I-70 Mountain Corridor PEIS 2035 Transportation Analysis Technical Report

Reissued March 2011

This page intentionally left blank.

Table of Contents

Section 1. Introduction 1
Section 2. Mobility Evaluations 3
2.1 Overview of Mobility Evaluations 3
2.1.1 Travel Demand Model 3
2.2 Mobility Criteria and Comparison Process 7
Section 3. Travel Demand Comparisons 8
3.1 Ability to Accommodate the Projected 2035 Travel Demand 8
3.1.1 Comparisons of Annual Travel Demand 9
3.1.2 Comparisons of Selected Model Day Travel Demand 10
3.1.3 Role of Transit in the Corridor 14
3.1.4 Ability to Accommodate Travel Growth Beyond 2035 16
Section 4. Travel Time Comparisons 18
4.1 Development of Criteria 19
4.2 Highway Travel Time Comparisons 19
4.2.1 Corridor Summary: Selected Model Day Peak-Period Highway Travel Time 19
4.3 Transit Travel Time Comparison 22
4.3.1 Corridor Summary: Selected Model Day Peak-Period Transit Travel Time 22
Section 5. Congestion Comparison 24
5.1.1 Annual Hours of Congestion (LOS F) Comparisons 25
5.1.2 Peak Model Day Hours of Congestion (LOS F) Comparisons 28
Appendices
Appendix A: Detailed Transportation Statistics
List of Figures
Figure 1: I-70 Mountain Corridor in Colorado 2
Figure 2. Ability of Alternatives to Accommodate Annual Travel Demand Percent Travel Induced (+) or Suppressed (-) 9
Figure 3.Percent Transit Share 15
Figure 4. Year at Network Capacity by Alternative 16
Figure 5. Selected Model-Day, Peak-period Highway Travel Time (Westbound: C-470 to Glenwood Springs) 21
Figure 6. Selected Model Day, Peak-period Highway Travel Time (Eastbound: Glenwood Springs to C-470) 22
Figure 7. Selected Model-Day, Peak-period Transit Travel Time (Westbound: C-470 to Glenwood Springs) 23
Figure 8. Selected Model Day, Peak-period Transit Travel Time (Eastbound: Glenwood Springs to C-470) 24
List of Tables
Table 1. Study Segments and Focal Points 8
Table 2. Travel Demand for Selected Model Days - Highway and Transit Person Trips 11
Table 3. Selected Model Day Induced or Unmet Travel Demand 13
Table 4. Annual Hours of Congestion (LOS F) 27
Table 5. Selected Model Day Hours of Congestion (LOS F) 29

Section 1. Introduction

This Technical Report describes and quantifies the differences in mobility among alternatives, including the No Action Alternative. The 2035 analyses of travel demand, travel time, and congestion including criteria and comparative analyses of alternatives are discussed.

Documentation provided in this report provides technical support to Chapter 2 of the I-70 Mountain Corridor PEIS (CDOT, 2010).

As described in the PEIS, each Combination Alternative includes variations that construct the transit and preserve the six-lane highway footprint or construct the six-lane highway and preserve the transit footprint. For the alternatives evaluated in this Technical Report, the discussion of Combination alternatives almost always refers to the option to build highway and transit

Alternatives Evaluated in the Mobility Comparison

- No Action
- Minimal Action
- Rail with Intermountain Connection
- Advanced Guideway System
- Diesel Bus in Guideway
- Dual-Mode Bus in Guideway
- Six-lane Highway 55 mph
- Six-lane Highway 65 mph
- Reversible/HOV/HOT Lanes
- Combination Six-lane Highway with Rail and Intermountain Connection
- Combination Six-lane Highway with Advanced Guideway System (Preferred AlternativeMaximum Program)
- Combination Six-lane Highway with Dual-Mode Bus in Guideway
- Combination Six-lane Highway with Diesel Bus in Guideway
- Preferred Alternative-Minimum Program of Improvements simultaneously. Preservation alternatives are considered to be the same as their single-mode counterpart and, therefore, this report focuses on the alternatives listed in the box at right.

Figure 1 displays the I-70 Mountain Corridor.
The following sections summarize the mobility criteria and comparison process, followed by comparisons among alternatives.

Figure 1: 1-70 Mountain Corridor in Colorado

Section 2. Mobility Evaluations

2.1 Overview of Mobility Evaluations

The comparisons of each alternative are made with respect to the following factors:

- Accommodation of 2035 Baseline travel demand
- Accommodation of travel growth beyond 2035 (2050 Travel Demand)
- Travel time
- Hours of congestion

The mobility comparisons focus on distinguishing the differences among alternatives. All mobility data for travel performance analysis are derived from the I-70 PEIS travel demand model, which is summarized below.

2.1.1 Travel Demand Model

This section includes an overview of the travel demand model to provide background information for the mobility comparison discussions. For a comprehensive discussion of the model, see I-70 Mountain Corridor PEIS Travel Demand Technical Report.

The travel demand model encompasses the transportation network of central and western Colorado that includes I-70. The area is defined by Wyoming to the north, Pueblo to the south, Denver International Airport to the east, and Utah to the west. The model forecasts a set of days in 2000 (calibration days) for the current conditions, and a set of days in 2025. The 2025 demand is then factored by the ratio of socioeconomic data between 2025 and 2035 to produce the 2035 demands for the 2035 Baseline scenario and the project alternatives. Model days can then be extrapolated to an entire year to provide annualized forecasts.

The PEIS travel demand model includes a four-step model similar to those used for metropolitan transportation planning. Briefly, the four steps are:

1. Trip generation. This step establishes the total numbers of trips.
2. Trip distribution. This step links origins to destinations based on the relative distances of their locations.
3. Mode choice. This step determines the choices between auto and transit based on relative times and costs, and traveler preferences.
4. Trip assignment. The purpose of this is to determine the route location for the highway and also the boarding for the transit facility.
The following selected model days and seasons represent typical summer and winter weekend and weekdays in the comparative analyses:

- Summer Thursday represents a typical workday (of all seasons) in the Corridor.
- Summer Friday represents a mixture of weekday travel and recreation-related trips made at the beginning of the weekend. Friday trips were examined only for the western part of the Corridor, west of Vail.
- Winter Saturday represents primarily recreation travel, and contains a large proportion of day winter recreation use.
- Summer Sunday represents both single-day recreational travel and overnight recreation trips, and the time when the highest daily volumes generally occur in the Corridor. Volumes are

2035 Transportation Analysis Technical Report

particularly high on summer Sunday evenings, when both day recreation and overnight recreation participants return home.

For presentation purposes, Chapter 2 of the I-70 Mountain Corridor PEIS (CDOT, 2010) presented data for summer Thursday and summer Sunday as weekday and weekend, respectively. Appendix A provides data for all of the model days evaluated in the travel demand model.

Model Distinctions between 2035 Baseline Scenario and No Action Alternative

The 2035 Baseline scenario is the theoretical 2035 travel demand used for comparison. The No Action Alternative represents 2035 conditions with the implementation of only currently planned projects on the existing network. The distinctions between the 2035 Baseline scenario and No Action Alternative are described below.

2035 Baseline Scenario

The 2035 Baseline demand defines the project need described in Chapter 1 of the I-70 Mountain Corridor PEIS (CDOT, 2010). The 2035 Baseline is a scenario, not an alternative, and represents a theoretical travel demand that may or may not occur. To produce the 2035 Baseline demand, the 2025 projected demand is used as the starting point. The 2025 demand is then factored by the ratio of socioeconomic data between 2025 and 2035 to produce the 2035 demands. The reason for using this factored approach to 2035 demand rather than the typical four-step process (used to produce the 2025 demand) is that not all required data to use the four-step process for 2035 are available. Please refer to Appendix C of the I-70 Mountain Corridor PEIS Travel Demand Technical Report for the details on the development and assumptions for the 2035 demands.

Specific Applications of the Modeling Process

- The model is based primarily on two software applications: TransCAD and VISSIM. TransCAD uses a four-step model to assess a broad study area for demand and transit share by analyzing socioeconomic and recreation use data, transportation networks, and travel costs. One of the TransCAD outputs is an interchange-tointerchange vehicle demand matrix. The traffic simulator VISSIM uses this matrix to produce travel times, LOS, and congestion data.
- The PEIS travel model goes beyond typical metropolitan models by including a traffic simulation component, VISSIM. The traffic simulator provides more reliable estimates of congestion and queuing than the TransCAD model. It is based on more rigorous assumptions regarding driver behavior and the performance of various types of vehicles. The traffic simulator evaluates all alternatives to compare the vehicle performance within the Corridor. For example, the VISSIM model accounts for steep grades in the Corridor and the restrictions on the speeds of loaded freight vehicles, which may then interfere with the free movement of passenger vehicles. To the extent that congestion remains after the introduction of an alternative, the traffic simulator provides an estimate of the discrete measure of performance, by which to compare alternatives on a relative basis.
- At the high levels of demand and congestion that are typical of the I-70 Corridor, differences in travel performance of an alternative forecasted by the traffic simulator are often quite pronounced. This allows for better differentiation among alternatives within common modes, and between the different modes of alternatives.
- The PEIS travel demand model explicitly considers trip purposes included in most metropolitan models:
- Home-based work trips stratified by income
- Other Home-based trips
- Non-home-based trips
- Commercial vehicle trips
- Internal-external trips
- External-external trips
- The model also includes numerous distinct recreational trip purposes, as a basis for determining the effect of each alternative on Corridor travel patterns.

The estimation of future travel demand combines the future socioeconomic data and current travel propensities listed below:

1. Population and employment forecasts from the Colorado Department of Local Affairs and Corridor counties (see Appendix A of the I-70 Mountain Corridor PEIS Travel Demand Technical Report)
2. Recreation visitation forecasts from the U.S. Forest Service and Colorado Ski Country USA
3. Current (year 2000) propensities to travel, including trip-making rates, regardless of the traveler's tolerance to congestion
4. The existing transportation network, plus those projects approved and planned for implementation before 2035, as described in the No Action Alternative in Chapter 2 of the I-70 Mountain Corridor PEIS (CDOT, 2010).
5. The 2035 Baseline scenario does not assume any adjustment in travel choice. Therefore, it does not represent equilibrium between supply and demand, or consider choices that travelers may make in their travel plans in response to the adequacy or limitations on capacity.
The 2035 Baseline scenario is based on a theoretical assumption that travel demand in the Corridor will grow in line with socioeconomic projections without consideration for any travel limitations on I-70. In addition, the 2035 Baseline scenario assumes that the projected growth in traffic on I-70 will not influence the population and employment projections, or result in unmet travel demand. Unmet travel demand is described within the next page.

Consideration of the effect of the 2035 Baseline demand on the No Action transportation network produces 2035 Baseline travel performance. Essentially, the 2035 Baseline travel performance provides an indication of the demand for future travel, as well as a worst-case benchmark of future congestion, if that demand were to be satisfied on the future transportation system. This benchmark is used to measure the mobility benefits resulting from the changes to capacity inherent in each alternative.

The 2035 Baseline scenario was used to classify alternatives according to whether they would be able to meet the need for mobility forecast to the year 2035 and accommodate 2035 Baseline demand.

No Action Alternative

The No Action Alternative described in Chapter 2 of the I-70 Mountain Corridor PEIS (CDOT, 2010) includes previously committed or reasonably foreseeable transportation improvements in the Corridor regardless of which alternative is selected (including the No Action). As described previously, the 2035 Baseline scenario and the No Action Alternative are based on the same highway network. However, unlike the 2035 Baseline scenario, the No Action Alternative represents equilibrium between travelers' trip-making propensities and the resulting levels of congestion.
The Corridor is currently congested on many peak recreational season weekends, and unmet demand is assumed to be occurring (relative to years earlier than 2000). To produce the No Action forecast, the travel demand model-using the assumption that unmet demand will continue due to travelers’ intolerance to high levels of congestion-reduces trip generation rates from their year 2000 level until a tolerable level of congestion is reached. However, even with a reduction in trip generation rates from the 2035 Baseline projections, vehicle trips during the peak days on I-70 with the No Action Alternative are still projected to increase by approximately 30 percent to 150 percent at heavily congested locations with unmet demand between years 2000 and 2035. The 150 percent increases occur at Floyd Hill due to diversion of gaming traffic from U.S. 6 after construction of the Central City Parkway.

2035 Transportation Analysis Technical Report

Induced and Unmet Travel Demand and Development

Unmet and induced travel is a central factor in the analysis of travel performance by alternatives in the Corridor. Improved travel times associated with alternatives could encourage Corridor travelers to make trips they might otherwise forgo, resulting in additional trips beyond the 2035 Baseline forecasts-that is, to induce travel-and possibly induce land use growth in the Corridor. Conversely, with no changes made to I-70 (other than the projects included in the No Action Alternative), increased congestion is expected to result, as population and travel demand increase. This could cause some travelers to forgo trips, resulting in unmet demand.

Approach to Unmet Demand

Induced travel is estimated on an origin-to-destination basis using relationships determined from the I-70 Ridership Survey (see Appendix B, I-70 Ridership Survey, of the I-70 Mountain Corridor Travel Demand Technical Report), which:

- Described a hypothetical new transit system for the I-70 Corridor
- Asked respondents how many trips they currently make in the Corridor
- Asked how many additional trips (if any) they would make if the hypothetical transit system or additional travel lanes did exist

The responses to this survey provided a basis for determining total demand if congestion were not an issue on the I-70 corridor. Unmet demand is estimated by gradually reducing the number of trips for an alternative until a tolerable travel time results. An expert panel of Colorado Department of Transportation traffic engineers familiar with the Corridor provided their insights into how much congestion travelers might tolerate to characterize a reasonable travel time.

Evaluation of Demand

The variation in amounts, times, and reasons for travel that could result in inducing or suppressing travel from the 2035 Baseline scenario complicate the comparison of alternatives. A more traditional approach using a fixed level of demand shows that the alternative with the greatest capacity produces the fastest travel times. In the model used for this study, because demand is allowed to vary in response to seasonal demand and to congestion levels, each alternative is forecast to have a unique amount of demand.

As the capacity of alternatives increases from No Action, so does the demand. As a result, demand varies among the alternatives. An assumption that better travel times or fewer hours of congestion would be realized with the higher capacity alternatives would not necessarily be achieved. The additional demand (inducement) would also have the potential to consume part of the additional capacity. A worst-case approach was taken to convey the changes in travel time and congested hours and address the long-term I-70 travel demand.

Changes in travel demand in response to the increased capacity offered by each alternative (induced or suppressed) also influence resulting levels of congestion and travel time in the Corridor. For example, induced travel negates part of an alternative's travel time savings over the No Action Alternative. In addition, with an increased number of vehicles on the road due to changes to socioeconomic condition, travel times are not improved as much as they would be if travel demand remained constant at the No Action level. For this reason, the differences in travel times and other mobility measures for alternatives are not as great as if the same alternatives were tested with a single, fixed demand. In effect, people's propensity to take additional trips (induced travel) results in an increased burden relative to each alternative's ability to accommodate travel demand.

Induced travel and induced development may also have indirect and cumulative impacts on the community values and environmental sensitivity of the Corridor, as described in Chapter 4, Cumulative Impacts Analysis, of the I-70 Mountain Corridor PEIS (CDOT, 2010).

Section 3 of this document describes how induced and unmet travel demand are addressed and how travel demand is compared across alternatives

2.2 Mobility Criteria and Comparison Process

In recognition of the need for a short- and long-term sustainable transportation vision, the project analysis uses both a 2035 planning horizon and a 2050 long-term horizon. Data for the year 2035 are based on available projections from a variety of sources and provide the foundation for developing and evaluating alternatives. The 2035 planning horizon also provides a milestone allowing projections to 2050. The year 2050 provides a long-term horizon for developing solutions for the Corridor. The alternatives are developed and evaluated on a variety of performance measures that can be reliably established for 2035 and for their ability to meet travel demand in 2050. To account for the increasing variability of projecting into the future, the 2050 travel demand is estimated with a high-low range.

This project began in 2000. Information on characteristics of the Corridor in 2000 provided a complete snapshot of conditions, and this data set was used for calibration of the travel demand model. Furthermore, the 2000 data set provides a base year for comparison purposes to future year scenarios. This data set includes a large amount of travel and socio-economic data, including the 2000 US Census, the I-70 User Survey, and the I-70 ridership survey conducted by the project.

2000 remains a valid base year for comparison purposes of this Tier 1 document since no major changes have taken place in the 144 -mile Corridor that notably alter the snapshot of Corridor conditions provided in 2000. There have been no major or minor I-70 infrastructure improvements since 2000, and travel patterns, types, and needs of Corridor users have not changed substantially.

The following mobility criteria are applied for comparisons among alternatives:

- Travel Demand
- Ability to Accommodate 2035 Baseline Travel Demand—This involves a comparison of the ability of alternatives to accommodate 2035 Baseline travel demands on an annual basis and for selected model days.
- Ability to Accommodate Travel Demand Beyond 2035 (2050 Vision Travel Demand) This addresses the ability of each alternative to accommodate the forecasted 2035 Baseline demand and the year in which an alternative might reach its ultimate capacity.
- Travel Time-Travel time comparisons are based on peak-period travel times for selected model days. Both highway and transit travel times are evaluated Highway travel time is a common indicator of the performance of each alternative. Comparisons are presented for each alternative for the entire Corridor. Transit travel times are provided as an indication of the performance of the transit systems.
- Hours of Congestion (LOS F)—A comparison of the duration of congestion at focal points is made among the alternatives on an annual and peak day basis.

Within discussions for each criterion, alternatives are first summarized for the Corridor and are then examined within specific geographic segments or focal points within the Corridor. These study segments and focal points-of which there are ten in the 144-mile Corridor-are given in Table 1. Five representative focal points were chosen for the discussion in Chapter 1 of the I-70 Mountain Corridor PEIS (CDOT, 2010). Similarly, in Chapter 2 of the I-70 Mountain Corridor PEIS (CDOT, 2010), travel
time and congestion were presented for two larger segments (Glenwood Springs to Silverthorne and Silverthorne to C-470) to provide a simpler, but still meaningful, comparison. In the discussion of unmet demand in Chapter 2 of the I-70 Mountain Corridor PEIS (CDOT, 2010), annual volumes at the 10 focal points were averaged to provide a single overall number. In the discussion that follows, figures summarize data on a corridorwide basis, and comparative tables provide the related thresholds for travel demand performance and data for each alternative

Table 1. Study Segments and Focal Points

Segment Number	Western End of Segment	Eastern End of Segment	Focal Point
1	Glenwood Springs	Eagle/Garfield County Line	No Name Tunnels
2	Eagle/Garfield County Line	Edwards	East of Eagle
3	Edwards	Vail East Entrance	Dowd Canyon
4	Vail East Entrance	Copper Mountain	Approaches to Vail Pass
5	Copper Mountain	Silverthorne	West of Silverthorne
6	Silverthorne	Loveland Pass Interchange	Approaches to EJMT
7	Loveland Pass Interchange	Downieville	East of Empire
8	Downieville	Hidden Valley	Twin Tunnels
9	Hidden Valley	Beaver Brook	Floyd Hill
10	Beaver Brook	C-470	East of Genesee

Section 3. Travel Demand Comparisons

Travel demand comparisons provide the basis to measure the ability of alternatives to meet the underlying need of the project [as described in Chapter 1 of the I-70 Mountain Corridor PEIS (CDOT, 2010)], as follows:

Alternatives that meet the need:

- Would accommodate the projected 2035 travel demand for the Corridor.
- Could also address the continued growth beyond 2035 (2050 travel demands).

Alternatives are compared for their ability to accommodate 2035 travel demand based on annual travel demand and daily travel demand on selected model days. An alternative resulting in suppressed demand does not accommodate travel growth through 2035 and, therefore, does not meet the project need. Alternatives that meet 2035 demands are assessed for their additional capacity and years available to support growth beyond 2035. Alternatives that are determined to meet capacity in or after 2050 are best able to meet the Travel Demand portion of the projects Purpose and Need.

3.1 Ability to Accommodate the Projected 2035 Travel Demand

This section provides comparison of alternatives based on:

- Annual travel demand
- Selected model day travel demand

3.1.1 Comparisons of Annual Travel Demand

Figure 2 present the ability of alternatives to accommodate average annual travel demand. This analysis identifies the expected amount of trip suppression or inducement, by each alternative, in comparison to the 2035 Baseline. To present a corridorwide view, an average of total travel demand in person trips of all 10 focal points, for both eastbound and westbound, is used. If the average travel demand for an alternative is greater than the 2035 Baseline demand, the alternative is considered to be inducing the travel demand, resulting in induced trips. If the alternative has an average travel demand less than the 2035 Baseline demand, it is considered to be suppressing the travel demand, resulting in unmet trips.

Figure 2. Ability of Alternatives to Accommodate Annual Travel Demand Percent Travel Induced (+) or Suppressed (-)

The categories for the ability to accommodate average annual travel demands are:

- 2035 Baseline demand or greater- 0 percent or more (induced trips)
- Less than 2035 Baseline demand-less than 0 percent (unmet trips)

Only two categories are shown for this comparative analysis, because an alternative that accommodates the 2035 Baseline demand (and no more) would meet this need criterion, just as an alternative with excess capacity to induce demand does. All of the Action Alternatives (Transit, Highway, and Combination alternatives) are shown to accommodate 2035 Baseline demand on an annual basis and fall into the "meets 2035 Baseline demand or greater" category, while the Minimal Action and No Action alternatives do not accommodate 2035 Baseline demand and fall in the "less than 2035 Baseline" category.

Alternatives rank in the following order, from worst-performing to best-performing for their ability to accommodate 2035 Baseline demand (measured in terms of annual person trips averaged over all 10 focal points):

- The No Action and Minimal Action alternatives suppress trips at a rate of 5 percent and 3 percent, respectively, and do not meet the underlying need to accommodate 2035 Baseline demand.
- Each Highway Alternative induces trips over 2035 Baseline demand by about 1 percent more person trips.
- The Transit-only alternatives induce more trips than the Highway alternatives. Advanced Guideway System and Rail with Intermountain Connection alternatives induce slightly more travel than the Bus in Guideway alternatives (4 percent versus 3 percent).
- The Preferred Alternative-Minimum Program induces slightly more than the Transit-only alternatives at 6 percent. There is no major difference between the 55 mph and 65 mph options with regard to the level of inducement.
- The Combination alternatives, including the Preferred Alternative-Maximum Program, induce the greatest increase in trip making (11 to 12 percent).

3.1.2 Comparisons of Selected Model Day Travel Demand

A comparison of alternatives based on daily travel demand on selected model days and locations is illustrated on Table 2. Selected model day peak-hour person trips are shown at three key focal points:

- Dowd Canyon-Summer Friday (reflecting activity in Eagle County)
- West of Silverthorne-Summer Sunday and winter Saturday (reflecting activity in Summit County)
- Twin Tunnels-Summer Sunday and winter Saturday (reflecting activity in Clear Creek County, Grand County, and the Denver metropolitan area)

Table 3 shows the level of suppressed or induced demand for selected peak days at these three focal points. Table 3 shows that 6 of the 15 studied alternatives (including the no-action alternative) induce demand at all locations and modeled days. These 6 alternatives are; 6-Lane Highway with Rail \& IMC, 6-Lane Highway with AGS, 6-Lane Highway with Dual-Mode Bus in Guideway, 6-Lane Highway with Diesel Bus Guideway, the Preferred Alternative-Minimum Program and Preferred Alternative Maximum Program.

Only the no-action alternative suppresses demand for all time periods and locations. The minimal action alternative suppresses demand in all locations and time periods studied except westbound at the twin tunnels on summer Thursdays. The other alternatives vary in their impact on demand.

