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)	
Sediment Deposits (B2)			Dry-Season Water Table (C2)	Saturation Visible on Aerial Imagery (C9)	
Drift Deposits (B3)			Presence of Reduced Iron (C4)	Frost-Heaved Hummocks (C11) (LRR F)	
Algal Mat or Crust (B4)			Thin Muck Surface (C7)	Geomorphic Position (D2)	
Iron Deposits (B5)			Other (Explain in Remarks)	FAC-Neutral Test (D5)	
Inundation Visible on Aerial Imager	y (B7)			Local Survey Data (D8)	
Field Observations:					
Surface Water Present? Yes	No	Х	Depth (inches):		
Water Table Present? Yes	No	Х	Depth (inches):		
Saturation Present? (includes capillary fringe) Yes	 No	x	Depth (inches):	Wetland Hydrology Present? Yes No X	
Describe Recorded Data (stream gauge	, monito	ring	well, aerial photos, previous inspection	s), if available:	
Remarks: Upland hydrology within flood	plain of o	creel	ς.		

ADMINISTRATIVE CHARACTERIZATION

General Informa	tion	Date of Evaluation: 1/4/2011						
Site Name or ID:	Wetland 1			Project Name:	US 24 W	est		
404 or Other Permit Application #:	CDOT Project 040	No. NH 0242		oplicant Name:	CDOT			
Evaluator Name(s):	Becky Pierce,	Brian Lee	Evaluator's profess	sional position and organization:	CDOTI	-	am Manager, entist, CH2M	
Location Inform	ation:							
Site Location (Lat./Long. or UTM):	38 deg, 50' 02'	38 deg, 50' 02", 104 deg, 50' 49"			NAD 83			
USGS Quadrangle Map:	Colorado Sprir	ngs		Map Scale: (Circle one)		1:24,000 Other	1:100,000 1:	
Sub basin Name (8 digit HUC):	11020003: Foi	untain Creek		Wetland Ownership:	City of Colorado Springs			
Project Informat	X Project We Mitigation S		Purpose of Evaluation (check all applicable):	Potentially Imp Mitigation; Pre Mitigation; Po Monitoring Other (Descrit	e-construct st-construct	tion		
Intent of Project: (Ch	eck all applicable)	C	Restortation Enhancement Creation					
Total Size of Wetland (Record Area, Check and Measurement Method Use	Describe	ac.	X Measured: 0.02 Estimated					
Assessment Area (A Area, check appropriate box.	,	ac.	X Measured	ac. 0.02	ac.	ac.	ac.	
are used to record acreage w AA is included in a single ass		uo.	Estimated	ac.	ac.	ac.	ac.	
Characteristics or Me AA boundary determ		Delineated w	ith GPS unit					
Notes: just u	-		eek just below a ri n likely contributes					

ECOLOGICAL DESCRIPTION 1

Special Cor	ncerns	Check all that apply					
	s including Histosols or ne AA (i.e., AA includes			Federally threa		-	d species are
	directly impact organic s eas possessing either H						
	s are known to occur an wetland of which the AA	5		Species of cor Heritage (CNH			e Colorado Natural ur in the AA?
The wetland urbanized la	l is a habitat oasis in an Indscape?	otherwise dry or					I conservation area as determined by
	Federally threatened or endangered species are KNOWN occur in the AA? List Below.				concerns (p	lease des	scribe)
	Н	IYDROGEOMOR	PHI	C SETTIN	G		
X AA wetland	maintains its fundame	ntal natural hydrogeomo	orphic	characteristics	5		
	-	nange in HGM classes a escribe the original wetla		•	-		
AA wetland	was created from an u	pland setting.					
Current Co	nditions	Describe the hydrogeou that apply.	morph	nic setting of th	e wetland l	by circling	g all conditions
	Water source	Surface flow	G	roundwater	Precipi	itation	Unknown
	Hydrodynamics	Unidirectional		Vertical	Bi-dired	ctional	
	Wetland Gradient	0 - 2%	6	2-4%	4-10% >10)%
	# Surface Inlets	Over-bank	(2	3	>3
HGM Setting	# Surface Outlets Geomorphic Setting (Narrative Description. Include approx. stream order for riverine)	Riverine wetland adja	0 cent t		2 reek. Flan	3 Iked by R	>3 Rip-rap on West er
	HGM class	Riverine		Slope	Depres	sional	Lacustrine
Historical Co	nditions						
	Water source	Surface flow	Ģ	Groundwater	Precipi	itation	Unknown
	Hydrodynamics	Unidirectional		Vertical			
Previous wetland typology	Geomorphic Setting (Narrative Description)						
	Previous HGM Class	Riverine		Slope	Depres	sional	Lacustrine
Notes (include int		HGM subclass and regio	nal si	ubclass):			