Table 2. Travel Demand for Selected Model Days - Highway and Transit Person Trips

Scenario or Alternative	Winter Saturday				Summer Friday			
	$\begin{gathered} \text { WB Person } \\ \text { Trips } \\ \text { at Twin Tunnels } \end{gathered}$		WB Person Trips at West of Silverthorne		WB Person Trips at Dowd Canyon		EB Person Trips at Dowd Canyon	
2000	59,600	H	44,800	H	40,200	H	38,900	H
	400	T	500	T	200	T	400	T
2035 Baseline	115,100	H	74,700	H	88,100	H	85,300	H
	1,400	T	1,300	T	900	T	1,300	T
No Action Alternative	83,500	H	60,800	H	80,100	H	80,100	H
	1,400	T	1,300	T	900	T	1,300	T
Minimal Action Alternative	84,500	H	62,700	H	79,700	H	79,400	H
	8,400	T	3,600	T	2,400	T	1,900	T
Rail with IMC	83,700	H	57,500	H	79,400	H	77,900	H
	28,500	T	22,800	T	7,900	T	8,000	T
Advanced Guideway System (AGS)	83,800	H	54,900	H	79,300	H	78,000	H
	33,900	T	24,700	T	8,200	T	8,400	T
Dual-Mode Bus in Guideway	82,600	H	55,800	H	79,200	H	78,400	H
	33,800	T	21,600	T	4,900	T	5,200	T
Diesel Bus in Guideway	82,800	H	57,500	H	79,200	H	79,200	H
	32,900	T	19,900	T	4,100	T	4,400	T
6-Lane Highway 55 mph	115,900	H	75,200	H	87,700	H	84,900	H
	1,400	T	1,300	T	900	T	1,300	T
6-Lane Highway 65 mph	115,900	H	75,200	H	87,700	H	84,900	H
	1,400	T	1,300	T	900	T	1,300	T
Reversible HOV/HOT Lanes	116,100	H	77,700	H	87,200	H	84,900	H
	1,300	T	1,300	T	900	T	1,300	T
6-Lane Highway with Rail \& IMC	113,000	H	71,000	H	84,700	H	77,900	H
	32,400	T	24,800	T	8,200	T	8,000	T
6-Lane Highway with AGS	111,500	H	69,400	H	84,400	H	78,000	H
	36,500	T	27,000	T	8,600	T	8,400	T
6-Lane Highway with Dual-Mode Bus in Guideway	111,700	H	69,700	H	86,000	H	78,400	H
	34,500	T	24,300	T	6,000	T	5,200	T
6-Lane Highway with Diesel Bus Guideway	112,900	H	71,200	H	86,500	H	79,200	H
	33,000	T	22,500	T	5,200	T	4,400	T
Preferred Alternative-Minimum Program (55 or 65 mph)	92,200	H	58,300	H	85,000	H	82,400	H
	34,400	T	25,000	T	8,700	T	8,700	T
Preferred Alternative-Maximum Program (55 or 65 mph)	111,500	H	69,400	H	84,400	H	78,000	H
	36,500	T	27,000	T	8,600	T	8,400	T

Note: Person trips followed by an " H " are highway person trips, while those followed by a " T " are transit person trips.

Table 2. Travel Demand for Selected Model Days - Highway and Transit Person Trips (Continued)

Scenario or Alternative	Summer Sunday				Summer Thursday			
	EB Person Trips at West of Silverthorne		EB Person Trips at Twin Tunnels		WB Person Trips at Twin Tunnels		WB Person Trips at West of Silverthorne	
2000	61,000	H	88,000	H	39,000	H	38,000	H
	200	T	100	T	10	T	70	T
2035 Baseline	110,500	H	140,500	H	65,800	H	71,800	H
	700	T	1,400	T	200	T	200	T
No Action Alternative	94,800	H	110,100	H	63,300	H	65,100	H
	700	T	1,400	T	200	T	200	T
Minimal Action Alternative	97,200	H	110,400	H	65,500	H	65,200	H
	3,000	T	4,200	T	1,400	T	1,300	T
Rail with IMC	92,400	H	110,900	H	61,300	H	63,500	H
	16,500	T	21,700	T	8,000	T	7,500	T
Advanced Guideway System (AGS)	91,800	H	112,700	H	61,500	H	62,700	H
	17,000	T	23,600	T	8,200	T	8,800	T
Dual-Mode Bus in Guideway	94,500	H	112,400	H	63,500	H	65,000	H
	16,200	T	19,800	T	6,700	T	5,900	T
Diesel Bus in Guideway	94,400	H	112,300	H	63,100	H	65,300	H
	16,200	T	19,200	T	6,600	T	5,700	T
6-Lane Highway 55 mph	116,700	H	150,700	H	68,000	H	71,100	H
	700	T	1,400	T	200	T	200	T
6-Lane Highway 65 mph	116,700	H	150,700	H	68,000	H	71,100	H
	700	T	1,400	T	200	T	200	T
Reversible HOV/HOT Lanes	116,600	H	149,300	H	67,800	H	71,100	H
	700	T	1,400	T	200	T	200	T
6-Lane Highway with Rail \& IMC	111,300	H	114,700	H	65,200	H	67,900	H
	17,800	T	23,000	T	8,500	T	8,200	T
6-Lane Highway with AGS	111,800	H	145,300	H	64,500	H	67,000	H
	18,000	T	24,700	T	9,100	T	9,600	T
6-Lane Highway with Dual-Mode Bus in Guideway	112,400	H	145,400	H	65,900	H	69,800	H
	17,000	T	23,200	T	7,000	T	6,800	T
6-Lane Highway with Diesel Bus Guideway	112,600	H	146,600	H	67,300	H	70,500	H
	16,200	T	20,100	T	6,900	T	5,800	T
Preferred Alternative-Minimum Program (55 or 65 mph)	95,000	H	109,700	H	63,000	H	63,600	H
	17,000	T	27,500	T	8,600	T	9,100	T
Preferred Alternative-Maximum Program (55 or 65 mph)	111,800	H	145,300	H	64,500	H	67,000	H
	18,000	T	24,700	T	9,100	T	9,600	T

Note: Person trips followed by an " H " are highway person trips, while those followed by a " T " are transit person trips.

Table 3. Selected Model Day Induced or Unmet Travel Demand

| Scenario or Alternative | Winter Saturday | | |
| :--- | :---: | :---: | :---: | :---: |

Weekday Travel Demand

Two focal points, Twin Tunnels and West of Silverthorne, are examined for weekday travel demand. While examining weekend travel demand gives an overview of how I-70 might behave under heavy volumes, summer Thursday demand forecasts provide an indication of more everyday travel patternswhen Work and Local Non-Work trips make up most of the traffic, rather than recreational trips. Weekday travel has a greater percentage of local trips. Between 2000 and 2035, the population of Clear Creek County is projected to increase by about 70 percent, and the Summit County by about 130 percent. Clear Creek County employment is projected to increase by about 94 percent during the 35 years, and Summit County employment is forecast to increase by about 130 percent.

Westbound summer Thursday travel at the Twin Tunnels grows at about the same rate as Clear Creek County employment. The 2035 Baseline demand of about 66,000 person trips is projected to be about 70 percent more than the 2000 level. Under different alternatives, the growth in westbound summer Thursday person trips at the Twin Tunnels ranges from about 63 percent with No Action to about 89 percent under the Combination Six-lane Highway with Advanced Guideway System "build simultaneously" Alternative (Preferred Alternative-Maximum Program). By comparison, the growth in westbound winter Saturday person trips from 2000 to the 2035 Baseline is about 198 percent here, more than the growth of summer Thursday person trips seen under any alternative.

The summer Thursday growth in westbound person trips at West of Silverthorne is slightly greater than that at the Twin Tunnels, but well below the growth in Summit County population or employment. The 2035 Baseline demand of about 71,800 person trips westbound is about 88 percent greater than the 2000 volume. Growth here under various alternatives ranges from 70 percent (No Action) to 100 percent (Combination Six-lane Highway with Advanced Guideway System "build simultaneously," Preferred Alternative-Maximum Program). The Transit alternatives and the Highway alternatives accommodate slightly under the amount of westbound person trips here as the 2035 Baseline.

Although trip suppression occurs westbound on summer Thursday for these two focal points under No Action, there is hardly any trip suppression eastbound. This result suggests that the suppressed trips are likely some of the few recreational trips heading from the Front Range to Corridor communities to get an early start on the weekend.

3.1.3 Role of Transit in the Corridor

Table 2 provided the number of highway and transit person trips in the Corridor for each alternative. Figure 3 provides a more graphic comparison of the role that transit would play in the Corridor under each alternative. It illustrates the transit share of daily person trips at selected locations that is projected for each alternative, based on travel demand for selected model days.

For winter Saturday westbound at the Twin Tunnels, illustrating the weekend winter recreation traffic heading to the mountains from the Front Range, the greatest transit share is projected for the Dual-Mode Bus in Guideway, followed closely by the Advanced Guideway System and the Diesel Bus in Guideway, each at about a 29 percent share. The Rail with Intermountain Connection Alternative carries about a 26 percent transit share, and the Combination alternatives are projected to have a 22 to 29 percent transit share. Transit share under the Highway alternatives is even less, about 1 percent, than that projected for Minimal Action (9 percent) or No Action (2 percent). The transit share for the Preferred AlternativeMaximum Program is at about 29 percent at the Twin Tunnels for winter Saturday westbound, and at about 27 percent for the Minimum Program.

Compared to the Twin Tunnels, the winter Saturday westbound transit shares at West of Silverthorne is slightly higher, with different alternatives having the greatest transit share. Here, the Advanced Guideway System alternative has the greatest share, about 31 percent of westbound person trips. The

Preferred Alternative-Minimum Program has the second greatest share, about 30 percent. The DualMode Bus in Guideway Alternative carries about 28 percent of westbound person trips at West of Silverthorne on transit. The Rail with Intermountain Connection Alternative also has a 28 percent transit share, along with the Combination Six-lane Highway with Advanced Guideway System Alternative (the Preferred Alternative-Maximum Program). The Combination Six-lane Highway with Dual-Mode Bus in Guideway Alternative, the Diesel Bus in Guideway Alternative, and the Combination Six-lane Highway with Rail and Intermountain Connection Alternative have a transit share of 26 percent. The Combination Six-lane Highway with Diesel Bus in Guideway Alternative has a transit share of 24 percent. The Minimal Action Alternative results in about 5 percent of person trips on transit here. Summit Stage and other existing services get a mode share of just over 2 percent under No Action, and just under 2 percent with the Highway alternatives.

Figure 3.Percent Transit Share

For summer Sunday eastbound at the Twin Tunnels, the greatest transit share, about 20 percent, is projected for the Preferred Alternative-Minimum Program, followed by the Advanced Guideway System Alternative at about 18 percent. The Rail with Intermountain Connection Alternative has a transit share of about 17 percent for the summer Sunday eastbound at the Twin Tunnels. The Dual-Mode Bus in Guideway Alternative has a transit share of about 15 percent; the Diesel Bus in Guideway alternative, 14 percent, and the Preferred Alternative-Maximum Program, also about 14 percent. All the other Combination alternatives have a transit share ranging from 12 to 14 percent. Minimal Action, with its bus in mixed traffic component, has almost a 4 percent share. Transit shares for the Highway alternatives and No Action are 1 percent or less.

West of Silverthorne, the Advanced Guideway System Alternative has the greatest transit share among summer Sunday eastbound person trips at about 16 percent. The Rail with Intermountain Connection Alternative, along with Dual-Mode or Diesel Bus in Guideway alternatives, and the Preferred Alternative-Minimum Program all have a transit share of about 15 percent. All the Combination alternatives, along with the Preferred Alternative-Maximum Program, have a transit share ranging between 13 and 14 percent. Finally, the Minimal Action Alternative results in a 3 percent transit share, while No Action and the three Highway alternatives each attracts just under 1 percent of person trips to transit.

For summer Friday westbound travel at Dowd Canyon, reflecting the peak travel times on the western side of the Corridor, the Advanced Guideway System and the Preferred Alternative-Maximum and Minimum Programs have a transit share of about 9 percent. The Rail with Intermountain Connection and Combination alternatives involving Rail with Intermountain Connection each has about an 8 percent transit share. Combination Six-lane Highway with Dual-Mode and Diesel Bus in Guideway alternatives have the next highest transit share of 6 to 7 percent. The standalone Bus in Guideway alternatives have about a 5 to 6 percent transit share. Minimal Action has about a 3 percent transit share, and the Highway alternatives and No Action have the same amount: just under 1 percent.

3.1.4 Ability to Accommodate Travel Growth Beyond 2035

The ability of an alternative to address the continued growth in travel demand beyond 2035 is measured based on the year in which network capacity of the proposed transportation system is reached. Figure 4 provides the results of the analysis and comparisons of alternatives' ability to accommodate travel growth beyond 2035.

Figure 4. Year at Network Capacity by Alternative

The assessment of amount of demand accommodated by alternatives and the year in which the Corridor reaches its network capacity provides two different measures of the same distribution. The amount of demand accommodated is assessed for all alternatives at a given year: 2035. The year in which the Corridor reaches its network capacity is determined at a given level of demand (equal to the alternative's capacity) to find how many years an alternative might accommodate expected travel growth. This analysis measures capacity separately for the eastern part of the Corridor-eastbound from Silverthorne to C-470 on a summer Sunday-and the western part of the Corridor-westbound from Silverthorne to the Eagle/Garfield County Line on a summer Friday.

For the comparisons that follow, the years in which an alternative reaches its capacity are presented, based on a current trend, assuming that:

- Traffic growth that occurs between 2025 and 2035 continues into the future
- The summer Sunday movement from west of the Continental Divide east to the Front Range puts the most pressure on network capacity in the eastern part of the Corridor
- The summer Friday movement westbound from Silverthorne to the Eagle/Garfield County Line puts the most pressure on network capacity in the western part of the Corridor. Glenwood Canyon is not included in the analysis for the western part of the Corridor because little congestion is anticipated there
The forecast of the year the Corridor reaches capacity under the different alternatives is based on assuming no change in vehicle occupancy, transit share, or tolerance to congestion after 2035. Note that under these assumptions, any alternative not able to accommodate the 2035 Baseline demand-that is, any alternative with unmet demand-is considered to have reached its network capacity before 2035.

Network capacity thresholds are as follows:

- Short-term capacity (meets capacity before 2025)
- Intermediate-term capacity (meets capacity between 2025 and 2045)
- Long-term capacity (meets capacity at 2050)

Comparisons for the Western Part of the Corridor

In the western part of the Corridor, the alternatives range from accommodating demand until between 2025 and 2050. The following is the ranking of alternatives from those with the least network capacity (reaching capacity in the earliest year) to those with the greatest network capacity.

- The No Action and Minimal Action alternatives reach network capacity in 2025.
- The Transit alternatives reach network capacity in 2030, with congestion being most pronounced in Dowd Canyon and other urbanizing areas of Eagle County.
- The Highway alternatives, which include six-lane widening in Dowd Canyon and auxiliary lanes on the west side of Vail Pass, reach network capacity in the western part of the Corridor in 2040.
- The Combination alternatives and the Preferred Alternative reach capacity in 2050, representing the greatest network capacity and meeting the 2050 Vision. Note that all the improvements associated with bringing the Preferred Alternative-Minimum Program to the Preferred Alternative-Maximum Program occur in the eastern part of the Corridor. Accordingly, the Minimum and Maximum Programs both reach capacity in the western part of the Corridor in the same year.

Comparisons for the Eastern Part of the Corridor

The following is the ranking of alternatives for the year in which demand in the eastern part of the Corridor reaches I-70's network capacity, ordered from worst-performing to best-performing:

2035 Transportation Analysis Technical Report

- With no improvements to I-70, the Corridor has reached capacity in 2010 under the No Action Alternative. The Minimal Action Alternative reaches capacity in 2015. These alternatives reach network capacity in the eastern part of the Corridor sooner than the western part because the eastern part of the Corridor is relatively more congested.
- The Transit alternatives and the Preferred Alternative-Minimum Program accommodate travel demand to about 2030, resulting in intermediate-term capacity for the Corridor.
- The Highway alternatives accommodate travel demand until reaching network capacity in 2035.
- The Combination "build simultaneously" alternatives, including the Preferred AlternativeMaximum Program, accommodate the expected travel growth until 2050, providing the longestterm capacity.

Section 4. Travel Time Comparisons

Travel time provides a common measure for comparing the performance of alternatives. This section provides peak-period highway and transit travel time comparisons for selected model days for alternatives.

For Transit alternatives (Rail with Intermountain Connection, Advanced Guideway System, Dual-Mode and Diesel Bus in Guideway, and the Combination Six-lane Highway with Transit alternatives), the highway travel times demonstrate the positives and negatives that result from overall growth in traffic, but fewer trips on the existing and, in some cases, widened highway occur due to the introduction of transit into the Corridor.

The lead agencies selected the following model days to provide continuity in the comparison of peak-period travel times for alternatives:

- In the eastern part of the Corridor, from Copper Mountain to C-470(or Jefferson Station for transit comparisons):
- Winter Saturday—westbound
- Summer Sunday-eastbound
- For the western part of the Corridor, from Glenwood Springs to Copper Mountain:
- Summer Friday—eastbound and westbound

The lead agencies selected the winter Saturday and summer Sunday model days to evaluate the performance of alternatives from Copper Mountain (milepost 195) to C-470 (milepost 260), where weekend recreation trips dominate the travel demand. The summer Friday model day was selected to evaluate the performance of alternatives west of Copper Mountain, where Work trips and Local NonWork trips dominate the travel demand.

Abstract

Highway versus Transit Travel Time Highway travel times are a major input factor to the mode choice module in the I-70 travel demand model, which determines the mode choice in a multimodal transportation system. If the highway travel time for a total trip is greater than the transit travel time for the same origin and destination, then the likelihood of taking transit increases. Otherwise, the opposite occurs. The model can reach a balance between various modes of transportation. Therefore, highway travel time comparisons provide a complete travel time performance for a multimodal environment. Corridorwide Highway travel time is calculated for travel between two points on I-70, given the improvements of the specific alternative, whether it is a Highway, Transit, or Combination alternative. (Note that for the Transit alternatives, about 70 percent or more people, depending on day and location, are forecast to travel by auto.)

Corridorwide Transit travel time is the amount of time expected for travel on the transit system in the case of Transit and Combination alternatives. Calculations include a number of factors that can affect travel times, including the demand on a particular day or the grade of the terrain in a particular direction.

The following sections include descriptions of the development of criteria, thresholds for the travel time comparisons, and highway and transit travel time comparisons.

4.1 Development of Criteria

The initial step in the travel time analysis was to calculate highway and transit travel times within the 10 study segments described in I-70 Mountain Corridor PEIS Travel Demand Technical Report and listed in Table 1 of this Technical Report. Appendix A provides the selected model day peak-period travel times for each alternative for each of the 10 segments.

The second step calculated travel times across the Corridor by adding the travel times from the 10 segments.

The comparison of alternatives reports travel time in minutes; however, thresholds for travel time are defined based on the average speed of travel through the corridor. Average speed was established as the measure for travel time, because it is a common performance measure for any alternative, regardless of length or mode of transportation. The lead agencies adopted a minimum speed of 50 mph for the "shortest" travel time threshold. The lead agencies selected this 50 mph speed threshold because it is the lowest current speed limit within the Corridor, occurring at Glenwood Canyon. The threshold between intermediate travel time and longest travel time was set at 30 mph because this average speed reflects considerable queuing within a segment. The same thresholds are used for highway and transit travel times to facilitate comparison of different modes on an equal basis.

In summary, travel time thresholds for both highway and transit travel are based on the following speeds:

Calculation of Travel Time Measures
Selected model day peak-period travel time (includes peak direction) indicates the changes to travel time for a particular alternative on the model days examined. This measure of travel time represents the time projected in either the eastbound or westbound direction, and for model days with typically heavy demand. Appendix A provides travel times in each direction. The selected model day peakperiod travel time is representative of typical peak travel conditions. Unusual events, such as additional holiday demand or reductions in roadway capacity caused by incidents or severe weather (although these are factors), are not reflected in the computations.
The peak day for one segment may not be the same as the peak day for another segment in the Corridor, nor will it be the same as the selected model day for corridorwide results. As such, the peak-day travel times for each segment are not additive. The peak day for the Corridor as a whole will not be the peak day for every segment within it.

- Longest travel time (represented by speeds at less than 30 mph)
- Intermediate travel time (represented by speeds at 30 mph to 50 mph)
- Shortest travel time (represented by speeds at greater than 50 mph)

4.2 Highway Travel Time Comparisons

The following discussions provide a comparison of highway travel times for selected model days during the peak-period.

4.2.1 Corridor Summary: Selected Model Day Peak-Period Highway Travel Time

Corridorwide highway travel times for the peak period of travel for the selected peak model days are calculated by adding the travel time of a selected day (summer Friday) between Glenwood Springs and Copper Mountain to the travel time of a peak day (winter Saturday or summer Sunday) for the eastern
part of the Corridor between Copper Mountain and C-470. Different model days are selected for the eastern part of the Corridor to reflect peak recreational travel and seasonal differences. Westbound, winter Saturday experiences a spike of travel demand in the morning as Front Range residents head to the Corridor for recreation. Eastbound volumes are highest on summer Sunday, when several adjacent afternoon and evening hours see heavy volumes composed of day recreation and overnight recreation travelers returning to homes in the Front Range.

Since travel times from different model days are added together for two halves of the Corridor, these selected model day peak-period travel times do not reflect the experience of someone traveling the length of the Corridor at once. However, these composite measures are still useful, as they give a worst-case estimate of travel in the Corridor, and allow consistent comparison of alternatives under the most critical conditions.

Figure 5 (westbound) and Figure 6 (eastbound) illustrate the differences in the corridorwide highway travel time performance of the alternatives under these peak demand conditions for the selected model days. Longest travel time threshold (less than 30 mph) corresponds to travel times of 288 minutes or more (144 miles of entire corridor divided by 30 mph). Intermediate travel time threshold (30 to 50 mph) corresponds to travel times between 173 minutes and 288 minutes. Shortest travel time threshold corresponds to travel times of less than 173 minutes.

Alternative westbound travel times for the length of the Corridor (C-470 to Glenwood Springs) range from 211 minutes with the Combination Six-lane Highway with Advanced Guideway System "build simultaneously" Alternative to 328 minutes with the No Action Alternative. Figure 5 shows the travel times under each alternative compared to the 2035 Baseline benchmark time of 577 minutes. The 2035 Baseline travel time falls in the longest travel time range for peak-period travel time for winter Saturday (C-470 to Copper Mountain) and summer Friday (Copper Mountain to Glenwood Springs). As shown on Figure 5, for travel from C-470 to Glenwood Springs, No Action, Minimal Action and all of the transit alternatives fall within the longest range of westbound travel time. All of the highway and combination alternatives fall within intermediate range.

Figure 5. Selected Model-Day, Peak-period Highway Travel Time (Westbound: C-470 to Glenwood Springs)

Alternative eastbound travel times for the length of the Corridor (Glenwood Springs to C-470) range from 205 minutes with the Combination Six-lane Highway with Advanced Guideway System "build simultaneously" Alternative to 359 minutes with the No Action Alternative. Figure 6 shows the travel times under each alternative compared to the 2035 Baseline benchmark time of 834 minutes, or 13.9 hours. The 2035 Baseline travel time falls in the longest travel time range for peak-period travel time for summer Friday (Glenwood Springs to Copper Mountain) and summer Sunday (Copper Mountain to C470). The 2035 Baseline eastbound travel time (834 minutes) is about 41 percent more than the 2035 Baseline westbound travel time (577 minutes). As shown on Figure 6, for travel from Glenwood Springs to C-470, No Action, Minimal Action and all of the transit alternatives fall within the longest range of eastbound travel time. All of the highway and combination alternatives fall within intermediate range.

Figure 6. Selected Model Day, Peak-period Highway Travel Time (Eastbound: Glenwood Springs to C-470)

4.3 Transit Travel Time Comparison

The following discussions provide a comparison of transit travel times for selected model days during the peak-period.

4.3.1 Corridor Summary: Selected Model Day Peak-Period Transit Travel Time

Similar to highway travel times discussed in Section 4.2, corridor wide transit travel times for the peak period of travel for the selected peak model days are calculated by adding the travel time of a selected day (summer Friday) between Glenwood Springs and Copper Mountain to the travel time of a peak day (winter Saturday or summer Sunday) for the eastern part of the Corridor between Copper Mountain and C-470 (Jefferson Station). Figure 7 (westbound) and Figure 8 (eastbound) illustrate the differences in the corridorwide transit travel time performance of the alternatives offering transit systems under these peak demand conditions for the selected model days. The same thresholds for highway travel times are used for transit travel times.

As shown on Figure 7, transit travel times from Jefferson Station to Glenwood Springs range from just under 3 hours with the Preferred Alternative (both minimum and maximum programs) to 3 hours and

25 minutes with the Diesel Bus in Guideway Alternative. All of the alternatives fall within the intermediate range of travel time.

Figure 7. Selected Model-Day, Peak-period Transit Travel Time (Westbound: C-470 to Glenwood Springs)

Figure 8. Selected Model Day, Peak-period Transit Travel Time (Eastbound: Glenwood Springs to C-470)

As shown on Figure 8, transit travel times from Glenwood Springs to Jefferson Station range from just under 3 hours with the Advanced Guideway System and Preferred Alternatives (both minimum and maximum programs) to 3 hours and 32 minutes with the Rail with Intermountain Connection Alternative. All of the eastbound alternatives fall within the intermediate range of travel time also.Eastbound travel times are not much different than westbound travel times because all the Transit and Combination alternatives provide a dedicated guideway between Eagle Airport and Jefferson Station. Further, there is little congestion in the Corridor west of Eagle Airport, where transit riders would be on a bus in mixed traffic.

Section 5. Congestion Comparison

This section provides comparisons of alternatives based on both annual hours of congestion and peakday hours of congestion, which are calculated at the 10 focal points selected to represent levels of congestion in the Corridor. Each focal point is described in the I-70 Mountain Corridor PEIS Travel Demand Technical Report and listed in Table 1 of this Technical Report. "Hours of congestion" is a measure of the ability of each alternative to accommodate the levels of travel demand.

Congestion is defined as traffic that operates at a level of service (LOS) of "F," or stop-and-go traffic.
Annual hours of congestion comparisons quantify the peak hours throughout the entire year, while peakday hours of congestion provide a measure of the ability of alternatives to accommodate travel demand
projected for summer and winter recreation trips. Winter Saturday was chosen to examine the westbound key focal points from Genesee to Vail Pass, since this day currently experiences noticeable queuing and slowing, such as at the Floyd Hill lane drop and at Georgetown Hill. For the eastbound focal points from Vail Pass to Genesee, volumes on Summer Sunday are heavy for several hours at a time, as Denver metropolitan area residents return from recreation in the Corridor. Summer Friday is the peak day in either direction for East of Eagle, Dowd Canyon, and Vail Pass. The no Name Tunnels focal point can accommodate the 2035 Baseline travel demand without congestion, hence is not included in the comparisons.

For the annual hours of congestion at a location, "365 hours per year" was selected as the threshold for the greatest category because it represents the point at which congestion (LOS F, or stop-and-go traffic) could occur for a substantial period, for example, 6 hours or greater per day during 40 to 60 peak days of the year. The 365 -hour threshold was used to define the problematic areas discussed in the I-70 Mountain Corridor PEIS Travel Demand Technical Report.

A lower threshold of 120 hours per year was selected to distinguish intermediate congestion from least congestion because that quantity of congestion corresponds to 60 peak days (about the current number of weekends with congestion) having 2 hours of congestion each.

To summarize, congestion thresholds are as follows:

- Least hours of congestion (119 hours or less per year)
- Intermediate hours of congestion (120 to 364 hours per year)
- Greatest hours of congestion (365 or more hours per year)
The following sections provide a summary of annual and selected model day hours of congestion respectively.

How Congestion is Calculated

Hours of congestion are calculated on a daily directional basis and on an annual basis.
Alternatives with a higher number of congestion hours during a year are considered to be functioning worse in traffic operation than alternatives with a lower number of congestion hours. The annual congestion hours and demands were determined from the daily directional level and reported as annual totals. A congested hour is defined as one in which the traffic is expected to operate under stop-and-go conditions-that is, LOS F. Congestion hours and "percent of annual hours under congestion" are reported for 10 focal points per alternative in Appendix A.

Changes in peak-day level of service (LOS) and travel time (minutes per vehicle trip eastbound or westbound) are determinants of how well an alternative is functioning under the peak demand of that alternative for specific model days. This mobility comparison shows each alternative's travel time and LOS for representative segments of the Corridor.

5.1.1 Annual Hours of Congestion (LOS F) Comparisons

Table 4 provides a summary of annual hours of congestion for both westbound and eastbound directions.

Westbound Direction

As shown in Table 4, the 2035 Baseline Scenario falls within the greatest hours of congestion range at all focal points except for West of Silverthorne and East of Eagle. In the westbound direction, West of Silverthorne experiences no congestion for any of the alternatives. Below is a summary of westbound annual hours of congestion for all alternatives:

- While the No Action and Minimal Action alternatives result in a reduction in annual hours of congestion from 2035 Baseline, they do not accommodate the 2035 Baseline travel demand. However, interchange improvements and auxiliary lanes in the Minimal Action Alternative

2035 Transportation Analysis Technical Report

improve local capacity in the Corridor and the ability to accommodate 2035 Baseline travel demand over the No Action Alternative.

- For transit-only alternatives congestion at the greatest and intermediate ranges occur at Genesee, Top of Floyd Hill, Twin Tunnels, East of Empire Junction, Eisenhower-Johnson Memorial Tunnels, Vail Pass and Dowd Canyon focal points. Transit-only alternatives experience no congestion at the remaining focal points.
- The Six-lane Highway (55 mph or 65 mph) alternatives result in congested travel conditions at Genesee and Top of Floyd Hill, where congestion remains at the greatest range. At Twin Tunnels, East of Empire Junction and Eisenhower-Johnson Memorial Tunnels, the Six-Lane Highway alternatives operate at intermediate hours of congestion, while experiencing no congestion at the remaining focal points.
- The Reversible/HOV/HOT Lanes Alternative operates in greatest hours of congestion range at Genesee, Top of Floyd Hill and Eisenhower-Johnson Memorial Tunnels and intermediate hours of congestion range at Twin Tunnels and East of Empire Junction. The Reversible/HOV/HOT Lanes Alternative experience no congestion at the remaining focal points.
- The Combination alternatives including the Preferred Alternative - Maximum Program operate in greatest hours of congestion range at Genesee and Top of Floyd Hill; intermediate hours of congestion range at Eisenhower-Johnson Memorial Tunnels and least hours of congestion at East of Empire Junction. The Combination alternatives experience no congestion at the remaining focal points.
- The Preferred Alternative - Minimum Program Alternative operates in greatest hours of congestion range at Genesee, Top of Floyd Hill, Twin Tunnels and Eisenhower-Johnson Memorial Tunnels; intermediate hours of congestion range at East of Empire Junction, and least hours of congestion range at East of Eagle. The Preferred Alternative - Minimum Program Alternative experience no congestion at the remaining focal points.
- In general, Genesee and Top of Floyd Hill experience the most annual hours of congestion in the westbound direction.

Eastbound Direction

As shown in Table 4, in the eastbound direction, the 2035 Baseline Scenario falls within the greatest hours of congestion range at all focal points except for Top of Floyd Hill and Genesee. Below is a summary of eastbound annual hours of congestion for all alternatives:

- While the No Action and Minimal Action alternatives result in a reduction in annual hours of congestion from 2035 Baseline (except for at Dowd Canyon), they do not accommodate the 2035 Baseline travel demand.

Table 4. Annual Hours of Congestion (LOS F)
2

Scenario or Alternative	Westbound Annual Hours of Congestion								
	Genesee	Top of Floyd Hill	Twin Tunnels	East of Empire Junction	EJMT	West of Silverthorne	Vail Pass	Dowd Canyon	East of Eagle
2035 Baseline	3,426	2,796	1,223	1,059	1,732	0	723	2,632	189
No Action Alternative	2,340	862	417	475	1,447	0	237	2,069	148
Preferred Alternative - Minimum Program (55 or 65 mph)	2,589	2,437	712	153	578	0	0	0	65
Minimal Action Alternative	3,115	1,700	689	314	1,243	0	483	2,321	74
Rail with Intermountain Connect (IMC)	3,700	2,458	983	169	1,122	0	729	2,684	0
Advanced Guideway System (AGS)	3,891	2,538	961	153	1,038	0	729	2,572	0
Dual-Mode Bus in Guideway	3,978	2,753	1,260	252	1,299	0	729	3,708	0
Diesel Bus in Guideway	3,935	2,700	1,206	237	1,306	0	729	3,824	0
Six-Lane Highway (55 or 65 mph)	1,156	2,877	333	125	198	0	0	0	0
Reversible / HOV / HOT Lanes	1,607	837	125	168	476	0	0	0	0
Combination Six-Lane Highway with Rail and IMC	1,180	2,772	246	84	130	0	0	0	0
Combination Six-Lane Highway with AGS	1,097	2,638	229	76	117	0	0	0	0
Combination Six-Lane Highway with Dual-Mode Bus in Guideway	1,161	2,807	278	98	155	0	0	0	0
Combination Six-Lane Highway with Diesel Bus in Guideway	1,187	2,863	295	106	172	0	0	0	0
Preferred Alternative - Maximum Program (55 or 65 mph)	1,097	2,638	229	76	117	0	0	0	0

Scenario or Alternative	Eastbound Annual Hours of Congestion								
	East of Eagle	Dowd Canyon	Vail Pass	West of Silverthorne	EJMT	East of Empire Junction	Twin Tunnels	Top of Floyd Hill	Genesee
2035 Baseline	589	1,688	429	2,093	2,133	1,676	2,059	287	335
No Action Alternative	334	1,873	31	109	970	1,368	2,531	0	142
Preferred Alternative - Minimum Program (55 or 65 mph)	109	298	0	51	174	495	206	93	93
Minimal Action Alternative	334	1,873	28	80	720	959	1,479	72	157
Rail with Intermountain Connect (IMC)	1,325	207	27	56	515	612	471	137	161
Advanced Guideway System (AGS)	1,325	197	25	51	470	549	428	144	171
Dual-Mode Bus in Guideway	1,325	302	29	69	632	679	522	172	186
Diesel Bus in Guideway	1,325	313	30	70	631	673	516	167	182
Six-Lane Highway (55 or 65 mph)	82	379	0	181	253	114	592	1,021	606
Reversible / HOV / HOT Lanes	82	379	0	184	201	79	856	958	608
Combination Six-Lane Highway with Rail and IMC	82	379	0	128	161	75	320	885	523
Combination Six-Lane Highway with AGS	82	379	0	128	148	68	279	848	502
Combination Six-Lane Highway with Dual-Mode Bus in Guideway	82	379	0	128	186	83	380	959	584
Combination Six-Lane Highway with Diesel Bus in Guideway	82	379	0	128	204	89	423	975	591
Preferred Alternative - Maximum Program (55 or 65 mph)	82	379	0	128	148	68	279	848	502

- The Transit-only alternatives operate in the greatest range of annual hours at East of Eagle, Eisenhower-Johnson Memorial Tunnels, East of Empire Junction, and Twin Tunnels; the intermediate range of annual hours of congestion at Dowd Canyon, Top of Floyd Hill and Genesee; and least hours of congestion at Vail Pass and West of Silverthorne.
- The Six-lane Highway (55 mph or 65 mph) alternatives result in congested travel conditions at Dowd Canyon, Twin Tunnels, Top of Floyd Hill and Genesee, where congestion remains at the greatest range. At the remaining focal points, the Six-lane Highway alternatives operate at intermediate or least hours of congestion.
- The Reversible/HOV/HOT Lanes Alternative operates in greatest hours of congestion range at Dowd Canyon, Twin Tunnels, Top of Floyd Hill and Genesee; intermediate hours of congestion range at West of Silverthorne and Eisenhower-Johnson Memorial Tunnels; and least hours of congestion at the remaining focal points.
- The Combination alternatives including the Preferred Alternative - Maximum Program operate in greatest hours of congestion range at Dowd Canyon, Genesee and Top of Floyd Hill; intermediate hours of congestion range at West of Silverthorne and Eisenhower-Johnson Memorial Tunnels and least hours of congestion at East of Eagle, Vail Pass and East of Empire Junction. At Twin Tunnels, the Combination Alternatives operate at either intermediate or greatest hours of congestion.
- The Preferred Alternative-Minimum Program Alternative operates in greatest hours of congestion range at East of Empire Junction; intermediate hours of congestion range at Dowd Canyon, Eisenhower-Johnson Memorial Tunnels and Twin Tunnels, and least hours of congestion range at the remaining focal points.

5.1.2 Peak Model Day Hours of Congestion (LOS F) Comparisons

Table 5 provides a summary of peak model day hours of congestion for both westbound and eastbound directions.

Westbound Direction

As described earlier, peak model day for westbound direction is Winter Saturday for focal points east of Vail Pass; and Summer Friday for focal points west of Vail Pass including Vail Pass. Below is a summary of westbound peak model day hours of congestion for all alternatives by each focal point:

- On Winter Saturday at Genesee, the Transit alternatives experience most congestion followed by Combination (including Preferred Alternative-Maximum Program), Highway, Minimal Action and No Action alternatives. The Preferred Alternative-Minimum Program is not expected to experience congestion. Travel conditions under this package of improvements benefits from having the westbound auxiliary lane from Morrison to Chief Hosa, without having the greater traffic levels experienced with the Highway and Combination alternatives.
- On Winter Saturday at Top of Floyd Hill, Combination (including Preferred AlternativeMaximum Program) and Highway alternatives experience most congestion followed by No Action, Preferred Alternative-Minimum Program and Minimal Action alternatives. Because winter Saturday trips are suppressed, the Transit alternatives are not forecast to have any westbound hours of congestion at the Top of Floyd Hill.
- On Winter Saturday at Twin Tunnels, Preferred Alternative-Minimum Program has the most hours of congestion because of queuing from the lane drop at Exit 241 (East Idaho Springs). No Action and the Minimal Action alternatives have the second most hours of congestion while the remaining alternatives are not expected to have any hours of congestion.

Table 5. Selected Model Day Hours of Congestion (LOS F)

Scenario or Alternative	Winter Saturday Hours of Congestion (LOS F) WESTBOUND					
	$\begin{aligned} & \text { Genesee } \\ & \text { (mp 254) } \end{aligned}$	Top of Floyd Hill (mp 246)	Twin Tunnels (mp 242)	East of Empire Junction (mp 233)	$\begin{aligned} & \text { EJMT } \\ & \text { (mp 214) } \end{aligned}$	West of Silverthorne (mp 204)
2035 Baseline	16	17	3	4	0	0
No Action Atermative	3	4	3	4	1	0
Minimal Action Alternative	12	2	1.5	4	1	0
Rail with IMC	14	0	0	4	0	0
Advance Guideway System (AGS)	14	0	0	4	0	0
Dual-Mode Bus in Guideway	14	0	0	4	0	0
Diesel Bus in Guideway	14	0	0	4	0	0
Six-Lane Highway (55 or 65 mph)	13	13	0	2	3	0
Reversible HOV/HOT Lanes	13	13	0	2	3	0
Combination Six-Lane Highway with Rail \& IMC	13	13	0	2	3	0
Combination Six-Lane Highway with AGS	13	13	0	2	3	0
Combination Six-Lane Highway with Dual-Mode Bus in Guideway	13	13	0	2	3	0
Combination Six-Lane Highway with Diesel Bus Guideway	13	13	0	2	3	0
Preferred Alternative - Minimum Program (55 or 65 mph)	0	3	4	4	0	0
Preferred Alternative - Maximum Program (55 or 65 mph)	13	13	0	2	3	0
Scenario or Alternative	Summer Friday Hours of Congestion (LOS F) WESTBOUND		astion (LOS F) East of Eagle (mp 147)	Summer Friday East of Eagle (mp 147)	Hours of Cong EASTBOUND Dowd Canyon (mp 172)	stion (LOS F) Vail Pass (mp 190)
2035 Baseline	0	11	1	7	7	1
No Action Alternative	0	10	0	1	2	0
Minimal Action Alternative	0	10.5	0	2	2	0
Rail with IMC	0	11	0	3	2	0
Advance Guideway System (AGS)	0	11	0	3	2	0
Dual-Mode Bus in Guideway	0	16	0	3	3	0
Diesel Bus in Guideway	0	16	0	3	3	0
Six-Lane Highway (55 or 65 mph)	0	0	0	0	0	0
Reversible HOV/HOT Lanes	0	0	0	0	0	0
Combination Six-Lane Highway with Rail \& IMC	0	0	0	0	0	0
Combination Six-Lane Highway with AGS	0	0	1	0	0	0
Combination Six-Lane Highway with Dual-Mode Bus in Guideway	0	0	0	0	0	0
Combination Six-Lane Highway with Diesel Bus Guideway	0	0	0	0	0	0
Preferred Alternative - Minimum Program (55 or 65 mph)	0	0	1	0	0	0
Preferred Alternative - Maximum Program (55 or 65 mph)	0	0	1	0	0	0
	Summer Sunday Hours of Congestion (LOS F) EASTBOUND					
Scenario or Alternative	$\begin{aligned} & \text { West of } \\ & \text { Silverthome } \\ & \text { (mp 204) } \end{aligned}$	$\begin{gathered} \text { EJMT } \\ (\mathrm{mp} 214) \end{gathered}$	East of Empire Junction (mp 233)	$\begin{gathered} \text { Twin Tunnels } \\ (\mathrm{mp} 242) \\ \hline \end{gathered}$	Top of Floyd	Genesee (mp 254)
2035 Baseline	10	10	12	$\frac{(m p ~ 242)}{13}$	0	(mp 254)
No Action Alternative	10	10	12	10		0
Minimal Action Alternative	5	9	10	10	0	0
Rail with IMC	0		12	10	0	0
Advance Guideway System (AGS)	0	8	13	10	0	0
Dual-Mode Bus in Guideway	0	8	13	10	0	0
Diesel Bus in Guideway	0	8	13	10	0	0
Six-Lane Highway (55 or 65 mph)	0	0	0	8	11	0
Reversible HOV/HOT Lanes	0	0	0	10	11	0
Combination Six-Lane Highway with Rail \& IMC	0	0	0	8	11	0
Combination Six-Lane Highway with AGS	0	0	0	8	11	0
Combination Six-Lane Highway with Dual-Mode Bus in Guideway	0	0	1	8	11	0
Combination Six-Lane Highway with Diesel Bus Guideway	0	1	1	8	11	0
Preferred Alternative - Minimum Program (55 or 65 mph)	0	8	12	9	11	0
Preferred Alternative - Maximum Program (55 or 65 mph)	0	0		8		0

- On Winter Saturday at East of Empire Junction, the No Action, Minimal Action, Preferred Alternative-Minimum Program and Transit, alternatives all have the same amount of congestion (4 hours) followed by the remaining alternatives (2 hours).
- On Winter Saturday at Eisenhower-Johnson Memorial Tunnels, the 2035 Baseline scenario is projected to result in no congestion due to the metering of traffic upstream. Highway and Combination (including Preferred Alternative-Maximum Program) alternatives are projected to experience most hours of congestion followed by the No Action and Minimal Action alternatives. The remaining alternatives are not expected to have any congestion.
- No hours of congestion are projected to occur on Winter Saturday at West of Silverthorne under the 2035 Baseline scenario or any alternative.
- No hours of congestion are projected to occur on Summer Friday at Vail Pass under the 2035 Baseline scenario or any alternative.
- On Summer Friday at Dowd Canyon, the two Bus in Guideway alternatives (either power source) are the most congested followed by the other two transit alternatives. Minimal Action and No Action alternatives are the next most congested while the remaining alternatives are not projected to experience any congestion.
- On Summer Friday at East of Eagle, only one hour of localized congestion is projected to occur under Combination Six-Lane Highway with Advanced Guideway Alternative and Preferred Alternative (both Minimum and Maximum Program). No congestion is expected for the remaining alternatives.

Eastbound Direction

As described earlier, peak model day for eastbound direction is Summer Sunday for focal points east of Vail Pass; and Summer Friday for focal points west of Vail Pass including Vail Pass. Below is a summary of eastbound peak model day hours of congestion for all alternatives by each focal point:

- On Summer Friday at East of Eagle, transit alternatives are the most congested followed by Minimal Action and No Action alternatives. No congestion is expected for the remaining alternatives.
- On Summer Friday at Dowd Canyon, the two Bus in Guideway alternatives experience the most congestion followed by the No Action, Minimal Action, Rail with Intermountain Connection, and Advanced Guideway System alternatives. No congestion is expected for the remaining alternatives.
- None of the alternatives are expected to experience any congestion at Vail Pass on Summer Friday.
- On Summer Sunday at West of Silverthorne, No Action Alternative experience the most hours of congestion followed by Minimal Action Alternative. The remaining alternatives are not expected to have any congestion.
- On Summer Sunday at Eisenhower-Johnson Memorial Tunnels, the No Action Alternative is projected to have the most hours of congestion followed by the Minimal Action, Transit and Preferred Alternative-Minimum Program. The Combination Six-Lane Highway with Diesel Bus alternative is expected to experience LOS F conditions for only one hour while remaining alternatives are expected to experience no congestion.
- On Summer Sunday at East of Empire Junction, the Transit alternatives have the greatest duration of congestion followed by Preferred Alternative-Minimum Program, Minimal Action, No Action and Combination Six-Lane with Bus alternatives. The remaining alternatives are not expected to have any congestion.
- On Summer Sunday at Twin Tunnels, The No Action, Minimal Action, Transit and the Reversible/HOV/HOT Lanes alternatives are expected to experience most hours of congestion closely followed by the remaining alternatives.
- On Summer Sunday at Top of Floyd, Highway and Combination alternatives (including Preferred Alternative-Maximum Program) are expected to experience same amount of congestion (11 hours) while the remaining alternatives have no hours of congestion due to the metering of traffic upstream at Twin Tunnels.
- On Summer Sunday at Genesee, no hours of congestion are expected for the 2035 Baseline scenario or any of the alternatives. For the alternatives other than the Highway and Combination alternatives, this situation results primarily due to the metering of traffic at Twin Tunnels, which ensures that the traffic volume that reached Genesee is less than the capacity. However, for the Highway and Combination alternatives (including the Preferred Alternative-Maximum Program), the traffic is metered at Floyd Hill instead, resulting in similar uncongested conditions at Genesee.

Appendix A: Detailed Transportation Statistics

Appendix A provides the complete data reports for tables referenced in the document. The reports included are:

- I-70 PEIS 2035 Travel Demand Estimates. This table provides the estimated daily travel demand at the 10 focal points.
- Highway Travel Times. This table provides the Highway travel time by 10 segments.
- Transit Travel Times. This table provides the Transit travel time by 10 segments.
- Annual hours of LOS F WB. This table provides the annual hours at LOS F at 10 Focal points for the westbound direction of travel.
- Annual hours of LOS F EB. This table provides the annual hours at LOS F at 10 Focal points for the eastbound direction of travel.
These results were used to identify transportation related measures of effectiveness and compare alternative performance. The data were prepared in 2004 and reviewed for consistency with current (2010) conditions. The data remain valid as the overall travel patterns in the corridor have not changed.

Appendix A: Detailed Transportation Statistics

Appendix A provides the complete data reports for tables referenced in the document. The reports included are:

- I-70 PEIS 2035 Travel Demand Estimates. This table provides the estimated daily travel demand at the 10 focal points.
- Highway Travel Times. This table provides the Highway travel time by 10 segments.
- Transit Travel Times. This table provides the Transit travel time by 10 segments.
- Annual hours of LOS F WB. This table provides the annual hours at LOS F at 10 Focal points for the westbound direction of travel.
- Annual hours of LOS F EB. This table provides the annual hours at LOS F at 10 Focal points for the eastbound direction of travel.
These results were used to identify transportation related measures of effectiveness and compare alternative performance. The data were prepared in 2004 and reviewed for consistency with current (2010) conditions. The data remain valid as the overall travel patterns in the corridor have not changed.

This page intentionally left blank.