ECOLOGICAL DESCRIPTION 2

Vegetation	n Habitat De	scription	US FWS habitat classifi	fication according as reported		<i>ı).</i>
System	Subsystem	Class	Subclass	Water Regime	Other Modifiers	% AA
Palustrine	Palustrine	SS	Broad-leaved deciduous	-	_	30
Riverine	Palustrine	EM	Persistent	-	_	70
	1					
	+ +		1		<u> </u>	
	+ +		1	1	 	
	+		1		ł	
		<u> </u>	+	 	<u> </u>	
			<u> </u>			
Lacustrine	Littoral; Limnoral			Examples	Hypersaline(7) ; Eusaline(8);	
Palustrine	e Palustrine Rock Bot. (F		Floating vascular; Rooted vascular;	Temporarily flooded(A); Saturated(B);	Mixosaline(9); Fresh(0); Acid(a); Circumneutral(c);	
		Aquatic Bed(AB) Rocky Shore(RS)	Algal; Persistent; Non-Persistent;	Seasonally flooded(C); Seasflood./sat.(E);	Alkaline/calcareous(i); Organic(g); Mineral(n);	
	Lower perennial;	Uncon Shore(US) Emergent(EM)	Broad-leaved deciduous; Needle-leaved evergreen;	Semi-Perm. flooded(F); Intermittently exposed(G);	Beaver(b); Partially Drained/ditched(d);	
Riverine	Upper perennial; Intermittent	Shrub-scrub(SS) Forested (FO)	Cobble - gravel; Sand; Mud;	Artificially flooded(K); Sat./semiperm./Seas. (Y);	Farmed(f); Diked/impounded(h);	
		, , ,	Organic	Int. exposed/permenant(Z)	Artificial Substrate(r); Spoil(s); Excavated(x)	
<u> </u>	<u> </u>	<u> </u>	J		-r- (-)/	
Site Map		a sketch map of th significant features	he site including relevant portion	ns of the wetland, AA bounda	ary, structures, habitat cla	asses, and
Scale: 1 inch = 2	200 feet	Signinoann roataros	s.	· · · · · · · · · · · · · · · · · · ·		.
	St. Com	Set March				
and the second	1. de	1 100				1000
	and the second	100				
		7134		Lasto	APR WART OF	
		The	CAN PARTY			
	and a	1 start	1/1 21			
The second	Called .	A.	UPL1			e de la compañía
22.2	1100	1 for				
12	and the second	101	Wetland			
2.0/	12/	P Pulis	Wellan			
1	(1)	A spin				17
Store 1	AU-	MALE.			AND A REAL	1
1 and	NY ST.	A MA			A TANK	1 F

Variable 1: Habitat Connectivity - Neighboring Wetland Habitat Loss

This variable is a measure of how isolated from other naturally-occurring wetland or riparian habitat the AA has become as a result of the loss of that habitat. To score this variable, estimate the percent of naturally- occurring wetland/riparian habitat that has been lost (by filling, draining, development, or whatever means) within a 500-meter-wide belt surrounding the AA. This surrounding area is called the Habitat Connectivity Envelope (HCE). Historical photographs and NWI and hydric soils maps can be helpful in scoring this variable. In most cases the evaluator must use best professional judgment in estimating the amount of natural wetland loss. Evaluation of landforms and habitat patterns in the context of perceivable land use change should be used to steer estimates of the amount of wetland loss within the HCE. This variable is not meant to penalize AAs that are naturally isolated, or unique to the landscape. Rather, it should measure the degree to which natural habitat connectivity has been lost.

Rules for Scoring:

1. On the aerial photo, create a 500 meter perimeter around the AA.

2. The area within this perimeter is the Habitat Connectivity Envelope (HCE).

3. Within the HCE, outline the current extent of naturally occurring wetland and riparian habitat. Do not include habitats such as excavated ponds or reservoir induced fringe wetlands.

4. Outline the historical extent of wetland and riparian habitats (i.e., existing natural wetlands plus those that have been destroyed).

- Use your knowledge of the history of the area and evident land use change to identify where habitat losses have occurred. Additional research could be utilized to increase the accuracy of this estimate including consideration of floodplain maps, historical aerial photographs, etc.

5. Calculate the area of existing and historical wetlands. Divide the area values to determine the percentage of naturally occurring wetland habitat that remains in the HCE, and determine the variable score using the guidelines below.

Variable Score	Condition Category	Scoring Guidelines
1.0 - 0.9	Reference Standard	Wetland losses are absent or negligible or there is no evidence to suggest the native landscape within the HCE historically contained other wetland habitats
<0.9 - 0.8	Highly Functioning	More than 80% of historical wetland habitat area within the HCE is still present (less than 20% of habitat area lost).
<0.8 - 0.7	Functioning	80 to 60% of historical wetland habitat area within the HCE is still present (20% to 40% of habitat area lost).
<0.7 - 0.6	Functioning Impaired	Less than 60 to 25% of historical wetland habitat area within the HCE is still present (more than 40 to 75% of habitat area lost).
<0.6	Non- functioning	Less than 25% of the historical wetland habitat area within the HCE still in existence (more than 70% of habitat lost).

Variable 1 Score

0.75

Notes: Approximately 30% of Riparian canopy cover was lost when regrading work was done for the Springs Community Improvement Program (SCIP) Flood Control Project in 2003.

Variable 2: Habitat Connectivity - Migration/Dispersal Barriers

This variable is intended to rate the degree to which the AA has become isolated from existing neighboring wetland and riparian habitat by artificial barriers that inhibit migration or dispersal of organisms. On the aerial photograph, identify the man-made barriers within the HCE that intercede between the AA and surrounding wetlands and riparian areas, and identify them by type on the stressor list. Score this variable based on the barriers' impermeability to migration and dispersal and the amount of surrounding wetland/riparian habitat they affect.

Rules for Scoring:

1. On the aerial photo, outline **all** existing wetland and riparian habitat areas within the HCE. This includes naturally occurring habitats as well as those purposefully created or induced by land use change.

2. Identify artificial barriers to dispersal and migration of organisms within the HCE that intercede between the AA and surrounding habitats. Mark the stressors present with a check in the first column and describe the general nature, severity and extent of each. List additional stressors in empty rows at the bottom of the table and explain.

3. Considering the composite effect of all of identified barriers to migration and dispersal (i.e., stressors), assign an overall variable score using the scoring guidelines.

	\checkmark	Stressors		Comments/description					
~	Х	Major Highway		US 24 is a busy four lane highway					
artificial barriers		Secondary Highway	/						
arri		Tertiary Roadway							
ĝ		Railroad							
cia		Bike Path							
rtifi	Х	Urban Development		Residential and Commercial properties surround the area					
= 9		Agricultural Develop	ment						
ŝ		Artificial Water Body	,						
Stressors	Х	Fence		Chain link fence along highway ROW restricts wildlife movement					
res		Ditch or Aqueduct							
St		Aquatic Organism B	arriers						
Va	ariable		0	Ovidalizat					
ŝ	Score	Condition Class	Condition Class Scoring Guidelines						
1.	.0 - 0.9	Reference Standard	No appreciable barriers exist between the AA and other wetland and riparian habitats in the HCE; or there are no other wetland and riparian areas in the HCE.						
<0).9 - 0.8	Highly Functioning	boning Barriers impeding migration/dispersal between the AA and up to 33% of surrounding wetland/riparian habitat highly permeable and easily passed by most organisms. Examples could include gravel roads, minor levees, ditches or barbed-wire fences. M significant barriers (see "functioning category below) could affect migration to up to 10 of surrounding wetland/riparian habitat.						
<0	0.8 - 0.7	Functioning	Barriers to migration and dispersal retard the ability of many organisms/propagules to pass between the AA and up to 66% of wetland/riparian habitat. Passage of organisms and propagules through such barriers is still possible, but it may be constrained to certain times of day, be slow, dangerous or require additional travel. Busy two-lane roads, culverted areas, small to medium artificial water bodies or small earthen dams would commonly rate a score in this range. More significant barriers (see "functioning impaired" category below) could affect migration to up to 10% of surrounding wetland/riparian habitat.						
<0).7 - 0.6	Functioning Impaired	organisr habitat. restricte	rriers to migration and dispersal preclude the passage of some types of janisms/propagules between the AA and up to 66% of surrounding wetland/riparian bitat. Travel of those animals which can potential negotiate the barrier are strongly tricted and may include a high chance of mortality. Up to 33% of surrounding tland/riparian habitat could be functionally isolated from the AA.					
	<0.6	Non-functioning	migratio conveya	essentially isolated from surrounding wetland/riparian habitat by impermeable tion and dispersal barriers. An interstate highway or concrete-lined water eyance canal are examples of barriers which would generally create functional ion between the AA and wetland/riparian habitat in the HCE.					
			•	Variable 2 Score 0.7					

Variable 3: Buffer Capacity

The buffer area is defined as a 250-meter-wide belt surrounding the perimeter of the AA. This variable is a measure of the capacity of that area to function as an effective buffer for the wetland against the deleterious effects of surrounding land use change. To score the variable, assume that the AA is 100% buffered except where land use changes inside the buffer area have diminished this quality. Identify these land use types as specific stressors in the list. For each stressor, rate severity and extent within the buffer area; then use this list to make an overall rating for the buffer's departure from reference conditions. When rating buffer capacity, consider both the intensity of the impact and the proximity of the stressor to the AA.

Rules for Scoring:

1. On the aerial photograph, delimit the buffer area (BA) as the zone within 250 meters of the outer boundary of the AA.

2. Use the stressor list to record land use changes that affect buffering capacity within the buffer area. Mark the stressors present with a check in the first column and describe the general nature, severity and extent of each. List additional stressors in empty rows at the bottom of the table and explain.

3. Considering all of the identified stressors, their composite severity, extent and proximity to the AA assign an overall variable score using the scoring guidelines.

	\checkmark	Stressors	Comments/description
	Х	Industrial/commercial	Auto parts facilties and repair shops across US 24
es	Х	Urban	Moderate amount of impervious surface. Urban corridor
Changes	Х	Residential	Residential development on both sides of US 24
îha		Rural	
		Dryland Farming	
Use		Intensive Agriculture	
and		Orchards or Nurseries	
Lar		Livestock Grazing	
п	Х	Transportation Corridor	US 24
SIC		Urban Parklands	
SS		Dams/impoundments	
Stressors		Artificial Water body	
S		Physical Resource Extraction	
		Biological Resource Extraction	

Variable Score	Condition Class	Scoring Guidelines
1.0 - 0.9	Reference Standard	No appreciable land use change has been imposed within the TBA and it provides the full buffering capacity.
<0.9 - 0.8	Highly Functioning	Some land use change has occurred in the BA, but such changes little impair the area's ability to provide a buffering function, either because land use is not intensive, for example haying, light grazing, or low intensity silviculture, or more substantial changes occur in approximately less than 10% of the BA.
<0.8 - 0.7	Functioning	BA has been subjected to a marked shift in land use, however, the land retains much of its original buffering capacity. Moderate-intensity land uses such as dry-land farming, urban "green" corridors, or moderate cattle grazing would commonly be placed within this scoring range.
<0.7 - 0.6	Functioning Impaired	Land use changes within the BA has been substantial including the a moderate to high coverage (up to 50%) of impermeable surfaces, bare soil, or other artificial surface; considerable in-flow urban runoff or fertilizer-rich waters common. While, the buffering capacity of the land has been greatly diminished it is not extinguished. Intensively logged areas, low-density urban developments, some urban parklands and some cropping situations would commonly rate a score within this range.
<0.6	Non-functioning	The area within the BA provides essentially no buffering capacity. Many Commercial developments or highly urban landscapes would rate a score of less than 0.6.
		Variable 3 score 0.66

Variable 4: Water Source

This variable is concerned with up-gradient hydrologic connectivity. It is a measure of the impacts to the AA's water source, including the ability of source water to perform work such as sediment transport, erosion, soil pore flushing, etc. To score this variable, identify stressors that alter the source of water to the AA, and record their presence on the stressor list. Stressors can impact water source by depletion, augmentation, or alteration of inflow timing or hydrodynamics. For riverine systems, this variable is primarily concerned with the connection of the channel to the floodplain. This variable is designed to assess water quantity, power and timing, not water quality. Water quality will be evaluated in Variable 8.