I-70 PEIS 2035 Travel Demand Estimates

Winter Saturday e/o Genesee	2000 Hwy. Vehicle	$\begin{array}{\|c\|} \hline 2000 \text { Hwy. } \\ \text { Person Trips } \end{array}$	WB 2035 Highway	$\begin{aligned} & \hline \text { EB } 2035 \\ & \text { Highway } \end{aligned}$	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{gathered} \text { \% Growth } \\ 2000 \text { to } 2035 \end{gathered}$	Avg. \% $\text { Growth in } \mathrm{VT}$	2035 WB Highway	2035 EB Highway	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{array}{c\|} \hline 2035 \text { WB } \\ \text { Transit } \end{array}$	$\begin{gathered} \hline 2035 \text { EB } \\ \text { Transit } \end{gathered}$	$\begin{aligned} & \hline 2035 \\ & \text { Transit } \end{aligned}$	$\begin{gathered} 2035 \mathrm{WB} \\ \text { Total } \end{gathered}$	$\begin{gathered} 2035 \text { EB } \\ \text { Total } \end{gathered}$	2035 Total	Transit as \% of Total	Trip Suppression/ Inducement	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	62,300	125,000	78,350	71,848	150,198	141\%	2.5\%	173,368	159,173	332,541	1,347	1,598	2,945	-174,715	160,771	335,486	1\%		
No Action			58,233	67,752	125,985	102\%	2.0\%	128,205	149,655	277,860	1,420	1,553	2,973	129,624	151,208	280,833	1\%	54,6	-16\%
Minimal Action			58,412	66,947	125,359	101\%	2.0\%										\#DIV/0!	335,486)	-100\%
Rail with IMC			8,540	66,387	124,927	101\%	2.0\%	130,630	147,712	278,342	37,917	27,607	65,524	168,547	175,319	343,866	19\%	8,380	2\%
AGS			58,961	66,733	125,695	102\%	2.0\%	132,029	149,002	281,031	43,104	31,383	74,487	175,133	180,385	355,518	21\%	20,032	6\%
Dual-Mode Bus (DMB)			58,839	67,689	126,527	103\%	2.0\%	129,436	149,394	278,830	40,519	33,300	73,819	169,955	182,694	352,649	21\%	17,163	5\%
Diesel Bus			58,769	67,874	126,643	103\%	2.0\%	130,253	150,928	281,181	40,195	33,033	73,228	170,448	183,961	354,409	21\%	18,924	6\%
6-Lane Highway			75,286	72,057	147,343	137\%	2.5\%	165,598	159,011	324,608	1,352	1,605	2,957	166,950	160,615	327,565	1\%	921)	
Reversible Lane			75,399	72,608	148,007	138\%	2.5\%	165,766	160,150	325,916	1,334	1,583	2,917	167,100	161,733	328,833	1\%	(6,653)	-2\%
Combination 6-Lane Highway \& Rail with IMC			74,838	68,940	143,778	131\%	2.4\%	166,727	154,065	320,791	39,235	26,972	66,207	205,961	181,037	386,998	17\%	51,513	15\%
Combination 6-Lane Highway \& AGS			74,167	65,327	139,494	124\%	2.3\%	165,594	146,307	311,901	48,703	25,634	74,338	214,297	171,941	386,238	19\%	50,752	15\%
Combination 6-Lane Highway \& DMB			74,152	68,032	142,184	128\%	2.4\%	163,576	150,583	314,159	39,879	32,910	72,789	203,455	183,493	386,948	19\%	51,462	15\%
Combination 6-Lane Highway \& Diesel Bus			74,283	68,161	142,444	129\%	2.4\%	164,239	151,207	315,446	39,919	32,690	72,610	204,159	183,897	388,056	19\%	52,570	16\%
Minimum Program			60,078	66,028	126,106	102\%	2.0\%	134,573	148,086	282,659	43,104	31,383	74,487	177,677	179,469	357,146	21\%	21,661	6\%
Winter Saturday at Floyd Hill	2000 Hwy. Vehicle	2000 Hwy. Person Trips	WB 2035 Highway	EB 2035 Highway	2035 Highway	\% Growth 2000 to 2035	$\begin{gathered} \text { Avg. \% } \\ \text { Growth in VT } \end{gathered}$	2035 WB Highway	2035 EB Highway	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	2035 WB Transit	2035 EB Transit	$\begin{aligned} & \hline 2035 \\ & \text { Transit } \end{aligned}$	2035 WB Total	2035 EB Total	2035 Total	Transit as \% of Total	Trip Sup Induc	ssion/ ent
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	49,300	95,000	76,707	69,618	146,325	197\%	3.2\%	166,965	151,553	318,518	1,353	1,608	2,961	168,318	153,161	321,479	1\%		
No Action			56,908	64,738	121,646	147\%	2.6\%	123,723	140,815	264,538	1,414	1,557	2,971	125,137	142,372	267,509	1\%	53,970)	179
Minimal Action			57,512	64,178	121,690	147\%	2.6\%										\#DIV/0!	(321,479)	100\%
Rail with IMC			57,401	63,126	120,526	144\%	2.6\%	125,471	137,937	263,408	37,123	26,920	64,044	162,594	164,858	327,452	20\%	5,973	2\%
AGS			57,550	62,397	119,947	143\%	2.6\%	126,221	136,805	263,026	42,433	30,771	73,205	168,655	167,576	336,231	22\%	14,752	5\%
Dual-Mode Bus (DMB)			57,543	64,246	121,789	147\%	2.6\%	124,617	139,197	263,814	39,944	32,651	72,595	164,561	171,848	336,409	22\%	14,930	5\%
Diesel Bus			57,521	63,947	121,469	146\%	2.6\%	125,423	139,497	264,920	39,536	32,317	71,853	164,959	171,814	336,773	21\%	15,294	5\%
6-Lane Highway			74,437	69,708	144,145	192\%	3.1\%	161,720	151,520	313,239	1,365	1,623	2,988	163,085	153,143	316,228	1\%	5,251)	
Reversible Lane			74,625	70,249	144,874	194\%	3.1\%	162,023	152,597	314,621	1,336	1,588	2,924	163,359	154,186	317,544	1\%	(3,935)	-1\%
Combination 6-Lane Highway \& Rail with IMC			73,851	66,905	140,756	186\%	3.0\%	161,654	146,510	308,165	38,935	26,334	65,269	200,589	172,845	373,434	17\%	51,955	16\%
Combination 6-Lane Highway \& AGS			72,927	63,875	136,802	177\%	3.0\%	159,796	140,012	299,808	48,592	24,981	73,574	208,388	164,994	373,382	20\%	51,903	16\%
Combination 6-Lane Highway \& DMB			73,698	65,861	139,559	183\%	3.0\%	159,964	143,021	302,985	39,490	32,446	71,936	199,454	175,467	374,921	19\%	53,442	17\%
Combination 6-Lane Highway \& Diesel Bus			73,836	65,985	139,820	184\%	3.0\%	160,723	143,700	304,423	39,251	32,093	71,344	199,973	175,793	375,767	19\%	54,288	17\%
Minimum Program			61,660	62,267	123,927	151\%	2.7\%	131,321	136,616	267,936	42,433	30,771	73,205	173,754	167,387	341,141	21\%	19,662	6\%
Winter Saturday at Twin Tunnels		2000 Hwy.																	
Wmer Saurday al Twin Tumels	Vehicle	Person Trips	Highway	Highway	Highway	2000 to 2035	Growth in VT	Highway	Highway	Highway	Transit	Transit	Transit	Total	Total	2035 Total	\% of Total	Induc	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	57,000	109,800	53,992	45,400	99,392	74\%	1.6\%	115,126	96,828	211,954	1,250	1,526	2,776	116,376	98,354	214,730	1\%		
No Action			39,189	37,784	76,973	35\%	0.9\%	83,474	80,544	164,018	1,251	1,527	2,777	84,724	82,070	166,795	2\%	(47,935)	
Minimal Action			39,305	38,786	78,090	37\%	0.9\%										\#DIV/0!	(214,730)	-100\%
Rail with IMC			39,530	37,174	76,704	35\%	0.9\%	83,663	78,661	162,324	28,614	23,150	51,765	112,277	101,811	214,088	24\%	(642)	0\%
AGS			39,486	32,532	72,019	26\%	0.7\%	83,790	69,019	152,809	34,077	27,570	61,647	117,867	96,589	214,455	29\%	(275)	0\%
Dual-Mode Bus (DMB)			39,544	33,725	73,269	29\%	0.7\%	82,566	70,458	153,024	33,781	27,658	61,439	116,347	98,116	214,463	29\%	(267)	0\%
Diesel Bus			39,542	34,264	73,805	29\%	0.7\%	82,785	71,778	154,562	32,888	26,926	59,814	115,673	98,704	214,377	28\%	(354)	0\%
6-Lane Highway			54,479	46,577	101,056	77\%	1.6\%	115,917	99,177	215,094	1,438	1,454	2,892	117,355	100,631	217,985	1\%	3,255	2\%
Reversible Lane			54,652	46,970	101,622	78\%	1.7\%	116,090	99,848	215,938	1,335	1,349	2,684	117,425	101,198	218,623	1\%	3,893	2\%
Combination 6-Lane Highway \& Rail with IMC			53,358	43,568	96,926	70\%	1.5\%	113,026	92,323	205,349	32,381	23,761	56,142	145,408	116,083	261,491	21\%	46,761	22\%
Combination 6-Lane Highway \& AGS			52,799	43,114	95,912	68\%	1.5\%	111,500	91,074	202,574	36,536	27,431	63,967	148,036	118,505	266,541	24\%	51,811	24\%
Combination 6-Lane Highway \& DMB			53,645	43,796	97,441	71\%	1.5\%	111,721	91,268	202,989	34,526	28,308	62,834	146,247	119,576	265,823	24\%	51,093	24\%
Combination 6-Lane Highway \& Diesel Bus			53,902	44,006	97,908	72\%	1.6\%	112,873	92,212	205,085	33,019	26,979	59,998	145,892	119,191	265,083	23\%	50,353	23\%
Minimum Program			46,574	35,765	82,339	44\%	1.1\%	92,195	75,076	167,272	34,447	26,952	61,399	126,643	102,028	228,671	27\%	13,941	6\%

I-70 PEIS 2035 Travel Demand Estimates

Winter Saturday e/o Empire Jct	2000 Hwy.	2000 Hwy. Person Trips	WB 2035 Highway	$\begin{aligned} & \hline \text { EB } 2035 \\ & \text { Highway } \end{aligned}$	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{array}{c\|} \text { \% Growth } \\ 2000 \text { to } 2035 \end{array}$	$\begin{gathered} \text { Avg. \% } \\ \text { Growth in VT } \end{gathered}$	$\begin{aligned} & \hline 2035 \text { WB } \\ & \text { Highway } \end{aligned}$	2035 EB Highway	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{aligned} & \hline 2035 \text { WB } \\ & \text { Transit } \end{aligned}$	$\begin{gathered} \hline 2035 \text { EB } \\ \text { Transit } \end{gathered}$	$\begin{gathered} \hline 2035 \\ \text { Transit } \end{gathered}$	$\begin{gathered} 2035 \mathrm{WB} \\ \text { Total } \end{gathered}$	$\begin{gathered} 2035 \text { EB } \\ \text { Total } \end{gathered}$	2035 Total	Transit as	Trip Suppression/Inducement	
Alternative	Trips (VT)	(PT)	VT			VT	per Yr.	PT			PT	PT	PT	PT				PT Diff.	\% Diff.
Baseline	49,600	95,600	51,428	43,500	94,928	91\%	1.9\%	108,752	91,941	200,693	1,232	1,516	2,748	109,984	93,457	203,441	1\%		
No Action			37,237	36,833	74,070	49\%	1.2\%	78,788	77,864	156,652	1,316	1,435	2,751	80,104	79,298	159,402	2\%	(44,039)	22\%
Minimal Action			37,575	36,855	74,430	50\%	1.2\%										\#DIV/0!	203,441)	100\%
Rail with IMC			37,648	35,088	72,736	47\%	1.1\%	78,656	73,448	152,104	27,963	22,833	50,796	106,619	96,281	202,900	25\%	541)	0%
AGS			37,549	31,045	68,594	38\%	0.9\%	78,651	65,152	143,803	32,958	26,912	59,870	111,609	92,064	203,673	29\%	232	0\%
Dual-Mode Bus (DMB)			37,614	32,399	70,013	41\%	1.0\%	77,774	66,905	144,680	32,391	26,840	59,232	110,166	93,745	203,911	29\%	471	0\%
Diesel Bus			37,566	32,795	70,361	42\%	1.0\%	77,902	67,919	145,821	31,373	25,996	57,368	109,275	93,915	203,189	28\%	(252)	0\%
6-Lane Highway			50,886	44,473	95,359	92\%	1.9\%	107,542	93,904	201,446	1,417	1,431	2,848	108,959	95,335	204,294	1\%	853	0\%
Reversible Lane			51,391	45,009	96,400	94\%	1.9\%	108,423	94,873	203,296	1,327	1,340	2,666	109,749	96,213	205,963	1\%	2,522	1\%
Combination 6-Lane Highway \& Rail with IMC			50,348	41,636	91,983	85\%	1.8\%	105,568	87,158	192,727	31,465	23,733	55,199	137,034	110,892	247,926	22\%	44,485	22\%
Combination 6-Lane Highway \& AGS			49,783	41,176	90,959	83\%	1.7\%	103,979	85,853	189,831	35,417	27,107	62,523	139,395	112,960	252,355	25\%	48,914	24\%
Combination 6-Lane Highway \& DMB			50,703	41,900	92,603	87\%	1.8\%	104,571	86,309	190,880	33,410	27,749	61,159	137,982	114,058	252,039	24\%	48,598	24\%
Combination 6-Lane Highway \& Diesel Bus			51,001	42,144	93,145	88\%	1.8\%	105,815	87,334	193,149	31,840	26,355	58,195	137,655	113,688	251,344	23\%	47,903	24\%
Minimum Program			40,756	33,651	74,407	50\%	1.2\%	84,282	70,383	154,665	33,485	26,229	59,714	117,768	96,612	214,379	28\%	10,938	5\%
Winter Saturday at EJMT	2000 Hwy	2000 Hwy	WB 2035	EB 2035	2035	\% Growth		2035 WB	2035 EB		2035 WB	2035 EB		2035 WB	2035 EB		Transit as	Trip Sup	
Wmer Saurday ar EJM	Vehicle	Person Trips	Highway	Highway	Highway	2000 to 2035	Growth in VT	Highway	Highway	Highway	Transit	Transit	Transit	Total	Total	2035 Total	\% of Total	Induc	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	36,200	75,900	35,066	30,609	65,675	81\%	1.7\%	72,839	63,542	136,380	1,257	1,216	2,472	74,095	64,757	138,853	2\%		
No Action			28,531	30,629	59,160	63\%	1.4\%	59,296	63,599	122,895	1,257	1,216	2,472	60,553	64,815	125,367	2\%	13,485)	10\%
Minimal Action			29,037	30,501	59,539	64\%	1.4\%										\#DIV/0!	138,853)	100\%
Rail with IMC			27,097	23,573	50,670	40\%	1.0\%	55,161	48,092	103,253	22,714	21,317	44,031	77,875	69,408	147,284	30\%	8,431	6\%
AGS			25,833	22,474	48,306	33\%	0.8\%	52,711	45,956	98,667	24,578	23,066	47,644	77,289	69,022	146,311	33\%	7,459	5\%
Dual-Mode Bus (DMB)			26,936	23,541	50,477	39\%	1.0\%	54,042	47,166	101,209	24,624	19,862	44,486	78,666	67,029	145,695	31\%	6,842	5%
Diesel Bus			27,640	25,209	52,849	46\%	1.1\%	55,684	50,716	106,400	22,712	18,320	41,032	78,396	69,037	147,432	28\%	8,580	6\%
6-Lane Highway			35,412	30,929	66,340	83\%	1.7\%	73,452	64,092	137,545	1,207	1,264	2,471	74,660	65,356	140,016	2\%	1,163	1\%
Reversible Lane			36,715	32,067	68,782	90\%	1.9\%	76,003	66,318	142,321	1,205	1,262	2,467	77,209	67,580	144,788	2\%	5,936	4\%
Combination 6-Lane Highway \& Rail with IMC			33,636	29,415	63,051	74\%	1.6\%	68,782	60,041	128,823	24,899	23,656	48,555	93,681	83,697	177,378	27\%	38,525	28\%
Combination 6-Lane Highway \& AGS			33,105	28,956	62,062	71\%	1.6\%	67,182	58,650	125,831	26,809	25,664	52,473	93,991	84,313	178,304	29\%	39,451	28\%
Combination 6-Lane Highway \& DMB			33,925	29,649	63,574	76\%	1.6\%	67,803	59,177	126,980	25,286	24,766	50,051	93,089	83,942	177,031	28\%	38,179	27\%
Combination 6-Lane Highway \& Diesel Bus			34,390	30,054	64,444	78\%	1.7\%	69,329	60,507	129,836	23,373	22,861	46,234	92,702	83,368	176,070	26\%	37,217	27\%
Minimum Program			27,677	24,161	51,838	43\%	1.0\%	55,267	49,191	104,458	24,849	22,618	47,467	80,115	71,810	151,925	31\%	13,072	9\%
Winter Saturday w/o Silverthorne	2000 Hwy.	2000 Hwy	WB 2035	EB 2035	2035	\% Growth	Avg. \%	2035 WB	2035 EB	2035									
	Vehicle	Person Trips	Highway	Highway	Highway	2000 to 2035	Growth in VT	Highway	Highway	Highway	${ }_{\text {Transit }}$	Transit	Transit	Total	035 EB	2035 Total	Transit as \% of Total	Trip Sup Induc	ent
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	39,900	83,700	36,360	31,796	68,156	71\%	1.5\%	74,673	65,283	139,956	1,282	1,302	2,584	75,955	66,585	142,540	2\%		
No Action			29,592	31,704	61,296	54\%	1.2\%	60,841	65,122	125,962	1,321	1,260	2,580	62,161	66,382	128,543	2\%	(13,998)	-10\%
Minimal Action			30,412	31,828	62,240	56\%	1.3\%										\#DIV/0!	142,540)	-100\%
Rail with IMC			28,514	24,801	53,314	34\%	0.8\%	57,487	50,012	107,499	22,823	21,320	44,143	80,310	71,332	151,642	29\%	9,102	6\%
AGS			27,180	23,640	50,820	27\%	0.7\%	54,916	47,776	102,692	24,720	23,092	47,813	79,636	70,868	150,505	32\%	7,964	6\%
Dual-Mode Bus (DMB)			28,140	24,622	52,762	32\%	0.8\%	55,778	48,783	104,562	21,552	22,971	44,523	77,330	71,755	149,085	30\%	6,544	5\%
Diesel Bus			28,887	26,354	55,241	38\%	0.9\%	57,493	52,427	109,920	19,857	21,164	41,021	77,350	73,592	150,941	27\%	8,401	6\%
6-Lane Highway			36,639	32,064	68,703	72\%	1.6\%	75,157	65,723	140,880	1,270	1,313	2,584	76,427	67,036	143,464	2\%	923	1\%
Reversible Lane			37,961	33,221	71,182	78\%	1.7\%	77,726	67,969	145,695	1,268	1,311	2,579	78,994	69,280	148,274	2\%	5,734	4\%
Combination 6-Lane Highway \& Rail with IMC			35,153	30,765	65,918	65\%	1.4\%	71,016	62,129	133,145	24,815	24,016	48,831	95,831	86,145	181,976	27\%	39,436	28\%
Combination 6-Lane Highway \& AGS			34,631	30,307	64,938	63\%	1.4\%	69,448	60,756	130,204	27,040	25,729	52,769	96,488	86,485	182,973	29\%	40,433	28\%
Combination 6-Lane Highway \& DMB			35,295	30,885	66,181	66\%	1.5\%	69,680	60,940	130,620	24,302	25,804	50,106	93,982	86,743	180,726	28\%	38,186	27\%
Combination 6-Lane Highway \& Diesel Bus			35,782	31,311	67,093	68\%	1.5\%	71,241	62,304	133,545	22,455	23,795	46,250	93,696	86,099	179,795	26\%	37,255	26\%
Minimum Program			28,633	25,008	53,642	34\%	0.8\%	58,326	50,422	108,748	25,036	23,087	48,123	83,362	73,509	156,871	31\%	14,331	10\%

I-70 PEIS 2035 Travel Demand Estimates

Winter Saturday at Vail Pass	$\begin{aligned} & 2000 \text { Hwy. } \\ & \text { Vehicle } \end{aligned}$	$\begin{array}{\|c\|} \hline 2000 \text { Hwy. } \\ \text { Person Trips } \end{array}$	$\begin{aligned} & \text { WB } 2035 \\ & \text { Highway } \end{aligned}$	$\begin{aligned} & \text { EB } 2035 \\ & \text { Highway } \end{aligned}$	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{gathered} \text { \% Growth } \\ 2000 \text { to } 2035 \end{gathered}$	Avg. \% Growth in VT	$\begin{aligned} & 2035 \text { WB } \\ & \text { Highway } \end{aligned}$	$\begin{aligned} & 2035 \text { EB } \\ & \text { Highway } \end{aligned}$	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{gathered} \hline 2035 \text { WB } \\ \text { Transit } \end{gathered}$	$\begin{gathered} \hline 2035 \text { EB } \\ \text { Transit } \end{gathered}$	$\begin{aligned} & \hline 2035 \\ & \text { Transit } \end{aligned}$	$\begin{gathered} 2035 \text { WB } \\ \text { Total } \end{gathered}$	$2035 \mathrm{~EB}$ Total	2035 Total PT	Transit as \% of Total	Trip Suppression/Inducement	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT	PT	PT	PT	PT	PT					PT Diff.	\% Diff.
Baseline	17,900	36,400	23,838	21,123	44,961	151\%	2.7\%	46,621	41,149	87,769	133	125	258	46,754	41,273	88,027	0\%		
No Action			23,496	20,642	44,138	147\%	2.6\%	46,295	40,369	86,663	136	121	257	46,431	40,490	86,920	0\%	(1,107	-1\%
Minimal Action			23,835	20,748	44,583	149\%	2.6\%										\#DIV/0!	(88,027)	-100\%
Rail with IMC			20,754	17,279	38,033	112\%	2.2\%	39,347	32,989	72,336	8,049	7,625	15,675	47,397	40,614	88,011	18\%	16)	
AGS			19,656	16,366	36,022	101\%	2.0\%	37,307	31,279	68,586	9,897	9,376	19,273	47,204	40,654	87,858	22\%	(169)	0\%
Dual-Mode Bus (DMB)			20,056	17,450	37,506	110\%	2.1\%	37,688	32,526	70,214	8,183	9,333	17,517	45,871	41,859	87,731	20\%	297)	
Diesel Bus			21,019	18,287	39,306	120\%	2.3\%	39,644	34,214	73,857	6,508	7,422	13,930	46,151	41,636	87,787	16\%	(240)	0\%
6 -Lane Highway			24,139	20,978	45,117	152\%	2.7\%	47,405	40,869	88,274	133	125	258	47,538	40,995	88,533	0\%	505	1\%
Reversible Lane			24,177	21,012	45,189	152\%	2.7\%	47,441	40,901	88,342	132	125	257	47,574	41,025	88,599	0\%	572	1\%
Combination 6-Lane Highway \& Rail with IMC			22,811	19,943	42,753	139\%	2.5\%	43,641	37,853	81,494	8,645	8,509	17,154	52,286	46,362	98,649	17\%	10,621	12\%
Combination 6-Lane Highway \& AGS			22,183	19,373	41,556	132\%	2.4\%	42,136	36,532	78,668	10,378	10,116	20,494	52,514	46,648	99,162	21\%	11,135	13\%
Combination 6-Lane Highway \& DMB			22,420	19,500	41,920	134\%	2.5\%	41,985	36,227	78,212	9,219	10,540	19,759	51,204	46,766	97,970	20\%	9,943	11\%
Combination 6-Lane Highway \& Diesel Bus			23,028	20,031	43,058	141\%	2.5\%	43,444	37,486	80,929	7,467	8,591	16,058	50,910	46,077	96,987	17\%	8,960	10\%
Minimum Program			20,393	17,509	37,902	112\%	2.2\%	38,701	33,167	71,868	10,190	9,149	19,339	48,891	42,316	91,207	21\%	3,180	4\%
Winter Saturday at Dowd Canyon		2000 Hwy.	WB 2035	EB 2035	2035	\% Growth													
Wmer Saluray at Dowa Canyon	Vehicle	Person Trips	Highway	Highway	Highway	2000 to 2035	Growth in VT	Highway	Highway	Highway	Transit	Transit	$\begin{aligned} & 2035 \\ & \text { Transit } \end{aligned}$	2035 WB Total	2035 EB Total	2035 Total	Transit as \% of Total	Inip	
Alternative	Trips (VT)	(PT)	VT	VT	VT	vT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	30,200	60,600	42,193	36,123	78,316	159\%	2.8\%	78,361	66,971	145,332	1,873	2,717	4,591	80,234	69,688	149,922	3\%		
No Action			41,831	36,010	77,842	158\%	2.7\%	77,893	66,807	144,700	1,680	2,907	4,587	79,573	69,714	149,287	3\%	(635)	0\%
Minimal Action			40,634	35,000	75,634	150\%	2.7\%										\#DIV/0!	(149,922)	-100\%
Rail with IMC			36,803	30,994	67,798	124\%	2.3\%	67,024	56,602	123,626	12,967	13,020	25,987	79,991	69,622	149,613	17\%	(309)	0%
AGS			36,453	30,699	67,153	122\%	2.3\%	66,342	56,026	122,368	13,624	13,680	27,304	79,966	69,706	149,672	18\%	(250)	0\%
Dual-Mode Bus (DMB)			37,923	32,729	70,652	134\%	2.5\%	68,556	58,930	127,487	10,206	12,106	22,311	78,762	71,036	149,798	15\%	(125)	0%
Diesel Bus			37,899	32,708	70,607	134\%	2.5\%	68,659	59,019	127,678	10,118	12,001	22,119	78,777	71,020	149,797	15\%	(125)	0\%
6-Lane Highway			42,143	36,301	78,444	160\%	2.8\%	78,372	67,273	145,645	1,736	2,857	4,593	80,108	70,129	150,237	3\%	315	0\%
Reversible Lane			42,156	36,313	78,469	160\%	2.8\%	78,381	67,281	145,662	1,734	2,853	4,587	80,115	70,134	150,249	3\%	327	0\%
Combination 6-Lane Highway \& Rail with IMC			40,471	34,930	75,402	150\%	2.6\%	73,764	63,479	137,243	13,753	13,750	27,503	87,517	77,229	164,746	17\%	14,823	10\%
Combination 6-Lane Highway \& AGS			40,348	34,755	75,103	149\%	2.6\%	73,904	63,486	137,390	14,394	14,308	28,701	88,298	77,794	166,092	17\%	16,169	11\%
Combination 6-Lane Highway \& DMB			41,654	35,892	77,546	157\%	2.7\%	75,401	64,743	140,143	11,160	12,779	23,940	86,561	77,522	164,083	15\%	14,161	9\%
Combination 6-Lane Highway \& Diesel Bus			42,029	36,221	78,250	159\%	2.8\%	76,104	65,352	141,455	10,329	11,923	22,252	86,433	77,274	163,707	14\%	13,785	9\%
Minimum Program			39,613	32,705	72,317	139\%	2.5\%	71,107	60,272	131,379	14,205	13,440	27,645	85,312	73,712	159,023	17\%	9,101	6\%
Winter Saturday e/o Eagle	2000 Hwy.														2035 EB				
	Vehicle	Person Trips	Highway	Highway	Highway	2000 to 2035	Growth in VT	Highway	Highway	Highway	Transit	Transit	Transit	${ }_{\text {Total }}$	Total	2035 Total	\% of Total	Induc	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	19,700	36,000	37,001	33,100	70,101	256\%	3.7\%	62,565	55,922	118,487	2,480	2,336	4,817	65,045	58,258	123,304	4\%		
No Action			36,398	33,032	69,430	252\%	3.7\%	61,490	55,676	117,166	1,944	2,902	4,846	63,434	58,578	122,011	4\%	(1,292)	1\%
Minimal Action			36,289	32,937	69,227	251\%	3.7\%										\#DIV/0!	(123,304)	100\%
Rail with IMC			34,170	30,126	64,296	226\%	3.4\%	56,673	49,994	106,667	8,235	8,354	16,589	64,908	58,348	123,256	13\%	48	0\%
AGS			34,054	30,023	64,077	225\%	3.4\%	56,456	49,803	106,259	8,437	8,560	16,997	64,893	58,362	123,256	14\%	(48)	0\%
Dual-Mode Bus (DMB)			33,621	30,383	64,003	225\%	3.4\%	55,280	49,875	105,155	8,513	9,056	17,569	63,792	58,932	122,724	14\%	580)	0\%
Diesel Bus			34,177	30,886	65,063	230\%	3.5\%	55,526	50,097	105,623	8,267	8,795	17,062	63,793	58,892	122,685	14\%	(619)	-1\%
6-Lane Highway			36,565	33,074	69,639	253\%	3.7\%	61,745	55,742	117,487	2,070	2,798	4,868	63,815	58,540	122,355	4%	949)	
Reversible Lane			36,565	33,074	69,639	253\%	3.7\%	61,855	55,841	117,695	2,069	2,797	4,866	63,923	58,638	122,561	4\%	(743)	-1\%
Combination 6-Lane Highway \& Rail with IMC			35,379	31,912	67,291	242\%	3.6\%	59,200	53,366	112,566	8,862	8,250	17,112	68,062	61,615	129,678	13\%	6,374	5\%
Combination 6-Lane Highway \& AGS			35,301	31,771	67,071	240\%	3.6\%	59,098	53,154	112,251	8,826	8,789	17,615	67,924	61,942	129,866	14\%	6,562	5\%
Combination 6-Lane Highway \& DMB			36,232	32,729	68,962	250\%	3.6\%	58,717	52,956	111,673	8,839	9,305	18,145	67,556	62,261	129,817	14\%	6,514	5\%
Combination 6-Lane Highway \& Diesel Bus			36,653	33,028	69,681	254\%	3.7\%	59,591	53,624	113,215	8,667	9,007	17,673	68,257	62,631	130,888	14\%	7,585	6\%
Minimum Program			34,747	30,949	65,696	233\%	3.5\%	58,024	51,646	109,670	8,842	8,571	17,413	66,866	60,217	127,083	14\%	3,779	3\%