Scoring rules:

1. Use the stressor list and knowledge of the watershed to catalog type-specific impairments of the AA's water source. Mark the stressors present with a check in the first column and describe the general nature, severity and extent of each. List additional stressors in empty rows at the bottom of the table and explain.

2. Considering the composite effect of stressors on the water source, rate the condition of this variable with the aid of the scoring guidelines.

\checkmark	Str	essors		Comments/description				
	Ditc	hes or Drains	(tile, etc.)					
	Dan	ns						
	Dive	ersions						
	Gro	undwater pum	ping					
	Drav	w-downs						
\times	Culverts or Constrictions			Residential runoff/ channelization upstream				
	Poir	nt Source (urba	an, ind., ag.)					
	Non-point Source							
	Incr	eased Drainag	ge Area					
\times		rm Drain/Urbai						
	Imp	ermeable Surf	ace Runoff					
		ation Return F						
		ing/Natural Ga						
		nsbasin Divers						
	Acti	vely Managed	Hydrology					
	<u> </u>							
Varia	ble	Condition						
Sco	re	Class		Depletion	Augmentat			
1.0 - (0.9	Reference Standard		lown events minor, rare or non- ght uniform depletion, or trivial rodynamics.	Unnatural high-water events min existent, slight uniform increase i trivial alteration of hydrodynamic	n amount of inflow, or		
<0.9 -	0.8	Highly Functioning	duration and/or or mild to moder	lown events occasional, short nild; or uniform depletion up to 20%; ate reduction of peak flows or r to perform work.	Occasional unnatural high-water events, short in duration and/or mild in intensity; or uniform augmentation up to 20%; or mild to moderate increase of peak flows or capacity of water to perform work.			
<0.8 -	- 0.7 <i>Functioning</i> moderate intens			lown events common and of mild to ity and/or duration; or uniform 0%; or moderate to substantial k flows or capacity of water to	Common occurrence of unnatural high-water events, of a mild to moderate intensity and/or duration; or uniform augmentation up to 50%; or moderate to substantial increase of peak flows or capacity of water to perform work.			
<0.7 -	0.6	Functioning Impaired	moderate to high depletion up to 7 flows or capacity with actively m	lown events occur frequently with a n intensity and/or duration; or uniform 75%; or substantial reduction of peak of water to perform work. Wetlands anaged or wholly artificial usually score in this range or	Common occurrence of unnatura some of which may be severe in substantial portion of the growing augmentation more than 50% or perform work. Wetlands with ac wholly artificial hydrology will range or lower.	nature or exist for a season; or uniform capacity of water to tively managed or		
<0.0	6	Non- functioning		minished enough to threaten or nd hydrology in the AA.	Frequency, duration or magnitud water great enough to change th characteristics of the wetland.			
					Variable 4 Score	0.8		

Variable 5: Water Distribution

This variable is concerned with hydrologic connectivity **within** the AA. It is a measure of alteration to the spatial distribution of surface and groundwater within the AA. These alterations are manifested as local changes to the hydrograph and generally **result** from geomorphic modifications. To score this variable, identify stressors that alter flow patterns and impact the hydrograph within the AA, including localized increases or decreases to the depth or duration of the water table or surface water. In most cases, the Water Source variable score will determine the maximum achievable score for Water Distribution, since the condition of the water source exerts a primary control on the wetland's capacity to distribute water in a characteristic fashion and exhibit a natural hydrograph.

Scoring rules:

1. Identify impacts to the natural distribution of water throughout the AA and catalog them in the stressor table.

2. Considering all of the stressors identified, assign an overall variable score using the scoring guidelines. In most cases, the Water Source variable score will set the upper limit for the Water Distribution score.

\checkmark	Stressors	Comments/description
	Alteration of Water Source	No major stressors
	Ditches	
	Ponding/Impoundment	
	Culverts	
	Road Grades	
	Channel Incision/Entrenchment	
	Hardened/Engineered Channel	
	Enlarged Channel	
	Artificial Banks/Shoreline	
	Weirs	
×	Dikes/Levees/Berms	Rip rap on upstream end
	Diversions	
×	Sediment/Fill Accumulation	Regraded area. Minor fill.

Variable Score	Condition Class	Non-riverine		Riverine
1.0 - 0.9	Reference Standard	Little or no alteration has been made to the way in which water is distributed throughout the wetland. AA maintains a natural hydrologic regime.	normal recurren	loodplain areas flood on a nce interval. No evidence of oding and subirrigation tensity.
<0.9 - 0.8	Highly Functioning	Less than 10% of the AA is affected by <i>in situ</i> hydrologic alteration; or more widespread impacts result in less than a 2 in. (5 cm) change in mean growing season water table elevation.	unnatural perio	ent areas have occasional ds of drying or flooding; or the hydrograph less than th.
<0.8 - 0.7	Functioning	Between 10 and 33% of the AA is affected by <i>in situ</i> hydrologic alteration; or more widespread impacts result in a 4 in. (5 cm) or less change in mean growing season water table elevation.		acent area, periods of drying or mmon; or uniform shift in the ar root depth.
<0.7 - 0.6	Functioning Impaired	33 to 66% of the AA is affected by <i>in situ</i> hydrologic alteration; or more widespread impacts result in a 6 in. (15 cm) or less change in mean growing season water table elevation. Water table behavior must still meet jurisdictional criteria to merit this rating.	drying or floodi	channel, unnatural periods of ng are the norm; or uniform ograph greater than root
<0.6	Non-functioning	More than 66% of the AA is affected by hydrologic alteration which changes the fundamental functioning of the wetland system, generally exhibited as a conversion to upland or deep water habitat.	never wetted fr groundwater in	e floodplain areas are almost om overbank flooding, and/or filtration is effectively cut off.
		Variable	5 Score	0.7

Variable 6: Water Outflow

This variable is concerned with down-gradient hydrologic connectivity and the flow of water (transporting materials and energy) out of the AA. It is a measure of impacts that affect the hydrologic outflow of water including the passage of water through its normal low- and high-flow surface outlets, and infiltration/groundwater recharge. In some cases, alteration of evapotranspiration rates may be significant enough of a factor to consider in scoring. Score this variable by identifying stressors that impact the means by which water is exported from the AA. In Variable 5, the stressors were evaluated in light of their impact on water distribution within the AA. To evaluate this variable focus on the AA's ability to export water, energy and associated materials to habitats down-gradient of the AA. In most cases, the Water Source variable score will determine the maximum achievable score for Water Outflow, since the condition of the water source exerts a primary control over the wetland's capacity to export water and associated materials.

Scoring rules:

1. Identify impacts to the natural outflow of water from the AA and catalog them in the stressor table.

2.Considering all of the stressors identified, assign an overall variable score using the scoring guidelines. Take in to account the cumulative effect of stressors on the wetland's ability to export water and water-borne materials. In most cases the Water Source variable will set the upper limit for the Water Outflow score.

Stressors	Comments/description
Alteration of Water Source	No major stressors
Ditches	
Dikes/Levees	
Road Grades	
Culverts	
Diversions	
Constrictions	
Channel Incision/Entrenchment	
Hardened/Engineered Channel	
Artificial Stream Banks	
Weirs	
Confined Bridge Openings	

Variable Score	Condition Class	Scoring Guidelines			
1.0 - 0.9	Reference Standard	Stressors have little to no effect on the magnitude, timing or hydrodynamics of the AA water outflow regime.			
<0.9 - 0.8	Highly Functioning	High- or low-water outflows are mildly to moderately affected, but at intermediate ("normal") evels flow continues essentially unaltered in quantity or character.			
<0.8 - 0.7	Functioning	High- or low-water outflows are moderately affected, mild alteration of intermediate level outflow occurs; or hydrodynamics moderately affected.			
<0.7 - 0.6	Functioning Impaired	Dutflow at all stages is moderately to highly impaired resulting in persistent flooding of portions of the AA or unnatural drainage; or outflow hydrodynamics severely disrupted.			
<0.6	Non-functioning	The natural outflow regime is profoundly impaired. Down-gradient hyd severed or nearly so. Alterations may cause widespread unnatural pe dewatering of the wetland system.	0		
		Variable 6 Score	0.85		

Variable 7: Geomorphology

This variable is a measure of the degree to which the geomorphic setting has been altered within the AA. Changes to the surface configuration and natural topography constitute stressors. Such stressors may be observed in the form of fill, excavation, diking, sedimentation due to absence of flushing floods, etc. In riverine systems geomorphic changes to stream channel should be considered if the channel is within the AA. Alterations may include bed surface changes (embeddedness or morphology changes), stream bank instability, and stream channel reconfiguration. Geomorphic changes are usually ultimately manifested as changes to wetland hydrology and water relations with vegetation. Geomorphic alteration can also directly affect soil properties, such as near-surface texture, and the wetland chemical environment, such as the redox state or nutrient composition in the rooting zone. In rating this variable, do not include the resultant effects of geomorphic change; rather focus on the physical impacts within the footprint of the alteration. The effects of geomorphic change are addressed by other variables. All alterations to geomorphology should be evaluated including small-scale impacts such as pugging, hoof sheer, and sedimentation which constitute important, but not immediately apparent, impacts.

Scoring Rules:

Identify impacts to geomorphological setting and topography within the AA and record them on the stressor checklist.
 Considering all of the stressors identified, assign an overall variable score using the scoring guidelines.

			Stressor	S	Comments	
		Dredg	ing/Excavation	/Mining		
		Fill, in	cluding dikes,	road grades, etc		
		Gradii	ng			
	B	Comp	action			
	General	Plowir	ng/Disking			
)en	Exces	sive Sediment	ation		
	G	Dump	oing			
		Hoof \$	loof Shear/Pugging			
		Aggre	gate or Minera	l Mining		
		Sand	Accumulation			
		Chanr	nel Instability/C	ver Widening		
	Only	Exces	sive Bank Eros	sion		
		Chanr	nelization			
	sle	Recor	nfigured Stream	n Channels		
	Channels	Artifici	ial Banks/Shore	eline		
	hai	Beave	er Dam Remova	al		
	Ö		rate Embeddeo			
		Lack of	or Excess of W	oody Debris		
V	ariat	ble	Condition			
	Scor	re	Class		Scoring Guidelines	
1	.0 - 0).9	Reference Standard	wetland function	sentially unaltered from the natural state, or alterations appear to ning and condition. Patch or microtopographic complexity may be nmunities are still supported.	
<	0.9 -	0.8	Highly Functioning		pography result in small but detectable changes to habitat conditivere impacts exist but affect less than 10% of the AA.	ions in some or all of the
<	0.8 -	0.7	Functioning	patches of more	topography may be pervasive but generally mild to moderate in s e significant habitat alteration; or more severe alterations affect up	to 20 % of the AA.
~	0.7 -	0.6	Functioning Impaired	been strongly in the AA. Eviden physical habitat	portant surface type or landform has been eliminated or created; r mpacted throughout most or all of the AA; or more severe alteration that widespread diminishment or alteration of native plant come alterations. Most incidentally created wetland habitat such as the like would score in this range or lower.	ons affect up to 50% of munity exist due to
	<0.6	6	Non- functioning	-	norphic alterations have caused a fundamental change in site cha Iting in a conversion to upland or deepwater habitat.	racter and functioning,
					Variable 7 Score	0.88