I-70 PEIS 2035 Travel Demand Estimates

Winter Saturday at No Name	$\begin{aligned} & 2000 \text { Hwy. } \\ & \text { Vehicle } \end{aligned}$	$\begin{array}{\|c\|} \hline 2000 \text { Hwy. } \\ \text { Person Trips } \end{array}$	$\begin{aligned} & \text { WB } 2035 \\ & \text { Highway } \end{aligned}$	$\begin{aligned} & \text { EB } 2035 \\ & \text { Highway } \end{aligned}$	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{gathered} \text { \% Growth } \\ 2000 \text { to } 2035 \end{gathered}$	Avg. \% Growth in VT	$\begin{aligned} & 2035 \text { WB } \\ & \text { Highway } \end{aligned}$	$\begin{aligned} & 2035 \text { EB } \\ & \text { Highway } \end{aligned}$	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{gathered} 2035 \text { WB } \\ \text { Transit } \end{gathered}$	$\begin{gathered} \hline 2035 \text { EB } \\ \text { Transit } \end{gathered}$	$\begin{aligned} & \hline 2035 \\ & \text { Transit } \end{aligned}$	$\begin{gathered} 2035 \text { WB } \\ \text { Total } \end{gathered}$	$2035 \mathrm{~EB}$ Total	2035 Total PT	Transit as \% of Total	Trip Suppression/Inducement	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT	PT	PT	PT	PT	PT					PT Diff.	\% Diff.
Baseline	11,700	21,400	23,015	20,257	43,271	270\%	3.8\%	38,226	33,571	71,796	649	893	1,542	38,875	34,463	73,338	2\%		
No Action			22,677	20,092	42,769	266\%	3.8\%	37,679	33,289	70,967	606	926	1,532	38,284	34,215	72,499	2\%	839	-1\%
Minimal Action			22,206	19,685	41,891	258\%	3.7\%										\#DIV/0!	$(73,338)$	-100\%
Rail with IMC			22,516	19,620	42,135	260\%	3.7\%	36,663	32,034	68,697	1,495	1,568	3,062	38,158	33,602	71,760	4\%	(1,578)	
AGS			22,477	19,586	42,063	260\%	3.7\%	36,600	31,979	68,580	1,573	1,650	3,223	38,173	33,630	71,803	4\%	$(1,535)$	-2\%
Dual-Mode Bus (DMB)			19,470	17,320	36,790	214\%	3.3\%	31,516	27,948	59,464	7,256	6,750	14,006	38,772	34,698	73,470	19\%	132	0\%
Diesel Bus			19,470	17,320	36,790	214\%	3.3\%	31,516	27,948	59,464	7,263	6,756	14,019	38,779	34,704	73,483	19\%	146	0\%
6 -Lane Highway			22,687	20,099	42,786	266\%	3.8\%	37,709	33,314	71,024	602	930	1,532	38,311	34,245	72,556	2\%	782)	
Reversible Lane			22,710	20,120	42,830	266\%	3.8\%	37,753	33,353	71,105	603	931	1,534	38,355	34,284	72,639	2\%	(698)	-1\%
Combination 6-Lane Highway \& Rail with IMC			22,263	19,785	42,048	259\%	3.7\%	36,394	32,250	68,643	1,580	1,737	3,317	37,974	33,986	71,960	5\%	1,378)	
Combination 6-Lane Highway \& AGS			22,320	19,827	42,147	260\%	3.7\%	36,475	32,311	68,786	1,570	1,686	3,255	38,044	33,997	72,041	5\%	$(1,297)$	-2\%
Combination 6-Lane Highway \& DMB			20,976	18,679	39,655	239\%	3.5\%	33,951	30,137	64,088	7,832	6,129	13,961	41,783	36,266	78,049	18\%	4,711	6\%
Combination 6-Lane Highway \& Diesel Bus			20,978	18,632	39,610	239\%	3.5\%	33,963	30,072	64,035	8,032	5,917	13,950	41,995	35,990	77,985	18\%	4,647	6\%
Minimum Program			22,468	19,759	42,227	261\%	3.7\%	36,761	32,262	69,023	1,574	1,648	3,222	38,335	33,910	72,246	4\%	1,09	1%
Summer Thursday e/o Genesee			WB 2035	EB 2035	2035	\% Growth													
Summer Tursday elo Genesee	Vehicle	Person Trips	Highway	Highway	Highway	2000 to 2035	Growth in VT	Highway	Highway	Highway	Transit	Transit	$\begin{aligned} & 2035 \\ & \text { Transit } \end{aligned}$	2035 WB Total	2035 EB Total	2035 Total	Transit as \% of Total	Irip	
Alternative	Trips (VT)	(PT)	VT	VT	VT	vT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	69,400	105,000	65,906	62,706	128,612	85\%	1.8\%	108,345	103,063	211,408	385	301	686	108,730	103,364	212,094	0\%		
No Action			64,937	63,909	128,846	86\%	1.8\%	106,732	103,063	209,794	410	299	709	107,141	103,362	210,503	0\%	(1,590)	.1\%
Minimal Action			64,639	61,216	125,856	81\%	1.7\%										\#DIV/0!	(212,094)	100\%
Rail with IMC			64,652	59,815	124,467	79\%	1.7\%	107,968	99,887	207,854	14,505	9,325	23,830	122,472	109,211	231,684	10\%	19,590	9\%
AGS			65,411	60,773	126,184	82\%	1.7\%	107,614	99,980	207,594	15,736	10,116	25,852	123,350	110,096	233,446	11\%	21,353	10\%
Dual-Mode Bus (DMB)			65,406	60,510	125,915	81\%	1.7\%	108,310	100,190	208,500	16,127	7,973	24,100	124,438	108,162	232,600	10\%	20,506	10\%
Diesel Bus			65,232	60,366	125,598	81\%	1.7\%	108,025	99,953	207,977	16,074	7,946	24,020	124,098	107,899	231,997	10\%	19,904	9\%
6-Lane Highway			66,507	63,287	129,794	87\%	1.8\%	109,448	104,134	213,582	400	295	695	109,848	104,428	214,276	0\%	2,183	1\%
Reversible Lane			66,616	63,794	130,410	88\%	1.8\%	109,374	104,725	214,099	385	284	670	109,760	105,010	214,769	0\%	2,676	1\%
Combination 6-Lane Highway \& Rail with IMC			66,568	61,453	128,021	84\%	1.8\%	110,032	101,576	211,608	14,644	9,425	24,069	124,676	111,001	235,677	10\%	23,583	11\%
Combination 6-Lane Highway \& AGS			66,453	61,234	127,688	84\%	1.8\%	109,923	101,296	211,219	15,068	10,820	25,888	124,991	112,116	237,107	11\%	25,013	12\%
Combination 6-Lane Highway \& DMB			65,367	60,532	125,900	81\%	1.7\%	108,294	100,261	208,556	15,204	9,300	24,504	123,498	109,561	233,059	11\%	20,966	10\%
Combination 6-Lane Highway \& Diesel Bus			66,755	61,804	128,559	85\%	1.8\%	110,560	102,347	212,907	16,208	8,018	24,226	126,768	110,365	237,133	10\%	25,039	12\%
Minimum Program			65,597	61,242	126,839	83\%	1.7\%	106,960	99,368	206,327	15,100	10,789	25,889	122,059	110,156	232,216	11\%	20,122	9\%
Summer Thursday at Floyd Hill	2000 Hwy. Vehicle	2000 Hwy. Person Trips	$\begin{aligned} & \text { WB } 2035 \\ & \text { Highway } \end{aligned}$	EB 2035 Highway	2035 Highway	\% Growth 2000 to 2035	Avg. \% Growth in VT	2035 WB Highway	2035 EB Highway	2035 Highway	2035 WB Transit	2035 EB Transit	2035 Transit	2035 WB Total	2035 EB Total	2035 Total	Transit as \% of Total	Trip Sup Induc	ssion/ ent
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	46,900	69,900	61,453	57,519	118,972	154\%	2.7\%	97,565	91,273	188,837	283	223	506	97,848	91,496	189,344	0\%		
No Action			60,285	57,927	118,211	152\%	2.7\%	96,114	91,273	187,387	295	217	512	96,409	91,489	187,898	0\%	(1,445)	-1\%
Minimal Action			60,733	56,265	116,998	149\%	2.6\%										\#DIV/0!	189,344)	100\%
Rail with IMC			58,503	53,516	112,019	139\%	2.5\%	94,757	86,646	181,403	16,814	8,359	25,172	111,571	95,005	206,575	12\%	17,231	9\%
AGS			59,056	54,175	113,231	141\%	2.6\%	94,406	86,570	180,976	17,239	8,570	25,809	111,644	95,140	206,785	12\%	17,441	9\%
Dual-Mode Bus (DMB)			59,902	54,501	114,403	144\%	2.6\%	96,121	87,471	183,592	17,122	6,999	24,120	113,242	94,470	207,712	12\%	18,368	10\%
Diesel Bus			59,678	54,308	113,986	143\%	2.6\%	95,763	87,162	182,925	17,107	6,992	24,099	112,870	94,154	207,024	12\%	17,680	9\%
6-Lane Highway			62,458	58,003	120,461	157\%	2.7\%	99,326	92,219	191,545	297	221	518	99,623	92,439	192,063	0\%	2,719	1\%
Reversible Lane			62,510	58,300	120,810	158\%	2.7\%	99,182	92,479	191,661	297	221	518	99,479	92,700	192,179	0\%	2,835	1\%
Combination 6-Lane Highway \& Rail with IMC			61,327	55,801	117,127	150\%	2.6\%	98,091	89,250	187,340	15,301	8,396	23,697	113,392	97,646	211,038	11\%	21,694	11\%
Combination 6-Lane Highway \& AGS			60,897	55,346	116,243	148\%	2.6\%	97,559	88,666	186,225	14,782	9,820	24,602	112,341	98,486	210,827	12\%	21,483	11\%
Combination 6-Lane Highway \& DMB			61,214	55,868	117,082	150\%	2.6\%	97,811	89,235	187,046	15,380	8,400	23,780	113,190	97,635	210,825	11\%	21,482	11\%
Combination 6-Lane Highway \& Diesel Bus			61,894	56,343	118,237	152\%	2.7\%	99,332	90,439	189,772	15,366	8,393	23,759	114,699	98,832	213,531	11\%	24,187	13\%
Minimum Program			60,349	55,346	115,695	147\%	2.6\%	96,300	87,999	184,298	15,433	10,196	25,629	111,733	98,194	209,927	12\%	20,583	11\%

I-70 PEIS 2035 Travel Demand Estimates

Summer Thursday at Twin Tunnels	2000 Hwy.	2000 Hwy. Person Trips	WB 2035 Highway	EB 2035 Highway	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{gathered} \hline \% \text { Growth } \\ 2000 \text { to } 2035 \end{gathered}$	$\begin{gathered} \text { Avg. \% } \\ \text { Growth in VT } \end{gathered}$	2035 WB Highway	$\begin{aligned} & 2035 \text { EB } \\ & \text { Highway } \\ & \text { PT } \\ & \hline \end{aligned}$	$\begin{gathered} 2035 \\ \text { Highway } \\ \text { PT } \end{gathered}$	$\begin{gathered} \hline 2035 \mathrm{WB} \\ \text { Transit } \\ \text { PT } \\ \hline \end{gathered}$	$\begin{gathered} \hline 2035 \text { EB } \\ \text { Transit } \\ \text { PT } \end{gathered}$	$\begin{gathered} 2035 \\ \text { Transit } \\ \text { PT } \end{gathered}$	$\begin{array}{c\|} \hline 2035 \text { WB } \\ \text { Total } \\ \text { PT } \end{array}$	$\begin{gathered} 2035 \mathrm{~EB} \\ \text { Total } \\ \text { PT } \\ \hline \end{gathered}$	$\begin{array}{\|c} 2035 \text { Total } \\ \text { PT } \end{array}$	$\begin{aligned} & \text { Transit as } \\ & \text { \% of Total } \\ & \text { PT } \end{aligned}$	Trip Suppression/	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT											
Baseline	49,800	74,300	45,656	41,231	86,887	74\%	1.6\%	65,823		125,212	200	153	353	66,023	59,541	125,565	0\%		
No Action			43,621	41,606	85,228	71\%	1.5\%	63,271	59,388	122,660	215	142	357	63,487	59,530	123,017	0\%	(2,548)	2%
Minimal Action			45,619	40,377	85,996	73\%	1.6\%										\#DIV/0!	(125,565)	100\%
Rail with IMC			42,241	37,716	79,957	61\%	1.4\%	61,269	54,658	115,927	7,977	7,142	15,119	69,245	61,800	131,045	12\%	5,481	4\%
AGS			42,430	37,884	80,315	61\%	1.4\%	61,502	54,866	116,369	8,159	7,305	15,464	69,661	62,172	131,833	12\%	6,268	5\%
Dual-Mode Bus (DMB)			43,804	38,583	82,387	65\%	1.4\%	63,492	55,952	119,445	6,680	4,481	11,161	70,172	60,433	130,606	9\%	5,041	4\%
Diesel Bus			43,541	38,352	81,893	64\%	1.4\%	63,112	55,617	118,729	6,629	4,446	11,075	69,741	60,063	129,804	9\%	4,239	3\%
6-Lane Highway			47,047	41,567	88,614	78\%	1.7\%	67,975	60,016	127,990	209	151	360	68,184	60,166	128,350	0\%	2,785	2\%
Reversible Lane			47,007	41,532	88,539	78\%	1.7\%	67,772	59,837	127,609	211	151	362	67,983	59,988	127,971	0\%	2,406	2\%
Combination 6-Lane Highway \& Rail with IMC			45,144	39,872	85,016	71\%	1.5\%	65,245	57,610	122,856	8,477	7,112	15,589	73,723	64,722	138,445	11\%	12,880	10\%
Combination 6-Lane Highway \& AGS			44,699	39,475	84,174	69\%	1.5\%	64,514	56,961	121,475	9,125	8,554	17,679	73,638	65,515	139,154	13\%	13,589	11\%
Combination 6-Lane Highway \& DMB			45,760	40,514	86,274	73\%	1.6\%	65,895	58,296	124,192	6,961	5,480	12,441	72,856	63,776	136,632	9\%	11,068	9\%
Combination 6-Lane Highway \& Diesel Bus			46,422	40,889	87,312	75\%	1.6\%	67,298	59,306	126,604	6,899	4,629	11,528	74,197	63,935	138,132	8\%	12,567	10\%
Minimum Program			43,580	38,486	82,066	65\%	1.4\%	62,952	55,582	118,534	8,599	8,060	16,659	71,551	63,642	135,193	12\%	9,628	8\%
Summer Thursday e/O Empire Jct	2000 Hwy	2000 Hwy	WB 2035	EB 2035	2035	\% Growth		2035 WB	2035 EB		2035 WB	2035 EB	2035	2035 WB	2035 EB		Transit as	Trip Sup	
Summer mursday ero Empre Jar	Vehicle	Person Trips	Highway	Highway	Highway	2000 to 2035	Growth in VT	Highway	Highway	Highway	${ }_{\text {Transit }}$	Transit	Transit	${ }^{\text {Total }}$	Total	2035 Total	\% of Total	Induc	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	43,200	64,400	41,910	37,120	79,029	83\%	1.7\%	60,143	53,158	113,301	180	136	317	60,323	53,295	113,618	0\%		
No Action			39,371	36,652	76,023	76\%	1.6\%	57,050	53,119	110,169	195	124	319	57,245	53,243	110,488	0\%	3,130)	
Minimal Action			41,386	36,630	78,016	81\%	1.7\%										\#DIV/0!	113,618)	100\%
Rail with IMC			37,858	33,881	71,739	66\%	1.5\%	54,740	48,993	103,733	7,279	6,663	13,942	62,019	55,656	117,675	12\%	4,057	4\%
AGS			37,877	33,898	71,775	66\%	1.5\%	54,719	48,974	103,693	7,755	7,099	14,854	62,474	56,073	118,547	13\%	4,929	4\%
Dual-Mode Bus (DMB)			39,232	34,489	73,721	71\%	1.5\%	56,646	49,794	106,441	6,258	4,092	10,349	62,904	53,886	116,790	9\%	3,172	3\%
Diesel Bus			39,136	34,405	73,541	70\%	1.5\%	56,509	49,673	106,182	6,169	4,034	10,203	62,678	53,707	116,385	9\%	2,768	2\%
6-Lane Highway			42,600	37,623	80,223	86\%	1.8\%	61,270	54,010	115,280	188	134	322	61,458	54,143	115,602	0\%	1,984	2\%
Reversible Lane			42,629	37,649	80,279	86\%	1.8\%	61,171	53,922	115,093	190	135	324	61,361	54,057	115,417	0\%	1,799	2\%
Combination 6-Lane Highway \& Rail with IMC			40,737	35,940	76,677	77\%	1.7\%	58,611	51,625	110,236	7,646	6,810	14,456	66,257	58,435	124,692	12\%	11,074	10\%
Combination 6-Lane Highway \& AGS			40,261	35,510	75,771	75\%	1.6\%	57,848	50,932	108,780	8,612	8,227	16,839	66,460	59,160	125,620	13\%	12,002	11\%
Combination 6-Lane Highway \& DMB			41,483	36,725	78,208	81\%	1.7\%	59,424	52,517	111,941	6,564	5,130	11,695	65,988	57,647	123,636	9\%	10,018	9\%
Combination 6-Lane Highway \& Diesel Bus			41,533	36,512	78,046	81\%	1.7\%	59,979	52,724	112,703	6,354	4,155	10,509	66,333	56,880	123,213	9\%	9,595	8\%
Minimum Program			39,657	35,510	75,167	74\%	1.6\%	56,981	49,436	106,417	7,674	7,330	15,004	64,655	56,766	121,421	12\%	7,803	7\%
Summer Thursday at EJMT	2000 Hwy.	2000 Hwy	WB 2035	EB 2035	2035	\% Growth	Avg. \%	2035 WB	2035 EB	2035	2035 WB	2035 EB	2035						
	Vehicle	Person Trips	Highway	Highway	Highway	2000 to 2035	Growth in VT	Highway	Highway	Highway	Transit	Transit	Transit	Total	Total	PT ${ }^{\text {P }}$ Total	\% of Total	Induc	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	34,500	55,200	36,969	31,940	68,909	100\%	2.0\%	56,098	48,375	104,473	151	113	264	56,250	48,488	104,737	0\%		
No Action			34,815	31,572	66,388	92\%	1.9\%	53,274	48,318	101,592	164	102	266	53,438	48,421	101,858	0\%	(2,879)	-3\%
Minimal Action			35,948	31,829	67,777	96\%	1.9\%										\#DIV/0!	104,737)	-100\%
Rail with IMC			33,064	29,553	62,617	81\%	1.7\%	50,489	45,125	95,614	6,024	5,815	11,839	56,513	50,940	107,453	11\%	2,715	3\%
AGS			32,912	29,417	62,328	81\%	1.7\%	50,149	44,821	94,970	6,853	6,615	13,468	57,002	51,436	108,438	12\%	3,700	4\%
Dual-Mode Bus (DMB)			34,096	30,015	64,111	86\%	1.8\%	51,979	45,765	97,744	5,595	3,636	9,231	57,574	49,400	106,975	9\%	2,237	2\%
Diesel Bus			34,171	30,081	64,251	86\%	1.8\%	52,093	45,864	97,957	5,458	3,547	9,005	57,551	49,411	106,962	8\%	2,225	2\%
6-Lane Highway			37,062	32,744	69,806	102\%	2.0\%	56,347	49,701	106,048	158	110	268	56,505	49,811	106,316	0\%	1,579	2\%
Reversible Lane			37,161	32,832	69,993	103\%	2.0\%	56,313	49,671	105,984	160	111	271	56,473	49,782	106,255	0\%	1,517	1\%
Combination 6-Lane Highway \& Rail with IMC			35,464	31,301	66,765	94\%	1.9\%	53,900	47,507	101,407	6,656	6,013	12,669	60,557	53,520	114,076	11\%	9,339	9\%
Combination 6-Lane Highway \& AGS			35,105	30,972	66,078	92\%	1.9\%	53,163	46,838	100,001	7,703	7,558	15,262	60,866	54,396	115,263	13\%	10,525	10\%
Combination 6-Lane Highway \& DMB			36,045	31,919	67,964	97\%	2.0\%	54,521	48,203	102,724	5,906	4,673	10,579	60,427	52,876	113,303	9\%	8,566	8\%
Combination 6-Lane Highway \& Diesel Bus			36,047	31,733	67,780	96\%	1.9\%	54,965	48,393	103,359	5,525	3,591	9,116	60,490	51,985	112,475	8\%	7,738	7\%
Minimum Program			34,204	30,177	64,381	87\%	1.8\%	51,722	45,639	97,361	7,321	7,183	14,504	59,044	52,822	111,865	13\%	7,128	7\%