Variable 8: Water and Soil Chemical Environment

This variable concerns the chemical environment of the soil and water media within the AA, including pollutants and water quality. The origin of pollutants may be in the AA or delivered from up-gradient or surrounding areas. Score this variable by listing indicators of chemical stress in the AA. Consider point source and non-point sources of pollution, as well as mechanical or hydrologic changes that alter the chemical environment. Because water quality frequently cannot be inferred directly, the presence of many stressors is identified via indirect indicators.

Scoring rules:

- 1. Stressors are grouped into categories which have a similar signature or set of causes.
- 2. Use the indicator list to identify each stressor impacting the chemical environment of the AA.

3. For each stressor category, determine the sub-variable score using the scoring guideline table provided on the second page of the scoring sheet.

-If the AA is part of a water body that is recognized as impaired or recommended for TMDL development for one of the factors, then score that sub-variable 0.65 or lower.

4. Transcribe sub-variable scores to the following variable scoring page and compute the sum.

5. Determine the variable score by following the scoring guidelines.

Stressor Category	Stressor Indicator	\checkmark	Comments		Sub-
	Livestock				variable
	Agricultural Runoff				Score
Nutrient Enrichment/	Septic/Sewage				0.76
Eutrophication/	Excessive Algae or Aquatic Veg.				0.70
Oxygen (D.O.)	Cumulative Watershed NPS] /	<u>.</u>
	CDPHE Impairment/TMDL List	Х	Fountain Creek is Impaired:		
			E. Coli (high), Selenium (low)	7	
	Excessive Erosion			Ν	
	Excessive Deposition				
	Fine Sediment Plumes			7 N	
Sedimentation/	Agricultural Runoff				0.98
	Excessive Turbidity				0.90
Turbidity	Nearby Construction Site			7 /	
	Cumulative Watershed NPS			7/	
	CDPHE Impairment/TMDL List		turbidity not a concern	7/	
				7	
	Recent Chemical Spills				
	Nearby Industrial Sites				
	Road Drainage/Runoff				
	Livestock			\neg	
	Agricultural Runoff				
Taula and and a stinut	Storm Water Runoff	Х	Roads (minor)		
Toxic contamination/	Fish/Wildlife Impacts				0.82
рН	Vegetation Impacts				<u>,</u>
	Cumulative Watershed NPS			1 /	
	Acid Mine Drainage				
	Point Source Discharge			1/	
	CDPHE Impairment/TMDL List	Х	Selenium (low)	7/	
	Metal staining on rocks and veg.			7	
	Excessive Temperature Regime				
	Lack of Shading	Х	Minor upstream	1 \	
	Reservoir/Power Plant Discharge				
Temperature	Industrial Discharge				0.92
	Cumulative Watershed NPS			1 /	<u>_</u>
	CDPHE Impairment/TMDL List			1/	
				7/	
	Unnatural Saturation/Desaturation				
Soil chemistry/	Mechanical Soil Disturbance				0.98
5	Dumping/introduced Soil				0.90
Redox potential	CDPHE Impairment/TMDL List] /	
				\mathbf{V}	