I-70 PEIS 2035 Travel Demand Estimates

Summer Thursday w/o Silverthorne	2000 Hwy.	$\begin{array}{\|c\|} \hline 2000 \text { Hwy. } \\ \text { Person Trips } \end{array}$	WB 2035	$\begin{aligned} & \hline \text { EB } 2035 \\ & \text { Highway } \end{aligned}$	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{gathered} \text { \% Growth } \\ 2000 \text { to } 2035 \end{gathered}$	$\begin{array}{c\|} \text { Avg. \% } \\ \text { Growth in VT } \end{array}$	$\begin{aligned} & 2035 \text { WB } \\ & \text { Highway } \end{aligned}$	2035 EB Highway	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	2035 WB Transit	$\begin{gathered} \hline 2035 \text { EB } \\ \text { Transit } \end{gathered}$	$\begin{aligned} & \hline 2035 \\ & \text { Transit } \end{aligned}$	$\begin{aligned} & 2035 \text { WB } \\ & \text { Total } \end{aligned}$	$\begin{gathered} 2035 \text { EB } \\ \text { Total } \end{gathered}$	2035 Total PT	$\begin{array}{\|l\|} \hline \text { Transit as } \\ \% \text { of Total } \end{array}$	Trip Suppression/Inducement	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT				PT Diff.	\% Diff.						
Baseline	45,000	72,100	46,915	38,385	85,300	90\%	1.8\%	71,782	58,759	130,542	185	179	364	71,967	58,938	130,905	0\%		
No Action			42,579	38,301	80,880	80\%	1.7\%	65,111	58,589	123,700	182	179	362	65,293	58,769	124,062	0\%	(6,844)	-5\%
Minimal Action			42,698	38,564	81,262	81\%	1.7\%										\#DIV/0!	(130,905)	-100\%
Rail with IMC			41,640	35,172	76,813	71\%	1.5\%	63,473	53,608	117,081	7,538	7,476	15,014	71,011	61,084	132,095	11\%	1,190	1\%
AGS			41,228	34,824	76,052	69\%	1.5\%	62,720	52,972	115,692	8,751	8,679	17,430	71,470	61,651	133,121	13\%	2,216	2\%
Dual-Mode Bus (DMB)			42,701	36,518	79,219	76\%	1.6\%	65,045	55,642	120,687	5,873	4,654	10,527	70,919	60,296	131,214	8\%	309	0\%
Diesel Bus			42,842	36,638	79,480	77\%	1.6\%	65,259	55,824	121,083	5,700	4,517	10,217	70,959	60,341	131,300	8\%	394	0\%
6 -Lane Highway			46,475	39,444	85,919	91\%	1.9\%	71,072	60,345	131,417	186	180	366	71,258	60,525	131,783	0\%	878	1\%
Reversible Lane			46,631	39,576	86,206	92\%	1.9\%	71,096	60,365	131,461	188	182	370	71,284	60,547	131,831	0\%	926	1\%
Combination 6-Lane Highway \& Rail with IMC			44,544	37,813	82,357	83\%	1.7\%	67,895	57,649	125,544	8,170	7,807	15,977	76,065	65,456	141,521	11\%	10,615	8\%
Combination 6-Lane Highway \& AGS			44,165	37,500	81,665	81\%	1.7\%	67,015	56,910	123,925	9,640	9,548	19,189	76,655	66,459	143,114	13\%	12,209	9\%
Combination 6-Lane Highway \& DMB			45,813	38,845	84,659	88\%	1.8\%	69,840	59,242	129,082	6,819	5,758	12,577	76,659	65,000	141,659	9\%	10,753	8\%
Combination 6-Lane Highway \& Diesel Bus			46,300	39,279	85,579	90\%	1.9\%	70,543	59,861	130,404	5,773	4,575	10,348	76,315	64,437	140,752	7\%	9,846	8\%
Minimum Program			42,170	35,569	77,739	73\%	1.6\%	63,560	53,401	116,961	9,052	8,962	18,013	72,612	62,363	134,975	13\%	4,069	3\%
Summer Thursday at Vail Pass	2000 Hwy.	2000 Hwy.	WB 2035	EB 2035	2035	\% Growth	Avg. \%												
	Vehicle	Person Trips	Highway	Highway	Highway	2000 to 2035	Growth in VT	Highway	Highway	Highway	Transit	Transit	$\begin{aligned} & 2035 \\ & \text { Transit } \end{aligned}$	2035 WB Total	2035 EB Total	$2035 \text { Total }$	Transit as \% of Total	Induc	
Alternative	Trips (VT)	(PT)	VT	VT	VT	vT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	25,900	42,700	29,305	28,678	57,983	124\%	2.3\%	45,400	44,411	89,811	28	18	46	45,428	44,428	89,857	0\%		
No Action			28,658	28,029	56,687	119\%	2.3\%	44,675	43,665	88,340	28	16	45	44,703	43,681	88,385	0\%	(1,472)	
Minimal Action			29,038	28,410	57,449	122\%	2.3\%										\#DIV/0!	(89,857)	-100\%
Rail with IMC			26,836	26,030	52,866	104\%	2.1\%	41,593	40,373	81,966	3,631	3,383	7,014	45,224	43,756	88,980	8\%	(877)	\%
AGS			26,990	26,179	53,169	105\%	2.1\%	41,785	40,559	82,344	3,675	3,423	7,098	45,460	43,982	89,442	8\%	(414)	0\%
Dual-Mode Bus (DMB)			27,534	26,892	54,426	110\%	2.1\%	42,410	41,406	83,816	2,938	2,082	5,020	45,348	43,488	88,836	6\%	(1,020)	-1\%
Diesel Bus			27,534	26,893	54,427	110\%	2.1\%	42,410	41,407	83,817	2,937	2,082	5,019	45,348	43,488	88,836	6\%	(1,020)	-1\%
6-Lane Highway			29,351	28,720	58,071	124\%	2.3\%	45,612	44,603	90,216	29	17	45	45,641	44,620	90,261	0\%	405	0\%
Reversible Lane			29,390	28,759	58,149	125\%	2.3\%	45,612	44,603	90,214	30	17	47	45,641	44,620	90,261	0\%	404	0\%
Combination 6-Lane Highway \& Rail with IMC			27,634	27,028	54,662	111\%	2.2\%	42,760	41,787	84,547	3,739	3,079	6,817	46,499	44,866	91,364	7\%	1,508	2\%
Combination 6-Lane Highway \& AGS			27,310	26,716	54,027	109\%	2.1\%	42,184	41,226	83,410	4,276	4,037	8,313	46,460	45,263	91,723	9\%	1,867	2\%
Combination 6-Lane Highway \& DMB			28,816	28,177	56,992	120\%	2.3\%	44,115	43,127	87,242	3,064	2,391	5,455	47,179	45,518	92,697	6\%	2,840	3\%
Combination 6-Lane Highway \& Diesel Bus			28,108	27,454	55,562	115\%	2.2\%	43,308	42,284	85,592	2,966	2,102	5,068	46,274	44,386	90,660	6\%	803	1\%
Minimum Program			27,101	26,512	53,613	107\%	2.1\%	41,912	40,961	82,873	3,978	3,757	7,735	45,890	44,718	90,608	9\%	751	1\%
Summer Thursday at Dowd Canyon																		Trip Sup	
Summer Thursay a Dow Canyon	Vehicle	Person Trips	Highway	Highway	Highway	2000 to 2035	Growth in VT	Highway	Highway	Highway	Transit	Transit	Transit	Total	Total	2035 PT Total PT	\% of Total	Induc	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	43,600	68,300	51,994	51,436	103,430	137\%	2.5\%	74,984	74,141	149,125	1,105	1,755	2,860	76,089	75,896	151,985	2\%		
No Action			43,447	48,988	92,434	112\%	2.2\%	62,669	70,619	133,288	1,115	1,802	2,917	63,784	72,421	136,204	2\%	(15,781)	0
Minimal Action			43,686	49,155	92,841	113\%	2.2\%										\#DIV/0!	151,985)	100\%
Rail with IMC			43,640	49,237	92,877	113\%	2.2\%	62,850	70,957	133,807	6,995	6,686	13,681	69,845	77,643	147,488	9\%	(4,497)	-3\%
AGS			43,593	49,127	92,721	113\%	2.2\%	62,824	70,847	133,670	7,578	7,243	14,821	70,401	78,089	148,491	10\%	$(3,494)$	2\%
Dual-Mode Bus (DMB)			43,857	49,569	93,426	114\%	2.2\%	62,764	70,903	133,666	3,486	3,340	6,826	66,250	74,242	140,492	5\%	(11,493)	-8\%
Diesel Bus			43,852	49,681	93,533	115\%	2.2\%	62,757	71,062	133,818	2,889	2,767	5,656	65,645	73,829	139,475	4\%	(12,510)	-8\%
6-Lane Highway			52,500	51,942	104,442	140\%	2.5\%	75,687	74,827	150,514	1,151	1,807	2,958	76,839	76,634	153,473	2\%	1,488	1\%
Reversible Lane			52,117	51,563	103,680	138\%	2.5\%	75,111	74,257	149,368	1,111	1,745	2,856	76,222	76,002	152,224	2\%	239	0\%
Combination 6-Lane Highway \& Rail with IMC			50,669	50,118	100,787	131\%	2.4\%	73,009	72,148	145,157	7,187	6,584	13,772	80,196	78,732	158,928	9\%	6,943	5\%
Combination 6-Lane Highway \& AGS			50,622	50,079	100,702	131\%	2.4\%	72,894	72,049	144,943	7,647	7,308	14,955	80,541	79,357	159,897	9\%	7,912	5\%
Combination 6-Lane Highway \& DMB			52,150	51,587	103,737	138\%	2.5\%	74,578	73,722	148,300	4,842	3,962	8,804	79,421	77,684	157,104	6\%	5,119	3\%
Combination 6-Lane Highway \& Diesel Bus			52,475	51,865	104,340	139\%	2.5\%	75,110	74,200	149,309	3,827	3,066	6,893	78,936	77,266	156,202	4\%	4,217	3\%
Minimum Program			50,004	49,468	99,472	128\%	2.4\%	72,071	71,235	143,306	7,615	7,281	14,896	79,685	78,516	158,202	9\%	6,217	4\%

I-70 PEIS 2035 Travel Demand Estimates

Summer Thursday e/o Eagle	$\begin{aligned} & 2000 \text { Hwy. } \\ & \text { Vehicle } \end{aligned}$	$\begin{array}{\|c\|} \hline 2000 \text { Hwy. } \\ \text { Person Trips } \end{array}$	$\begin{aligned} & \text { WB } 2035 \\ & \text { Highway } \end{aligned}$	$\begin{aligned} & \hline \text { EB } 2035 \\ & \text { Highway } \end{aligned}$	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{gathered} \text { \% Growth } \\ 2000 \text { to } 2035 \end{gathered}$	Avg. \% Growth in VT	$\begin{aligned} & 2035 \text { WB } \\ & \text { Highway } \end{aligned}$	$\begin{aligned} & 2035 \text { EB } \\ & \text { Highway } \end{aligned}$	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{gathered} \hline 2035 \text { WB } \\ \text { Transit } \end{gathered}$	$\begin{gathered} \hline 2035 \text { EB } \\ \text { Transit } \end{gathered}$	$\begin{aligned} & \hline 2035 \\ & \text { Transit } \end{aligned}$	$\begin{gathered} 2035 \text { WB } \\ \text { Total } \end{gathered}$	$2035 \mathrm{~EB}$ Total	2035 Total PT	Transit as \% of Total	Trip Suppression/Inducement	
Alternative	Trips (VT)		VT	VT	VT	VT	per Yr.	PT	PT	PT	PT	PT	PT					PT Diff.	\% Diff.
Baseline	26,000	42,700	45,653	42,680	88,334	240\%	3.6\%	66,351	61,990	128,340	863	733	1,597	67,214	62,723	129,937	1\%		
No Action			45,659	42,711	88,370	240\%	3.6\%	66,351	61,990	128,340	863	733	1,597	67,214	62,723	129,937	1\%		
Minimal Action			46,085	43,100	89,184	243\%	3.6\%										\#DIV/0!	129,937)	100\%
Rail with IMC			43,796	40,857	84,653	226\%	3.4\%	63,608	59,396	123,005	4,282	4,179	8,462	67,891	63,576	131,466	6\%	1,529	1\%
AGS			43,593	40,667	84,260	224\%	3.4\%	63,389	59,192	122,581	4,546	4,436	8,982	67,935	63,628	131,563	7\%	1,626	1\%
Dual-Mode Bus (DMB)			44,987	42,039	87,026	235\%	3.5\%	64,837	60,556	125,393	2,866	2,304	5,170	67,703	62,859	130,562	4\%	625	0\%
Diesel Bus			45,082	42,128	87,210	235\%	3.5\%	64,798	60,519	125,317	2,800	2,250	5,050	67,597	62,769	130,367	4\%	430	0\%
6 -Lane Highway			45,991	42,995	88,986	242\%	3.6\%	66,638	62,259	128,896	863	734	1,598	67,501	62,993	130,494	1\%	557	0\%
Reversible Lane			45,873	42,884	88,757	241\%	3.6\%	66,631	62,253	128,884	863	735	1,598	67,494	62,987	130,482	1\%	545	0\%
Combination 6-Lane Highway \& Rail with IMC			44,839	41,928	86,767	234\%	3.5\%	64,935	60,674	125,609	4,321	3,967	8,287	69,256	64,641	133,896	6\%	3,959	3\%
Combination 6-Lane Highway \& AGS			44,626	41,746	86,373	232\%	3.5\%	64,146	59,953	124,100	4,565	4,471	9,036	68,711	64,424	133,135	7\%	3,198	2\%
Combination 6-Lane Highway \& DMB			45,911	42,925	88,836	242\%	3.6\%	65,896	61,573	127,469	2,836	2,347	5,182	68,731	63,920	132,651	4\%	2,714	2\%
Combination 6-Lane Highway \& Diesel Bus			46,121	43,099	89,220	243\%	3.6\%	66,174	61,805	127,979	2,760	2,255	5,016	68,935	64,060	132,995	4\%	3,058	2\%
Minimum Program			43,543	40,732	84,276	224\%	3.4\%	63,511	59,228	122,739	4,570	4,470	9,040	68,081	63,698	131,779	7\%	1,842	1\%
Summer Thursday at No Name		2000 Hwy.	WB 2035	EB 2035															
	Vehicle	Person Trips	Highway	Highway	Highway	$2000 \text { to } 2035$	Growth in VT	Highway	Highway	Highway	Transit	Transit	$\begin{aligned} & 2035 \\ & \text { Transit } \end{aligned}$	2035 WB Total	2035 EB Total	2035 Total	Transit as \% of Total	Inip	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	20,900	38,300	24,073	22,747	46,821	124\%	2.3\%	34,612	32,660	67,272	436	426	862	35,048	33,086	68,134	1\%		
No Action			24,357	23,009	47,366	127\%	2.4\%	34,612	32,660	67,272	436	426	862	35,048	33,086	68,134	1\%		
Minimal Action			24,311	22,993	47,304	126\%	2.4\%										\#DIV/0!	(68,134)	100\%
Rail with IMC			24,114	22,673	46,787	124\%	2.3\%	34,640	32,601	67,241	900	878	1,778	35,540	33,479	69,019	3\%	885	1\%
AGS			24,095	22,655	46,750	124\%	2.3\%	34,636	32,597	67,232	932	909	1,841	35,567	33,506	69,073	3\%	940	1\%
Dual-Mode Bus (DMB)			24,022	22,680	46,702	123\%	2.3\%	34,163	32,237	66,400	2,207	1,720	3,927	36,369	33,958	70,327	6\%	2,193	3\%
Diesel Bus			23,997	22,657	46,655	123\%	2.3\%	34,128	32,205	66,333	2,206	1,720	3,926	36,334	33,925	70,259	6\%	2,125	3\%
6-Lane Highway			24,419	23,094	47,512	127\%	2.4\%	35,119	33,191	68,310	436	432	868	35,555	33,623	69,177	1\%	1,044	2\%
Reversible Lane			24,423	23,097	47,520	127\%	2.4\%	35,120	33,192	68,312	435	431	866	35,555	33,623	69,178	1\%	1,045	2\%
Combination 6-Lane Highway \& Rail with IMC			24,115	22,797	46,912	124\%	2.3\%	34,708	32,785	67,493	901	824	1,724	35,608	33,609	69,217	2\%	1,084	2\%
Combination 6-Lane Highway \& AGS			24,032	22,721	46,754	124\%	2.3\%	34,691	32,771	67,462	853	836	1,689	35,544	33,606	69,150	2\%	1,017	1\%
Combination 6-Lane Highway \& DMB			24,273	22,946	47,219	126\%	2.4\%	34,609	32,691	67,300	2,184	1,730	3,915	36,793	34,422	71,215	5\%	3,081	5\%
Combination 6-Lane Highway \& Diesel Bus			24,627	23,252	47,879	129\%	2.4\%	35,033	33,058	68,091	2,207	1,721	3,928	37,240	34,779	72,019	5\%	3,885	6\%
Minimum Program			24,047	22,736	46,783	124\%	2.3\%	34,692	32,772	67,464	853	836	1,689	35,545	33,608	69,153	2\%	1,019	1\%
Summer Friday at EJMT	2000 Hwy. Vehicle	2000 Hwy. Person Trips	$\begin{aligned} & \text { WB } 2035 \\ & \text { Highway } \end{aligned}$	EB 2035 Highway	2035 Highway	\% Growth 2000 to 2035	Avg. \% Growth in VT	2035 WB Highway	2035 EB Highway	2035 Highway	2035 WB Transit	2035 EB Transit	2035 Transit	2035 WB Total	2035 EB Total	2035 Total	Transit as \% of Total	Trip Sup Induc	ssion/ ent
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	45,745	77,792	42,591	33,306	75,897	66\%	1.5\%	66,539	52,002	118,542	494	394	888	67,033	52,397	119,430	1\%		
No Action			35,758	33,339	69,097	51\%	1.2\%	55,518	51,736	107,254	510	379	889	56,027	52,116	108,143	1\%	(11,287)	9\%
Minimal Action			36,868	32,597	69,465	52\%	1.2\%										\#DIV/0!	119,430)	100\%
Rail with IMC			31,777	29,329	61,106	34\%	0.8\%	49,287	45,461	94,748	12,989	13,037	26,027	62,277	58,498	120,775	22\%	1,345	1\%
AGS			30,188	29,156	59,344	30\%	0.7\%	46,645	45,020	91,665	14,593	14,647	29,239	61,238	59,667	120,904	24\%	1,475	1\%
Dual-Mode Bus (DMB)			34,106	30,707	64,813	42\%	1.0\%	52,922	47,617	100,539	10,195	9,856	20,051	63,117	57,473	120,590	17\%	1,160	1\%
Diesel Bus			34,106	30,753	64,859	42\%	1.0\%	52,973	47,734	100,707	9,804	9,478	19,282	62,777	57,212	119,989	16\%	559	0\%
6-Lane Highway			39,726	34,430	74,156	62\%	1.4\%	62,068	53,765	115,833	503	391	894	62,571	54,156	116,727	1\%	,70	
Reversible Lane			39,726	34,484	74,210	62\%	1.4\%	61,920	53,720	115,641	499	388	887	62,419	54,108	116,527	1\%	(2,902)	2\%
Combination 6-Lane Highway \& Rail with IMC			36,524	32,306	68,829	50\%	1.2\%	56,659	50,088	106,747	13,678	13,589	27,267	70,337	63,677	134,014	20\%	14,584	12\%
Combination 6-Lane Highway \& AGS			36,154	32,141	68,295	49\%	1.2\%	55,820	49,594	105,414	15,951	16,010	31,962	71,771	65,604	137,375	23\%	17,945	15\%
Combination 6-Lane Highway \& DMB			36,522	32,679	69,201	51\%	1.2\%	56,729	50,728	107,457	11,547	11,191	22,738	68,276	61,919	130,195	17\%	10,765	9\%
Combination 6-Lane Highway \& Diesel Bus			37,312	33,022	70,334	54\%	1.2\%	57,959	51,264	109,223	10,163	9,821	19,984	68,122	61,085	129,207	15\%	9,777	8\%
Minimum Program			31,103	29,798	60,901	33\%	0.8\%	50,701	47,234	97,936	14,766	14,770	29,536	65,468	62,004	127,472	23\%	8,042	7\%