Variable 8: Water and Soil Chemical Environment

	ole Score	Condition Class	Scoring Guidelin	es					
1.0) - 0.9	Reference Standard	Stress indicators not pr	resent or ti	rivial.				
<0.	9 - 0.8	Highly Functioning	Stress indicators scarc 10% of the AA.	ely presen	it and mild, or	otherwis	se not occuri	ring in m	ore than
<0.	8 - 0.7	Functioning	Stress indicators prese than 33% of the AA.	ent at mild	to moderate le	evels, or	otherwise n	ot occur	ring in m
<0.	7 - 0.6	Functioning Impaired	Stress indicators prese than 66% of the AA	ent at mode	erate to high le	evels, or	otherwise n	ot occur	ring in m
<	:0.6	Non-functioning	Stress indicators strongly evident throughout the AA at levels which apparently alter the fundamental chemical environment of the wetland system						
_						_		_	_
put ead	ch factor so	core from the stres	ssor list and calcul	ate the	sum.				
	'nt/		/uo						ble
	Nutrient enrichment/ Eutrophication/ Oxygen (D.O.)	2	Toxic contamination/				al a		Sum of Sub-variable
	nricl atior 0.0.	Sedimentation/ Turbidity	tami		ure		Soil chemistry/ Redox potential		∧-qr
	hic: n (E	enta	Son		Temperature		bol		fSL
	trier trop yge	bid	xic o		bqr		l ch dox		0 2
		Sec	T		lei		soi Se		, E
									0,0
	0.76	+ 0.98	+ 0.82	+	0.92	+	0.98	=	
	0.76	+ 0.98	+ 0.82	+		+		=	
	0.76	+ 0.98	+ 0.82	+		+		-	
a tha t					0.92		0.98		4.4
se the t			Environment Variat	ole circli	0.92		0.98		4.4
ariable			Environment Variat		0.92		0.98		4.4
ariable	table to sco	ore the Chemical E	Environment Variat	ole circli	0.92	olicable	0.98	rules	4.4
ariable Score	table to sco	ore the Chemical E	Environment Variat	ole circli	0.92 ing the app Rules	olicable Com	0.98 e scoring	rules	4.4
ariable Score .0 - 0.9	table to sco Condition Class Reference	ore the Chemical E Single No single facto	Invironment Variat	ble circli Scoring	0.92 ing the app Rules	Dicable Com ne facto	0.98 e scoring posite Sc	rules. core um > 4.4	5
ariable Score .0 - 0.9).9 - 0.8	table to sco Condition Class Reference Standard Highly	ore the Chemical E Single No single factor so	Factor or scores < 0.9	ole circli Scoring or	0.92 ing the app Rules The fa	Com Com ne facto	0.98 e scoring posite Sc r scores su	rules. core um > 4.4	5 5 ≤≤4.5
ariable Score .0 - 0.9).9 - 0.8).8 - 0.7	table to sco Condition Class Reference Standard Highly Functioning	ore the Chemical E Single No single factor Any single factor so	Environment Variat Factor or scores < 0.9 cores ≥ 0.8 but < 0.9	ole circli Scoring or or	ing the app Rules The fa	Dicable Com ne facto actor sco	0.98 e scoring posite Sc ores sum >	rules. core um > 4.4 4.0 but 3.5 but	4.4 5 ≤ 4.5 ≤ 4.0
Se the 1 ariable Score .0 - 0.9 0.9 - 0.8 0.8 - 0.7 0.7 - 0.6 < 0.6	table to sco Condition Class Reference Standard Highly Functioning Functioning	ore the Chemical E Single No single factor so Any single factor so Any single factor so	Environment Variat Factor or scores < 0.9 cores ≥ 0.8 but < 0.9 cores ≥ 7.0 but < 0.8	ole circli Scoring or or or	0.92 ing the app Rules The fa The fa	Com ne facto actor sco ctor sco	0.98 e scoring posite Sc r scores su ores sum >	rules. core im > 4.9 4.0 but 3.5 but 3.0 but	4.4 5 ≤ 4.5 ≤ 4.0 ≤ 3.5
ariable Score 0 - 0.9 0.9 - 0.8 0.8 - 0.7 0.7 - 0.6	table to sco Condition Class Reference Standard Highly Functioning Functioning Functioning Impaired Non-	ore the Chemical E Single No single factor so Any single factor so Any single factor so	Environment Variate Factor or scores < 0.9 cores ≥ 0.8 but < 0.9 cores ≥ 7.0 but < 0.8 cores ≥ 0.6 but < 0.7	ole circli Scoring or or or	0.92 ing the app Rules The fa The fa	Com ne facto actor sco ctor sco	0.98 e scoring posite So or scores sum > pres sum > pres sum >	rules. core im > 4.9 4.0 but 3.5 but 3.0 but	5 ≤ 4.5 ≤ 4.0 ≤ 3.5

Variable 9: Vegetation Structure and Complexity

This variable is a measure of the condition of the wetland's vegetation relative to its native state. It is particularly relevant to the wetland's ability to perform higher-order functions such as support of wildlife populations, although it also affects primary functions such as flood-flow attenuation. Score this variable by listing stressors that have affected the diversity, composition and cover of each vegetation cover class that would normally be present for the wetland type being assessed. For this variable, stressor severity is a measure of how much each vegetation stratum differs functionally from its natural condition.

Rules for Scoring:

1. Determine the number and types of vegetation layers present within the AA. Make a judgment as to whether additional layers were historically present using direct evidence such as stumps, root wads or historical photographs. Indirect evidence such as local knowledge and expert opinion can also be used in this determination. Check each present or suspected vegetation layer in the third row of the table.

2. Do not score vegetation layers that would not normally be present in the wetland type being assessed.

3. Estimate the percent coverage of each vegetation layer. Aerial photographs can be helpful for this but are not required. In cases where a stratum has been thinned or removed, enter the expected coverage of that layer **not** the current percent coverage.

4. Enter the percent cover values as decimals in the row of the stressor table labeled "Percent Cover of Layer". Note, percentages will often sum to more than 100% (1.0).

5. Determine the severity of stressors acting on each individual canopy layers, indicating their presence with checks in the appropriate boxes of the stressor table.

6. Determine the sub-variable score for each valid vegetation layer using the scoring guidelines on the second page of the scoring sheet. Enter each sub-variable score in the appropriate cell of the row labeled "Veg. Layer Sub-variable Score".

7. Add the "Veg. Layer Sub-variable Scores" and enter the sum in the labeled cell to the right of the individual scores. Follow this same process for the "Percent Cover of Layer".

8. Divide the sum of "Veg. Layer Sub-variable Scores" by the total coverage of all layers scored. This product is the Variable 9 score. Enter this number in the labeled box at the bottom of this page.

	, ,	Vegetatio	n Layers		
Layers Scored (check boxes to right to indicate scored layers)	х	х	х		
Stressor	Tree	Shrub	Herb	Aquatic	Comments
Noxious Weeds		Х	Х		Teasel, thistle, other weeds present
Exotic/Invasive spp.					
Tree Harvest					
Brush Cutting/Shrub Removal					
Livestock Grazing					
Excessive Herbivory					
Mowing/Haying					
Herbicide					
Loss of Zonation/Homogenization	Х	Х			
Dewatering					
Over Saturation			Х		Historical composition has changed. Trees
					and shrubs have been reduced
Percent Cover of Layer	40.00 +	80.00 +	90.00 +		= 210
	Х	Х	Х	х	A
Veg. Layer Sub- variable Score	0.6	0.68	0.72		See sub-variable scoring guidelines on following page
	Ш	П	П	Ш	
Weighted Sub-variable Score	24.00 +	54.40 +	64.80 +		= 143.2
					Variable 9 Score

Sub-variable 9 Scoring Guidelines: Based on the list of stressors identified above, rate the severity of their cumulative effect on vegetation structure and complexity for each vegetation layer.