I-70 PEIS 2035 Travel Demand Estimates

Summer Friday at Vail Pass	2000 Hwy.	2000 Hwy. Person Trips	WB 2035 Highway	EB 2035	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{gathered} \% \text { Growth } \\ 2000 \text { to } 2035 \end{gathered}$	$\begin{gathered} \text { Avg. \% } \\ \text { Growth in VT } \end{gathered}$	2035 WB	2035 EB Highway	$\begin{gathered} \hline 2035 \\ \text { Highway } \end{gathered}$	$\begin{gathered} 2035 \mathrm{WB} \\ \text { Transit } \end{gathered}$	2035 EB Transit	$\begin{aligned} & \hline 2035 \\ & \text { Transit } \end{aligned}$	2035 WB Total	$\begin{gathered} 2035 \text { EB } \\ \text { Total } \end{gathered}$	$\mid 2035 \text { Total } \mid$	Transit as	Trip Suppression/Inducement	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	26,600	46,200	30,220	25,796	56,017	111\%	2.2\%	47,265	40,282	87,546	83	63	146	47,348	40,345	87,692	0\%		
No Action			29,449	25,061	54,510	105\%	2.1\%	46,494	39,535	86,029	86	59	145	46,581	39,594	86,175	0\%	(1,518)	\%
Minimal Action			28,874	24,564	53,438	101\%	2.0\%										\#DIV/0!	(87,692)	-100\%
Rail with IMC			26,674	22,737	49,411	86\%	1.8\%	41,731	35,516	77,247	5,128	5,134	10,262	46,858	40,651	87,509	12\%	(184)	0\%
AGS			25,751	22,579	48,329	82\%	1.7\%	40,187	35,183	75,371	5,876	5,884	11,759	46,063	41,067	87,130	13\%	(562)	-1\%
Dual-Mode Bus (DMB)			26,999	23,022	50,021	88\%	1.8\%	42,158	35,894	78,052	5,147	5,081	10,228	47,304	40,976	88,280	12\%	588	1\%
Diesel Bus			26,961	22,989	49,950	88\%	1.8\%	42,123	35,864	77,987	4,604	4,545	9,149	46,726	40,410	87,136	10\%	(557)	-1\%
6-Lane Highway			30,126	25,687	55,813	110\%	2.1\%	47,328	40,296	87,624	85	62	146	47,413	40,357	87,770	0\%	78	0\%
Reversible Lane			30,115	25,677	55,792	110\%	2.1\%	47,168	40,159	87,327	84	61	146	47,253	40,221	87,473	0\%	(219)	0\%
Combination 6-Lane Highway \& Rail with IMC			28,870	24,611	53,481	101\%	2.0\%	45,143	38,426	83,569	5,091	5,072	10,163	50,233	43,498	93,732	11\%	6,039	7\%
Combination 6-Lane Highway \& AGS			28,576	24,362	52,938	99\%	2.0\%	44,470	37,853	82,323	6,295	6,301	12,596	50,765	44,154	94,919	13\%	7,227	8\%
Combination 6-Lane Highway \& DMB			28,916	24,662	53,578	101\%	2.0\%	45,141	38,442	83,583	5,225	5,164	10,389	50,366	43,605	93,971	11\%	6,279	7\%
Combination 6-Lane Highway \& Diesel Bus			29,098	24,808	53,906	103\%	2.0\%	45,472	38,713	84,185	4,617	4,559	9,176	50,089	43,272	93,360	10\%	5,668	6\%
Minimum Program			27,159	23,462	50,621	90\%	1.9\%	42,354	36,541	78,895	6,096	6,098	12,194	48,450	42,639	91,089	13\%	3,396	4\%
Summer Friday at Dowd Canyon	2000 Hwy.	O00 Hwy	WB 2035	EB 2035	2035	\% Growth	Avg. \%	2035 WB	2035 EB	2035	2035 WB	2035 EB	2035	2035 WB	2035 EB		Transit as	Trip Sup	
	Vehicle	Person Trips	Highway	Highway	Highway	2000 to 2035	Growth in VT	Highway	Highway	Highway	Transit	Transit	Transit	${ }_{\text {Total }}$	Total	$\left\|\begin{array}{c} 2035 \text { Total } \\ \text { PT } \end{array}\right\|$	\% of Total	Induc	ent
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	48,400	79,100	55,331	53,715	109,046	125\%	2.3\%	88,081	85,349	173,431	933	1,308	2,241	89,014	86,658	175,672	1\%		
No Action			49,726	49,852	99,577	106\%	2.1\%	80,066	80,095	160,161	978	1,189	2,166	81,044	81,284	162,328	1\%	13,344)	
Minimal Action			49,943	49,840	99,783	106\%	2.1\%										\#DIV/0!	(175,672)	-100\%
Rail with IMC			49,883	49,044	98,926	104\%	2.1\%	79,426	77,909	157,335	7,864	8,004	15,868	87,291	85,913	173,204	9\%	(2,468)	-1\%
AGS			49,829	49,141	98,970	104\%	2.1\%	79,262	77,985	157,246	8,242	8,389	16,631	87,504	86,374	173,878	10\%	$(1,794)$	-1\%
Dual-Mode Bus (DMB)			49,980	49,617	99,597	106\%	2.1\%	79,198	78,427	157,625	4,934	5,215	10,149	84,131	83,643	167,774	6\%	(7,898)	4\%
Diesel Bus			49,950	50,107	100,057	107\%	2.1\%	79,172	79,223	158,394	4,117	4,352	8,468	83,288	83,574	166,863	5\%	$(8,809)$	-5\%
6-Lane Highway			54,859	53,221	108,080	123\%	2.3\%	87,696	84,861	172,557	935	1,345	2,281	88,632	86,206	174,837	1\%	(835)	0\%
Reversible Lane			54,639	53,008	107,647	122\%	2.3\%	87,237	84,416	171,653	915	1,316	2,231	88,152	85,732	173,884	1\%	(1,788)	-1
Combination 6-Lane Highway \& Rail with IMC			53,513	51,933	105,447	118\%	2.2\%	84,738	82,036	166,773	8,249	8,198	16,447	92,986	90,234	183,220	9\%	7,548	4\%
Combination 6-Lane Highway \& AGS			53,383	51,808	105,191	117\%	2.2\%	84,371	81,678	166,049	8,633	8,726	17,359	93,003	90,405	183,408	9\%	7,736	4\%
Combination 6-Lane Highway \& DMB			54,594	52,978	107,572	122\%	2.3\%	85,979	83,218	169,198	5,962	5,835	11,797	91,941	89,054	180,995	7\%	5,323	3\%
Combination 6-Lane Highway \& Diesel Bus			54,905	53,276	108,181	124\%	2.3\%	86,486	83,701	170,186	5,176	5,066	10,242	91,662	88,766	180,428	6\%	4,756	3\%
Minimum Program			53,918	52,358	106,275	120\%	2.3\%	85,019	82,387	167,406	8,703	8,711	17,414	93,721	91,098	184,819	9\%	9,147	5\%
Summer Friday e/0 Eagle	2000 Hwy.	2000 Hwy.	WB 2035	EB 2035	2035	\% Growth	Avg. \%	2035 WB	2035 EB	2035	2035 WB								
Summer Friay	Vehicle	Person Trips	Highway	Highway	Highway	2000 to 2035	Growth in VT	Highway	Highway	Highway	${ }_{\text {Transit }}$	Transit	Transit	Total	2035 EB	2035 Total	Transit as \% of Total	Trip Sup Induc	nent
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	31,400	54,200	46,472	42,005	88,477	182\%	3.0\%	70,447	63,591	134,038	692	652	1,344	71,139	64,243	135,382	1\%		
No Action			46,153	41,722	87,875	180\%	3.0\%	70,447	63,591	134,038	693	630	1,322	71,140	64,220	135,360	1\%	(21)	0\%
Minimal Action			46,092	41,676	87,768	180\%	3.0\%										\#DIV/0!	(135,382)	-100\%
Rail with IMC			44,775	40,507	85,282	172\%	2.9\%	68,060	61,520	129,580	4,629	4,630	9,259	72,690	66,150	138,839	7\%	3,458	3\%
AGS			42,408	41,229	83,637	166\%	2.8\%	64,496	62,649	127,145	4,840	4,841	9,681	69,336	67,490	136,826	7\%	1,445	1\%
Dual-Mode Bus (DMB)			44,578	40,292	84,870	170\%	2.9\%	67,461	60,901	128,363	4,414	3,570	7,984	71,875	64,472	136,347	6\%	965	1\%
Diesel Bus			44,507	40,228	84,735	170\%	2.9\%	67,209	60,673	127,882	4,310	3,487	7,797	71,519	64,160	135,680	6\%	298	0\%
6-Lane Highway			46,344	41,912	88,256	181\%	3.0\%	70,679	63,836	134,514	702	637	1,339	71,380	64,473	135,853	1\%	471	0\%
Reversible Lane			46,391	41,954	88,345	181\%	3.0\%	70,731	63,883	134,614	703	639	1,343	71,434	64,522	135,956	1\%	575	0\%
Combination 6-Lane Highway \& Rail with IMC			45,609	41,269	86,877	177\%	3.0\%	69,295	62,637	131,932	4,869	4,881	9,750	74,164	67,518	141,682	7\%	6,301	5\%
Combination 6-Lane Highway \& AGS			45,684	41,350	87,033	177\%	3.0\%	69,353	62,713	132,066	4,965	4,956	9,921	74,319	67,669	141,987	7\%	6,606	5\%
Combination 6-Lane Highway \& DMB			46,269	41,840	88,109	181\%	3.0\%	69,837	63,065	132,902	4,428	3,542	7,970	74,266	66,606	140,872	6\%	5,490	4\%
Combination 6-Lane Highway \& Diesel Bus			46,524	42,067	88,590	182\%	3.0\%	70,211	63,397	133,608	4,324	3,462	7,786	74,535	66,858	141,393	6\%	6,012	4\%
Minimum Program			43,250	41,434	84,685	170\%	2.9\%	65,568	62,762	128,330	4,719	4,722	9,442	70,287	67,484	137,772	7\%	2,390	2\%

I-70 PEIS 2035 Travel Demand Estimates

Summer Friday at No Name	2000 Hwy.	$\left\|\begin{array}{c\|} 2000 \text { Hwy. } \\ \text { Person Trips } \end{array}\right\|$	$\begin{aligned} & \hline \text { WB } 2035 \\ & \text { Highway } \end{aligned}$	$\begin{aligned} & \hline \text { EB } 2035 \\ & \text { Highway } \end{aligned}$	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{array}{c\|} \hline \% \text { Growth } \\ 2000 \text { to } 2035 \end{array}$	$\begin{array}{c\|} \text { Avg. \% } \\ \text { Growth in VT } \end{array}$	$\begin{aligned} & \hline 2035 \text { WB } \\ & \text { Highway } \end{aligned}$	2035 EB Highway	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{array}{c\|} \hline 2035 \mathrm{WB} \\ \text { Transit } \end{array}$	$\begin{gathered} 2035 \text { EB } \\ \text { Transit } \end{gathered}$	$\begin{gathered} \hline 2035 \\ \text { Transit } \end{gathered}$	$\begin{aligned} & 2035 \text { WB } \\ & \text { Total } \end{aligned}$	$\begin{gathered} 2035 \text { EB } \\ \text { Total } \end{gathered}$	$\mid 2035 \text { Total } \mid$	$\begin{array}{\|c\|} \hline \text { Transit as } \\ \% \text { of Total } \end{array}$	Trip Suppression/Inducement	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	24,500	42,200	31,335	27,443	58,778	140\%	2.5\%	47,226	41,269	88,495	471	438	909	47,697	41,708	89,404	1\%		
No Action			30,924	27,146	58,070	137\%	2.5\%	47,003	41,185	88,188	476	403	879	47,479	41,588	89,067	1\%	(338)	0\%
Minimal Action			30,887	27,123	58,010	137\%	2.5\%										\#DIV/0!	(89,404)	-100\%
Rail with IMC			30,727	26,991	57,718	136\%	2.5\%	46,486	40,767	87,253	1,276	1,279	2,555	47,762	42,046	89,808	3\%	403	0\%
AGS			30,698	26,966	57,664	135\%	2.5\%	46,467	40,751	87,218	1,293	1,296	2,589	47,760	42,046	89,807	3\%	402	0\%
Dual-Mode Bus (DMB)			29,989	26,324	56,314	130\%	2.4\%	45,135	39,542	84,677	4,391	3,499	7,890	49,526	43,041	92,567	9\%	3,163	4\%
Diesel Bus			29,942	26,283	56,224	129\%	2.4\%	44,966	39,394	84,360	4,390	3,498	7,887	49,355	42,892	92,247	9\%	2,843	3\%
6-Lane Highway			30,859	27,080	57,939	136\%	2.5\%	46,972	41,151	88,123	464	406	870	47,435	41,557	88,993	1\%	硡	
Reversible Lane			30,890	27,107	57,998	137\%	2.5\%	47,006	41,181	88,188	464	407	871	47,470	41,588	89,059	1\%	(346)	0\%
Combination 6-Lane Highway \& Rail with IMC			30,614	26,887	57,501	135\%	2.5\%	46,420	40,709	87,129	1,286	1,279	2,565	47,706	41,988	89,694	3\%	290	0\%
Combination 6-Lane Highway \& AGS			30,617	26,893	57,510	135\%	2.5\%	46,388	40,684	87,071	1,293	1,295	2,588	47,680	41,979	89,659	3\%	255	0\%
Combination 6-Lane Highway \& DMB			30,863	27,083	57,946	137\%	2.5\%	46,493	40,729	87,222	4,389	3,441	7,830	50,882	44,171	95,053	8\%	5,648	6\%
Combination 6-Lane Highway \& Diesel Bus			31,033	27,232	58,265	138\%	2.5\%	46,742	40,947	87,689	4,394	3,441	7,836	51,136	44,388	95,525	8\%	6,120	7\%
Minimum Program			31,013	27,245	58,258	138\%	2.5\%	46,737	40,989	87,727	1,349	1,348	2,697	48,086	42,337	90,423	3\%	1,019	1\%
Summer Saturday e/o Genesee	2000 Hwy.	$\begin{array}{\|c\|} \hline 2000 \text { Hwy } \\ \text { Person Trips } \end{array}$	WB 2035 Highway	EB 2035 Highway	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{gathered} \text { \% Growth } \\ 2000 \text { to } 2035 \end{gathered}$	Avg. \% Growth in VT	2035 WB Highway	2035 EB Highway	$\overbrace{\text { Highway }}^{2035}$	$\underset{\text { Transit }}{203 \mathrm{WB}}$	$\underset{\text { Transit }}{2035 \mathrm{~EB}}$	${ }_{\text {Transit }}^{2035}$	$\xrightarrow{2035 \mathrm{WB}}$ Total	2035 EB Total	2035 Total	Transit as \% of Total	Trip Sup	ssion/ ent
Alternative	Trips (VT)	(PT)	VT	VT	VT	$\mathrm{VT}^{\text {VT }}$	per Yr.	${ }_{\text {PT }}$	${ }_{\text {PT }}$	${ }_{\text {PT }}$	PT	PT	PT	PT	PT		PT	PT Diff.	\% Diff.
Baseline	85,100	173,200	90,925	81,884	172,809	103\%	2.0\%	200,027	180,191	380,218	2,194	2,482	4,677	202,221	182,673	384,894	1\%		
No Action			72,309	82,813	155,122	82\%	1.7\%	158,303	180,191	338,493	2,194	2,482	4,677	160,497	182,673	343,170	1\%	(41,724)	11\%
Minimal Action			72,337	80,050	152,387	79\%	1.7\%										\#DIV/0!	(384,894)	100\%
Rail with IMC			72,435	75,194	147,629	73\%	1.6\%	158,251	164,373	322,624	52,573	35,881	88,454	210,824	200,253	411,077	22\%	26,183	7\%
AGS			74,138	75,606	149,744	76\%	1.6\%	161,359	164,647	326,006	55,380	37,796	93,176	216,739	202,444	419,182	22\%	34,288	9\%
Dual-Mode Bus (DMB)			74,278	78,060	152,337	79\%	1.7\%	162,189	170,585	332,774	40,790	29,335	70,126	202,979	199,920	402,899	17\%	18,005	5\%
Diesel Bus			74,280	78,028	152,308	79\%	1.7\%	162,331	170,657	332,989	38,218	27,486	65,705	200,550	198,144	398,693	16\%	13,799	4\%
6-Lane Highway			84,194	81,194	165,388	94\%	1.9\%	184,248	177,838	362,086	2,199	2,488	4,687	186,447	180,325	366,773	1\%	(18,122)	
Reversible Lane			84,198	81,157	165,354	94\%	1.9\%	183,954	177,467	361,421	2,109	2,385	4,494	186,063	179,852	365,915	1\%	(18,979)	-5\%
Combination 6-Lane Highway \& Rail with IMC			85,015	76,516	161,531	90\%	1.8\%	185,714	167,232	352,946	48,735	36,593	85,327	234,449	203,824	438,273	19\%	53,379	14\%
Combination 6-Lane Highway \& AGS			85,148	76,650	161,799	90\%	1.9\%	185,992	167,518	353,510	56,240	34,040	90,280	242,233	201,558	443,791	20\%	58,896	15\%
Combination 6-Lane Highway \& DMB			85,329	78,589	163,917	93\%	1.9\%	186,441	171,849	358,291	44,122	31,787	75,909	230,563	203,636	434,199	17\%	49,305	13\%
Combination 6-Lane Highway \& Diesel Bus			85,089	78,436	163,525	92\%	1.9\%	185,918	171,517	357,435	41,686	29,698	71,383	227,604	201,215	428,819	17\%	43,924	11\%
Minimum Program			74,122	75,589	149,711	76\%	1.6\%	161,385	164,671	326,056	55,332	37,681	93,013	216,718	202,352	419,069	22\%	34,175	9\%
Summer Saturday at Floyd Hill																			
Summer Saurday al foyd	Vehicle	Person Trips	Highway	Highway	Highway	2000 to 2035	Growth in VT	Highway	Highway	Highway	Transit	Transit	Transit	${ }_{\text {Total }}$	Total	$2035 \text { Total } \mid$	\% of Total	Trip Sup	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	62,500	128,500	79,031	72,063	151,095	142\%	2.6\%	170,430	155,413	325,844	1,065	1,205	2,270	171,495	-156,618	328,114	1\%		
No Action			64,628	72,331	136,959	119\%	2.3\%	136,959	139,105	276,064	1,065	1,205	2,270	138,025	140,309	278,334	1\%	(49,780)	15\%
Minimal Action			65,132	70,874	136,006	118\%	2.2\%										\#DIV/0!	(328,114)	100\%
Rail with IMC			65,252	64,884	130,136	108\%	2.1\%	139,643	138,871	278,514	46,580	31,488	78,068	186,223	170,359	356,582	22\%	28,468	9\%
AGS			65,803	64,711	130,514	109\%	2.1\%	140,131	137,821	277,952	49,615	33,540	83,154	189,746	171,361	361,107	23\%	32,993	10\%
Dual-Mode Bus (DMB)			66,833	66,976	133,809	114\%	2.2\%	143,216	143,546	286,763	36,319	25,836	62,154	179,535	169,382	348,917	18\%	20,803	6\%
Diesel Bus			66,814	66,938	133,752	114\%	2.2\%	143,325	143,615	286,940	33,846	24,076	57,922	177,170	167,691	344,862	17\%	16,748	5\%
6-Lane Highway			76,129	72,282	148,411	137\%	2.5\%	163,861	155,609	319,469	1,154	1,118	2,272	165,014	156,727	321,741	1\%		
Reversible Lane			76,112	72,242	148,354	137\%	2.5\%	163,536	155,251	318,786	1,154	1,118	2,272	164,689	156,369	321,058	1\%	(7,056)	-2\%
Combination 6-Lane Highway \& Rail with IMC			75,346	68,393	143,738	130\%	2.4\%	161,243	146,379	307,622	44,269	32,693	76,962	205,512	179,072	384,584	20\%	56,470	17\%
Combination 6-Lane Highway \& AGS			75,049	68,136	143,185	129\%	2.4\%	160,344	145,589	305,933	51,568	30,727	82,295	211,912	176,317	388,228	21\%	60,115	18\%
Combination 6-Lane Highway \& DMB			75,550	69,634	145,185	132\%	2.4\%	162,058	149,393	311,452	39,108	28,032	67,140	201,166	177,426	378,592	18\%	50,478	15\%
Combination 6-Lane Highway \& Diesel Bus			75,736	69,845	145,581	133\%	2.4\%	162,459	149,847	312,306	36,558	25,907	62,465	199,017	175,755	374,771	17\%	46,658	14\%
Minimum Program			65,831	64,739	130,571	109\%	2.1\%	140,179	137,869	278,048	49,658	33,467	83,126	189,837	171,336	361,174	23\%	33,060	10\%

I-70 PEIS 2035 Travel Demand Estimates

Summer Saturday at Twin Tunnels	2000 Hwy. Vehicle	$\begin{array}{\|c\|} \hline 2000 \text { Hwy. } \\ \text { Person Trips } \end{array}$	$\begin{aligned} & \text { WB } 2035 \\ & \text { Highway } \end{aligned}$	$\begin{aligned} & \hline \text { EB } 2035 \\ & \text { Highway } \end{aligned}$	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{gathered} \text { \% Growth } \\ 2000 \text { to } 2035 \end{gathered}$	$\begin{array}{c\|} \text { Avg. \% } \\ \text { Growth in VT } \end{array}$	$\begin{aligned} & \hline 2035 \text { WB } \\ & \text { Highway } \end{aligned}$	2035 EB Highway	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{aligned} & \hline 2035 \mathrm{WB} \\ & \text { Transit } \end{aligned}$	$\underset{\text { Transit }}{2035 \text { EB }}$	$\begin{aligned} & \hline 2035 \\ & \text { Transit } \end{aligned}$	$\begin{aligned} & 2035 \text { WB } \\ & \text { Total } \end{aligned}$	$\begin{gathered} 2035 \text { EB } \\ \text { Total } \end{gathered}$	$\mid 2035 \text { Total } \mid$	$\begin{array}{\|c\|} \hline \text { Transit as } \\ \% \text { of Total } \end{array}$	Trip Suppression/ Inducement	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	67,000	137,700	51,172	47,773	98,945	48\%	1.1\%	105,707	98,704	204,411	999	1,145	2,144	106,706	99,849	206,555	1\%		
No Action			44,723	47,804	92,527	38\%	0.9\%	92,206	98,594	190,800	999	1,033	2,033	93,205	99,628	192,833	1\%	13	
Minimal Action			46,068	47,650	93,718	40\%	1.0\%										\#DIV/0!	206,555)	-100\%
Rail with IMC			44,877	41,394	86,272	29\%	0.7\%	90,930	83,895	174,825	30,216	25,435	55,651	121,146	109,331	230,476	24\%	23,921	12\%
AGS			43,964	40,552	84,516	26\%	0.7\%	88,002	81,194	169,195	33,326	28,053	61,379	121,328	109,247	230,575	27\%	24,019	12\%
Dual-Mode Bus (DMB)			46,142	42,558	88,700	32\%	0.8\%	93,667	86,419	180,086	25,773	19,347	45,120	119,440	105,766	225,207	20\%	18,651	9\%
Diesel Bus			46,101	42,519	88,620	32\%	0.8\%	93,803	86,545	180,347	23,609	17,722	41,331	117,412	104,267	221,678	19\%	15,123	7\%
6-Lane Highway			53,811	49,630	103,441	54\%	1.2\%	110,970	102,384	213,354	1,121	1,043	2,163	112,090	103,427	215,517	1\%	8,962	4\%
Reversible Lane			53,772	49,595	103,367	54\%	1.2\%	110,609	102,052	212,661	1,106	1,030	2,136	111,716	103,082	214,798	1\%	8,242	4\%
Combination 6-Lane Highway \& Rail with IMC			50,895	46,951	97,846	46\%	1.1\%	103,110	95,140	198,250	33,187	24,604	57,791	136,297	119,745	256,042	23\%	49,486	24\%
Combination 6-Lane Highway \& AGS			50,079	46,196	96,274	44\%	1.0\%	100,461	92,693	193,154	36,701	27,626	64,327	137,162	120,319	257,481	25\%	50,926	25\%
Combination 6-Lane Highway \& DMB			51,308	47,323	98,631	47\%	1.1\%	104,404	96,327	200,731	27,694	20,716	48,410	132,097	117,043	249,140	19\%	42,585	21\%
Combination 6-Lane Highway \& Diesel Bus			51,968	47,932	99,900	49\%	1.1\%	105,747	97,566	203,314	24,896	18,617	43,512	130,643	116,183	246,826	18\%	40,271	19\%
Minimum Program			47,286	42,927	90,213	35\%	0.9\%	94,007	85,676	179,684	33,056	28,313	61,369	127,063	113,989	241,052	25\%	34,497	17\%
Summer Saturday e/o Empire Jct	2000 Hwy.	$\begin{array}{\|c\|} \hline 2000 \text { Hwy } \\ \text { Person Trips } \end{array}$	WB 2035 Highway	EB 2035 Highway	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{gathered} \text { \% Growth } \\ 2000 \text { to } 2035 \end{gathered}$	Avg. \% Growth in VT	2035 WB Highway	2035 EB Highway	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\underset{\text { Transit }}{203 \mathrm{WB}}$	$\underset{\text { Transit }}{2035 \mathrm{~EB}}$	${ }_{\text {Transit }}^{2035}$	$\xrightarrow{2035 \mathrm{WB}}$ Total	2035 EB	2035 Total	Transit as \% of Total	Trip Sup	ssion/ ent
Alternative	Trips (VT)	(PT)	VT	VT	VT	$\mathrm{VT}^{\text {VT }}$	per Yr.	${ }_{\text {PT }}$	${ }_{\text {PT }}$	${ }_{\text {PT }}$	PT	PT	PT	PT	PT		PT	PT Diff.	\% Diff.
Baseline	59,700	122,700	48,363	44,558	92,921	56\%	1.3\%	99,412	91,569	190,981	982	1,131	2,112	100,394	92,699	193,093	1\%		
No Action			42,709	44,490	87,199	46\%	1.1\%	87,821	91,459	179,280	982	1,020	2,002	88,802	92,480	181,282	1\%	(11,812)	6°
Minimal Action			42,907	44,328	87,235	46\%	1.1\%										\#DIV/0!	193,093)	100\%
Rail with IMC			41,982	38,409	80,391	35\%	0.9\%	84,654	77,419	162,073	28,107	23,796	51,903	112,760	101,216	213,976	24\%	20,883	11\%
AGS			41,126	37,626	78,752	32\%	0.8\%	81,918	74,917	156,834	31,073	26,308	57,381	112,991	101,225	214,216	27\%	21,122	11\%
Dual-Mode Bus (DMB)			43,177	39,498	82,674	38\%	0.9\%	87,288	79,823	167,111	23,976	18,091	42,066	111,263	97,914	209,177	20\%	16,084	8\%
Diesel Bus			43,154	39,477	82,631	38\%	0.9\%	87,463	79,983	167,446	22,126	16,695	38,821	109,589	96,679	206,267	19\%	13,174	7\%
6-Lane Highway			50,691	46,363	97,054	63\%	1.4\%	104,241	95,315	199,556	1,093	1,018	2,111	105,334	96,333	201,667	1\%	8,574	4\%
Reversible Lane			50,668	46,343	97,011	62\%	1.4\%	103,923	95,024	198,946	1,093	1,018	2,111	105,016	96,042	201,058	1\%	7,964	4\%
Combination 6-Lane Highway \& Rail with IMC			47,552	43,501	91,053	53\%	1.2\%	95,892	87,697	183,589	30,393	24,040	54,433	126,285	111,737	238,022	23\%	44,929	23\%
Combination 6-Lane Highway \& AGS			46,871	42,878	89,749	50\%	1.2\%	93,542	85,542	179,083	33,699	26,836	60,535	127,241	112,378	239,619	25\%	46,525	24\%
Combination 6-Lane Highway \& DMB			47,975	43,885	91,860	54\%	1.2\%	97,232	88,913	186,146	25,959	19,524	45,483	123,191	108,438	231,629	20\%	38,536	20\%
Combination 6-Lane Highway \& Diesel Bus			48,587	44,445	93,032	56\%	1.3\%	98,473	90,048	188,521	23,285	17,506	40,791	121,758	107,554	229,312	18\%	36,219	19\%
Minimum Program			41,756	37,690	79,446	33\%	0.8\%	82,398	75,027	157,425	30,810	26,579	57,389	113,208	101,606	214,814	27\%	21,721	11\%
Summer Saturday at EJMT																			
Summer Saurday ar Eumr	Vehicle	Person Trips	Highway	Highway	Highway	2000 to 2035	Growth in VT	Highway	Highway	Highway	Transit	Transit	Transit	${ }_{\text {Total }}^{2035 \mathrm{l}}$	2035 E	$2035 \text { Total } \mid$	\% of Total	Trip Sup	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	44,900	94,200	38,622	33,966	72,588	62\%	1.4\%	79,754	70,132	149,885	845	674	1,519	80,598	70,806	151,404	1\%		
No Action			35,820	34,093	69,913	56\%	1.3\%	73,982	70,132	144,114	841	677	1,518	74,823	70,809	145,632	1\%	(5,772)	4\%
Minimal Action			36,867	33,914	70,780	58\%	1.3\%										\#DIV/0!	151,404)	100\%
Rail with IMC			33,071	29,326	62,397	39\%	0.9\%	66,792	59,210	126,002	19,886	18,781	38,667	86,678	77,991	164,670	23\%	13,265	9\%
AGS			32,393	28,724	61,117	36\%	0.9\%	64,591	57,258	121,849	22,250	21,014	43,264	86,841	78,272	165,113	26\%	13,709	9\%
Dual-Mode Bus (DMB)			33,892	30,052	63,944	42\%	1.0\%	68,475	60,710	129,186	17,076	14,345	31,421	85,552	75,055	160,607	20\%	9,202	6\%
Diesel Bus			33,919	30,075	63,994	43\%	1.0\%	68,780	60,981	129,761	16,351	13,736	30,087	85,131	74,716	159,847	19\%	8,443	6\%
6-Lane Highway			40,591	35,989	76,580	71\%	1.5\%	83,836	74,325	158,161	838	690	1,528	84,673	75,015	159,689	1\%	8,284	5\%
Reversible Lane			40,611	36,007	76,618	71\%	1.5\%	83,619	74,133	157,752	828	682	1,510	84,447	74,815	159,262	1\%	7,857	5\%
Combination 6-Lane Highway \& Rail with IMC			37,101	32,898	69,998	56\%	1.3\%	74,932	66,428	141,360	22,470	20,149	42,620	97,403	86,577	183,980	23\%	32,575	22\%
Combination 6-Lane Highway \& AGS			36,890	32,710	69,600	55\%	1.3\%	73,657	65,294	138,950	24,431	22,633	47,064	98,088	87,927	186,015	25\%	34,610	23\%
Combination 6-Lane Highway \& DMB			37,523	33,270	70,793	58\%	1.3\%	76,084	67,455	143,540	19,189	16,095	35,284	95,273	83,551	178,824	20\%	27,420	18\%
Combination 6-Lane Highway \& Diesel Bus			37,997	33,691	71,688	60\%	1.3\%	77,045	68,307	145,351	17,024	14,282	31,306	94,069	82,589	176,658	18\%	25,253	17\%
Minimum Program			32,722	29,584	62,306	39\%	0.9\%	64,680	58,709	123,390	22,218	21,107	43,325	86,898	79,816	166,714	26\%	15,310	10\%