Reference Standard	Stressors not present or with an intensity low enough as to not detectably affect the structure, diversity or composition of the vegetation layer.
Highly iunctioning	Stressors present at intensity levels sufficient to cause detectable, but minor, changes in layer composition. Stress related change should generally be less than 10% for any given attribute (e.g., 10% cover of invasive, 10% reduction in richness or cover) if the stressor is evenly distributed throughout the wetland. Stress related change could be as high as 33% for a given attribute if stressors are confined to patches comprising less than 10% of the wetland.
unctioning	Stressors present with enough intensity to cause significant changes in the character of vegetation, including alteration of layer coverage, structural complexity and species composition. The vegetation layer retains its essential character though. AA's with a high proportion of non-native grasses will commonly fall in this class. Stress related change should generally be less than 33% for any given attribute (e.g., 33% cover of invasive, 33% reduction in richness or cover) if the stressor is evenly distributed throughout the wetland. Stress related change could be as much as 66% for a given attribute if stressors are confined to patches comprising less than 25% of the wetland.
unctioning Impaired	Stressor intensity severe enough to cause profound changes to the fundamental character of the vegetation layer. Stress-related change should generally be less than 66% for any given attribute (e.g., 66% cover of invasive, 66% reduction in richness or cover) if the stressor is evenly distributed throughout the wetland. Stress related change could be as much as 80% of a given attribute if stressors are confined to patches comprising less than 50% of the wetland.
Non- unctioning	Vegetation layer has been completely removed or altered to the extent that is no longer comparable to the natural structure, diversity and composition.
	nctioning nctioning nctioning npaired Non-

FACWet Score Card

Scoring Procedure:

1. Transcribe variable scores from each variable data sheet to the corresponding cell in the variable score table.

2. In each Functional Capacity Index (FCI) equation, enter the corresponding variable scores in the equation cells. Do not enter values in the crossed cells lacking labels.

3. Add the variable scores to calculate the total functional points achieved for each function.

4. Divide the total functional points achieved by the functional points possible. The typical number of total points possible is provided, however, if a variable is added or subtracted to FCI equation the total possible points must be adjusted

5. Calculate the Composite FCI, by adding the FCI scores and dividing by the total number of functions scored (usually 7).

6. If scoring is done directly in the Excel spreadsheet, all values will be transferred and calculated automatically.

VARIABLE SCORE TABLE Buffer & Landscape Context 0.75 Variable 1: Habitat Connectivity - Neighboring Wetland Habitat Loss 0.70 Variable 2: Habitat Connectivity - Migration/Dispersal Barriers Variable 3: **Buffer Capacity** 0.66 Variable 4: 0.80 Water Source Hydrology Water Distribution Variable 5: 0.70 Variable 6: Water Outflow 0.85 Abiotic and Biotic Habitat Variable 7: Geomorphology 0.88 Variable 8: Chemical Environment 0.85 Variable 9: Vegetation Structure and Complexity 0.68

Functional Capacity Indices

	Total	Functional
Function 1 Support of Characteristic Wildlife Habitat	Functional	Capacity
V1 _{wetloss} + V2 _{barriers} + V3 _{buffer} + (2 x V9 _{veg})	Points	Index
0.75 + 0.70 + 0.66 + 1.36 + +	= 3.47 ÷ 5	= 0.69
Function 2 Support of Characteristic Fish/aquatic Habitat		
$(3 \times V4_{source}) + (2 \times V5_{dist}) + 2 \times V6_{outflow} + V8_{chem} + V7_{geom}$		
2.40 + 1.40 + 1.70 + 0.85 + 0.88 +	= 7.23 ÷ 9	= 0.80
Function 3 Flood Attenuation		
$V3_{buffer} + (2 \times V4_{source} + (2 \times V5_{dist}) + 2 \times V6_{outflow} + V7_{geom} + V9_{veg}$		
0.66 + 1.60 + 1.40 + 1.70 + 0.88 + 0.68	= 6.92 ÷ 9	= 0.77
Function 4 Short- and Long-term Water Storage		
$V4_{source}$ + $(2 \times V5_{dist})$ + $(2 \times V6_{outflow})$ $V7_{geom}$		
0.80 + 1.40 + 1.70 + 0.88 + +	= 4.78 ÷ 6	= 0.80
Function 5 Nutrient/Toxicant Removal		
$(2 \times V5_{dist}) + V8_{chem} + V7_{geom}$		
1.40 + 0.85 + 0.88 + + + +	= 3.13 ÷ 4	= 0.78
Function 6 Sediment Retention/Shoreline Stabilization		
$V3_{buffer}$ + (2 x $V7_{geo}$) + (2 x $V9_{veg}$)	- 	
0.66 + 1.76 + 1.36 + + + +	= 3.78 ÷ 5	= 0.76
Function 7 Production Export/Food Chain Support		
$V1_{wetloss}$ + 2 x V6 _{outflow} + V8 _{chem} + V7 _{geo} + (2 x V9 _{veg})		
0.75 + 1.70 + 0.85 + 0.88 + 1.36 +	= 5.54 ÷ 7	= 0.79
Sum of Individual FCI Scores 5.40		
Divide by the Number of Functions Scored ÷7		
Com	posite FCI Score	0.77