I-70 PEIS 2035 Travel Demand Estimates

Summer Saturday w/o Silverthorne	$\begin{gathered} 2000 \text { Hwy. } \\ \text { Vehicle } \end{gathered}$	$\begin{array}{\|l\|} \hline 2000 \text { Hwy. } \\ \text { Person Trips } \end{array}$	$\begin{aligned} & \hline \text { WB } 2035 \\ & \text { Highway } \end{aligned}$	$\begin{aligned} & \text { EB } 2035 \\ & \text { Highway } \end{aligned}$	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{gathered} \text { \% Growth } \\ 2000 \text { to } 2035 \end{gathered}$	$\begin{array}{c\|} \text { Avg. \% } \\ \text { Growth in } \mathrm{VT} \end{array}$	$\begin{gathered} 2035 \text { WB } \\ \text { Highway } \end{gathered}$	$\begin{aligned} & 2035 \text { EB } \\ & \text { Highway } \end{aligned}$	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$2035 \text { WB }$ Transit	$\begin{gathered} \hline 2035 \text { EB } \\ \text { Transit } \end{gathered}$	$\begin{gathered} \hline 2035 \\ \text { Transit } \end{gathered}$	$\begin{gathered} 2035 \mathrm{WB} \\ \text { Total } \end{gathered}$	$\begin{gathered} 2035 \text { EB } \\ \text { Total } \end{gathered}$	$\left\lvert\, \begin{gathered} 2035 \text { PT Total } \\ \hline \end{gathered}\right.$	Transit as \% of Total	Trip Suppression/Inducement	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT	PT	PT	PT	PT	PT					PT Diff.	\% Diff.
Baseline	47,800	100,300	42,172	36,712	78,883	65\%	1.4\%	86,636	75,409	162,045	863	818	1,681	87,498	76,228	163,726	1\%		
No Action			38,318	36,727	75,045	57\%	1.3\%	78,790	75,409	154,199	857	830	1,687	79,647	76,239	155,886	1\%	(7,839	-5\%
Minimal Action			40,076	36,915	76,991	61\%	1.4\%										\#DIV/0!	(163,726)	100\%
Rail with IMC			35,979	31,713	67,693	42\%	1.0\%	72,315	63,724	136,039	20,333	19,246	39,579	92,648	82,970	175,618	23\%	11,893	7\%
AGS			35,268	31,086	66,354	39\%	0.9\%	70,067	61,743	131,811	22,648	21,437	44,085	92,715	83,180	175,896	25\%	12,170	7\%
Dual-Mode Bus (DMB)			36,836	32,473	69,309	45\%	1.1\%	73,960	65,183	139,143	16,570	14,778	31,347	90,530	79,961	170,490	18\%	6,765	4\%
Diesel Bus			36,746	32,393	69,140	45\%	1.1\%	74,060	65,272	139,332	16,000	14,270	30,270	90,061	79,542	169,602	18\%	5,876	4\%
6-Lane Highway			44,485	39,228	83,713	75\%	1.6\%	91,435	80,604	172,039	864	831	1,695	92,299	81,435	173,734	1\%	10,009	6\%
Reversible Lane			44,528	39,265	83,793	75\%	1.6\%	91,266	80,455	171,721	854	821	1,675	92,120	81,276	173,396	1\%	9,670	6\%
Combination 6-Lane Highway \& Rail with IMC			40,564	35,754	76,318	60\%	1.3\%	81,536	71,847	153,382	22,982	21,010	43,991	104,517	92,856	197,374	22\%	33,648	21\%
Combination 6-Lane Highway \& AGS			40,469	35,673	76,141	59\%	1.3\%	80,505	70,944	151,449	24,916	23,212	48,128	105,420	94,156	199,577	24\%	35,851	22\%
Combination 6-Lane Highway \& DMB			41,001	36,146	77,147	61\%	1.4\%	82,631	72,828	155,459	18,748	16,759	35,508	101,379	89,587	190,966	19\%	27,241	17\%
Combination 6-Lane Highway \& Diesel Bus			41,483	36,571	78,054	63\%	1.4\%	83,602	73,684	157,286	16,671	14,913	31,584	100,273	88,597	188,870	17\%	25,145	15\%
Minimum Program			35,166	30,997	66,163	38\%	0.9\%	69,872	61,572	131,444	22,629	21,497	44,125	92,501	83,068	175,569	25\%	11,843	7\%
Summer Saturday at Vail Pass																			
Summer Salurday at Vail Pass	Vehicle	Person Trips	Highway	Highway	Highway	2000 to 2035	$\begin{gathered} \text { Avg. \% } \\ \text { Growth in VT } \end{gathered}$	Highway	Highway	Highway	${ }_{\text {Transit }}^{2030}$	2035 EB Transit	${ }_{2}^{2035}$	2035 WB Total	2035 EB Total	$2035 \text { Total }$	Transit as \% of Total	Irip Induc	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	25,300	53,200	29,398	27,712	57,110	126\%	2.4\%	59,622	56,114	115,737	140	108	248	59,763	56,222	115,985	0\%		
No Action			29,020	27,179	56,199	122\%	2.3\%	59,236	55,329	114,565	142	105	247	59,378	55,434	114,813	0\%	(1,172)	-1\%
Minimal Action			29,224	27,167	56,390	123\%	2.3\%										\#DIV/0!	(115,985)	100\%
Rail with IMC			26,698	24,801	51,499	104\%	2.1\%	52,942	49,065	102,007	7,227	6,539	13,766	60,169	55,603	115,772	12\%	(212)	0%
AGS			26,052	24,201	50,253	99\%	2.0\%	51,426	47,660	99,086	8,707	7,878	16,585	60,133	55,538	115,671	14\%	(314)	0\%
Dual-Mode Bus (DMB)			26,341	24,465	50,806	101\%	2.0\%	51,883	48,076	99,959	8,392	7,148	15,539	60,275	55,224	115,499	13\%	(486)	0%
Diesel Bus			26,806	24,896	51,702	104\%	2.1\%	53,045	49,153	102,199	7,225	6,154	13,379	60,271	55,307	115,578	12\%	(407)	0\%
6-Lane Highway			29,577	27,495	57,072	126\%	2.4\%	60,194	55,806	116,000	137	111	248	60,331	55,917	116,248	0\%	263	0\%
Reversible Lane			29,515	27,437	56,952	125\%	2.3\%	59,995	55,622	115,617	136	110	246	60,131	55,732	115,863	0\%	(122)	0\%
Combination 6-Lane Highway \& Rail with IMC			28,728	26,700	55,428	119\%	2.3\%	56,968	52,811	109,779	7,501	6,345	${ }_{13,846}$	64,469	59,156	123,625	11\%	7,641	7\%
Combination 6-Lane Highway \& AGS			28,317	26,322	54,639	116\%	2.2\%	55,934	51,859	107,793	9,231	7,975	17,206	65,165	59,835	124,999	14\%	9,015	8\%
Combination 6-Lane Highway \& DMB			28,288	26,282	54,571	116\%	2.2\%	55,985	51,888	107,873	8,449	7,183	15,632	64,433	59,071	123,505	13\%	7,520	6\%
Combination 6-Lane Highway \& Diesel Bus			28,773	26,733	55,505	119\%	2.3\%	56,945	52,778	109,722	7,238	6,170	13,407	64,182	58,947	123,130	11\%	7,145	6\%
Minimum Program			26,038	24,190	50,228	99\%	2.0\%	51,357	47,600	98,958	8,701	7,937	16,639	60,058	55,538	115,596	14\%	(388)	0\%
Summer Saturday at Dowd Canyon																		Trip Sup	
Sumer Saurday a Dowd Canyon	Vehicle	Person Trips	Highway	Highway	Highway	2000 to 2035	Growth in VT	Highway	Highway	Highway	Transit	Transit	Transit	${ }^{\text {Total }}$	Total	$\left\lvert\, \begin{gathered} 2035 \text { Total } \\ \text { PT } \end{gathered}\right.$	\% of Total	Induc	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	42,200	80,400	40,192	40,123	80,315	90\%	1.9\%	71,583	71,373	142,956	736	1,143	1,879	72,319	72,516	144,835	1\%		
No Action			40,166	40,109	80,275	90\%	1.9\%	71,583	71,373	142,956	704	1,143	1,847	72,286	72,516	144,803	1\%	32)	0\%
Minimal Action			39,108	40,477	79,585	89\%	1.8\%										\#DIV/0!	(144,835)	100\%
Rail with IMC			35,425	36,808	72,234	71\%	1.5\%	61,397	63,726	125,123	10,071	9,277	19,348	71,468	73,002	144,470	13\%	(365)	
AGS			35,247	36,689	71,937	70\%	1.5\%	61,078	63,508	124,586	10,329	9,515	19,844	71,407	73,023	144,430	14\%	(405)	0\%
Dual-Mode Bus (DMB)			37,136	38,541	75,677	79\%	1.7\%	64,013	66,355	130,368	7,696	7,178	14,874	71,709	73,532	145,241	10\%	406	0\%
Diesel Bus			37,735	39,166	76,901	82\%	1.7\%	65,207	67,596	132,803	6,441	6,008	12,449	71,648	73,604	145,251	9\%	416	0\%
6-Lane Highway			39,744	41,030	80,774	91\%	1.9\%	70,903	73,082	143,985	711	1,171	1,882	71,614	74,254	145,868	1\%	1,032	1\%
Reversible Lane			39,883	40,834	80,718	91\%	1.9\%	71,128	72,710	143,838	709	1,169	1,878	71,837	73,879	145,716	1\%	881	1\%
Combination 6-Lane Highway \& Rail with IMC			38,282	39,870	78,151	85\%	1.8\%	66,398	69,060	135,458	10,655	9,527	20,182	77,053	78,587	155,639	13\%	10,804	7\%
Combination 6-Lane Highway \& AGS			38,185	39,799	77,984	85\%	1.8\%	66,818	69,553	136,370	11,184	9,830	21,014	78,001	79,383	157,384	13\%	12,549	9\%
Combination 6-Lane Highway \& DMB			39,305	40,876	80,181	90\%	1.9\%	67,921	70,542	138,463	8,706	7,562	16,268	76,628	78,103	154,731	11\%	9,896	7\%
Combination 6-Lane Highway \& Diesel Bus			39,501	41,021	80,522	91\%	1.9\%	68,260	70,792	139,051	7,898	6,882	14,780	76,158	77,673	153,831	10\%	8,996	6\%
Minimum Program			36,325	37,849	74,174	76\%	1.6\%	63,072	65,632	128,704	10,520	9,723	20,242	73,591	75,355	148,946	14\%	4,111	3\%

I-70 PEIS 2035 Travel Demand Estimates

Summer Saturday e/o Eagle	$\begin{aligned} & 2000 \text { Hwy. } \\ & \text { Vehicle } \end{aligned}$	$\begin{array}{\|c\|} \hline 2000 \text { Hwy. } \\ \text { Person Trips } \end{array}$	$\begin{aligned} & \text { WB } 2035 \\ & \text { Highway } \end{aligned}$	$\begin{aligned} & \hline \text { EB } 2035 \\ & \text { Highway } \end{aligned}$	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{gathered} \text { \% Growth } \\ 2000 \text { to } 2035 \end{gathered}$	Avg. \% Growth in VT	$\begin{aligned} & 2035 \text { WB } \\ & \text { Highway } \end{aligned}$	$\begin{aligned} & 2035 \text { EB } \\ & \text { Highway } \end{aligned}$	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{gathered} 2035 \text { WB } \\ \text { Transit } \end{gathered}$	$\begin{gathered} \hline 2035 \text { EB } \\ \text { Transit } \end{gathered}$	$\begin{aligned} & \hline 2035 \\ & \text { Transit } \end{aligned}$	$\begin{gathered} 2035 \text { WB } \\ \text { Total } \end{gathered}$	$2035 \mathrm{~EB}$ Total	2035 Total PT	Transit as \% of Total	Trip Suppression/Inducement	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT	PT	PT	PT	PT	PT					PT Diff.	\% Diff.
Baseline	26,400	54,200	43,135	37,747	80,882	206\%	3.3\%	80,631	70,500	151,132	839	737	1,575	81,470	71,237	152,707	1\%		
No Action			43,336	37,983	81,319	208\%	3.3\%	80,631	70,500	151,132	838	737	1,575	81,470	71,237	152,706	1\%	(0)	0\%
Minimal Action			43,115	37,817	80,931	207\%	3.3\%										\#DIV/0!	(152,707)	100\%
Rail with IMC			40,688	35,612	76,300	189\%	3.1\%	74,276	64,963	139,239	7,124	6,754	13,878	81,400	71,717	153,117	9\%	410	0\%
AGS			40,705	35,627	76,332	189\%	3.1\%	74,069	64,783	138,852	7,370	6,987	14,358	81,440	71,770	153,210	9\%	503	0\%
Dual-Mode Bus (DMB)			40,777	35,684	76,461	190\%	3.1\%	74,412	65,053	139,466	7,527	6,909	14,435	81,939	71,962	153,901	9\%	1,195	1\%
Diesel Bus			40,994	35,874	76,869	191\%	3.1\%	74,546	65,170	139,716	7,359	6,755	14,114	81,905	71,925	153,830	9\%	1,123	1\%
6 -Lane Highway			43,571	38,160	81,731	210\%	3.3\%	81,185	71,016	152,202	846	751	1,597	82,031	71,767	153,799	1\%	1,092	1\%
Reversible Lane			43,496	38,094	81,589	209\%	3.3\%	81,300	71,116	152,416	846	751	1,597	82,146	71,867	154,013	1\%	1,306	1\%
Combination 6-Lane Highway \& Rail with IMC			41,436	36,290	77,726	194\%	3.1\%	75,526	66,085	141,611	7,504	6,532	14,037	83,030	72,617	155,648	9\%	2,941	2\%
Combination 6-Lane Highway \& AGS			41,606	36,439	78,045	196\%	3.1\%	76,444	66,887	143,331	7,555	6,970	14,526	83,999	73,858	157,857	9\%	5,150	3\%
Combination 6-Lane Highway \& DMB			42,045	36,788	78,833	199\%	3.2\%	76,402	66,787	143,189	7,615	6,770	14,385	84,017	73,557	157,574	9\%	4,867	3\%
Combination 6-Lane Highway \& Diesel Bus			42,143	36,873	79,016	199\%	3.2\%	76,433	66,814	143,247	7,436	6,631	14,067	83,869	73,446	157,315	9\%	4,608	3\%
Minimum Program			41,402	36,828	78,230	196\%	3.2\%	74,838	66,636	141,474	7,453	7,008	14,461	82,291	73,644	155,935	9\%	3,228	2\%
Summer Saturday at No Name		2000 Hwy.	WB 2035																
	Vehicle	Person Trips	Highway	Highway	Highway	$2000 \text { to } 2035$	Growth in VT	Highway	Highway	Highway	Transit	Transit	$\begin{aligned} & 2035 \\ & \text { Transit } \end{aligned}$	2035 WB Total	2035 EB Total	$2035 \text { Total }$	Transit as \% of Total	Inip	
Alternative	Trips (VT)	(PT)	vT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	22,500	41,200	26,872	23,305	50,177	123\%	2.3\%	45,865	39,731	85,596	337	337	674	46,202	40,069	86,271	1\%		
No Action			26,825	23,264	50,089	123\%	2.3\%	45,865	39,731	85,596	337	337	674	46,202	40,069	86,271	1\%		
Minimal Action			26,688	23,181	49,869	122\%	2.3\%										\#DIV/0!	86,271)	-100\%
Rail with IMC			26,301	22,823	49,124	118\%	2.3\%	44,170	38,284	82,454	1,475	1,275	2,750	45,645	39,559	85,204	3\%	(1,067)	1%
AGS			26,312	22,832	49,144	118\%	2.3\%	44,188	38,299	82,487	1,477	1,277	2,754	45,665	39,576	85,241	3\%	$(1,029)$	1\%
Dual-Mode Bus (DMB)			25,175	21,823	46,999	109\%	2.1\%	40,999	35,492	76,491	5,979	4,665	10,644	46,978	40,157	87,135	12\%	865	1\%
Diesel Bus			25,309	21,940	47,249	110\%	2.1\%	41,479	35,907	77,386	5,976	4,663	10,639	47,455	40,570	88,026	12\%	1,755	2\%
6-Lane Highway			26,930	23,351	50,280	123\%	2.3\%	46,148	39,959	86,106	333	342	674	46,480	40,300	86,781	1\%	510	1\%
Reversible Lane			26,883	23,310	50,193	123\%	2.3\%	46,074	39,894	85,968	333	342	674	46,406	40,236	86,642	1\%	372	0\%
Combination 6-Lane Highway \& Rail with IMC			26,382	22,901	49,283	119\%	2.3\%	44,332	38,428	82,759	1,439	1,246	2,684	45,770	39,673	85,443	3\%	827	-1\%
Combination 6-Lane Highway \& AGS			26,375	22,896	49,270	119\%	2.3\%	44,308	38,408	82,716	1,462	1,258	2,720	45,769	39,666	85,436	3\%	(835)	-1\%
Combination 6-Lane Highway \& DMB			25,948	22,489	48,437	115\%	2.2\%	42,319	36,632	78,950	5,765	4,796	10,561	48,083	41,428	89,511	12\%	3,240	4\%
Combination 6-Lane Highway \& Diesel Bus			26,008	22,541	48,549	116\%	2.2\%	42,637	36,907	79,544	5,980	4,634	10,615	48,617	41,542	90,159	12\%	3,888	5\%
Minimum Program			26,393	22,949	49,342	119\%	2.3\%	44,283	38,454	82,737	1,467	1,270	2,737	45,750	39,724	85,474	3\%	(796)	
Summer Sunday e/o Genesee	2000 Hwy. Vehicle	2000 Hwy. Person Trips	$\begin{aligned} & \text { WB } 2035 \\ & \text { Highway } \end{aligned}$	EB 2035 Highway	2035 Highway	\% Growth 2000 to 2035	Avg. \% Growth in VT	2035 WB Highway	2035 EB Highway	2035 Highway	2035 WB Transit	2035 EB Transit	$\begin{aligned} & \hline 2035 \\ & \text { Transit } \end{aligned}$	2035 WB Total	2035 EB Total	2035 Total	Transit as \% of Total	Trip Sup Induc	ssion/ ent
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	83,100	175,300	71,886	98,591	170,477	105\%	2.1\%	170,314	233,447	403,760	838	1,920	2,757	171,152	235,366	406,518	1\%		
No Action			72,351	88,284	160,635	93\%	1.9\%	170,314	208,482	378,796	838	1,920	2,757	171,152	210,402	381,554	1\%	24,964)	-6\%
Minimal Action			72,377	88,305	160,683	93\%	1.9\%										\#DIV/0!	(406,518)	100\%
Rail with IMC			69,100	88,578	157,678	90\%	1.8\%	163,516	209,513	373,029	29,882	32,961	62,843	193,398	242,474	435,872	14\%	29,354	7\%
AGS			68,106	88,237	156,343	88\%	1.8\%	161,598	209,268	370,866	31,477	34,721	66,198	193,074	243,989	437,064	15\%	30,546	8\%
Dual-Mode Bus (DMB)			70,728	88,734	159,462	92\%	1.9\%	167,544	210,092	377,636	37,610	23,940	61,550	205,155	234,032	439,186	14\%	32,668	8\%
Diesel Bus			70,597	88,570	159,167	92\%	1.9\%	167,235	209,704	376,940	36,812	23,431	60,243	204,047	233,136	437,183	14\%	30,665	8\%
6-Lane Highway			73,168	94,555	167,723	102\%	2.0\%	173,360	223,917	397,277	839	1,921	2,760	174,199	225,838	400,037	1\%	6,480)	
Reversible Lane			72,950	96,027	168,978	103\%	2.0\%	172,652	227,149	399,802	835	1,914	2,749	173,488	229,063	402,551	1\%	(3,967)	-1\%
Combination 6-Lane Highway \& Rail with IMC			70,041	96,027	166,068	100\%	2.0\%	165,931	227,391	393,322	30,943	34,132	65,075	196,874	261,523	458,398	14\%	51,880	13\%
Combination 6-Lane Highway \& AGS			71,785	98,409	170,194	105\%	2.1\%	171,806	235,426	407,232	32,435	35,778	68,213	204,241	271,204	475,445	14\%	68,927	17\%
Combination 6-Lane Highway \& DMB			72,037	98,765	170,802	106\%	2.1\%	170,479	233,622	404,102	40,975	26,277	67,252	211,455	259,899	471,354	14\%	64,836	16\%
Combination 6-Lane Highway \& Diesel Bus			72,079	98,824	170,903	106\%	2.1\%	170,579	233,759	404,338	38,241	24,302	62,544	208,821	258,061	466,882	13\%	60,364	15\%
Minimum Program			68,175	88,355	156,530	88\%	1.8\%	161,680	210,491	372,172	31,477	34,721	66,198	193,157	245,212	438,369	15\%	31,852	8\%

I-70 PEIS 2035 Travel Demand Estimates

Summer Sunday at Floyd Hill	2000 Hwy. Vehicle	$\begin{array}{\|c\|} \hline 2000 \text { Hwy. } \\ \text { Person Trips } \end{array}$	WB 2035 Highway	$\begin{aligned} & \text { EB } 2035 \\ & \text { Highway } \end{aligned}$	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{gathered} \text { \% Growth } \\ 2000 \text { to } 2035 \end{gathered}$	$\begin{array}{c\|} \hline \text { Avg. \% } \\ \text { Growth in VT } \end{array}$	$\begin{aligned} & 2035 \text { WB } \\ & \text { Highway } \end{aligned}$	$\begin{aligned} & \hline 2035 \text { EB } \\ & \text { Highway } \end{aligned}$	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{gathered} 2035 \text { WB } \\ \text { Transit } \end{gathered}$	$\begin{gathered} \hline 2035 \text { EB } \\ \text { Transit } \end{gathered}$	$\begin{gathered} \hline 2035 \\ \text { Transit } \end{gathered}$	$\begin{gathered} 2035 \mathrm{WB} \\ \text { Total } \end{gathered}$	$\begin{gathered} 2035 \text { EB } \\ \text { Total } \end{gathered}$	$\mid 2035 \text { Total } \mid$	Transit as	Trip Suppression/ Inducement	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	63,400	135,300	61,223	85,496	146,719	131\%	2.4\%	144,130	201,240	345,370	735	1,676	2,411	144,866	202,916	347,782	1\%		
No Action			61,402	74,342	135,743	114\%	2.2\%	144,130	174,829	318,960	737	1,681	2,418	144,868	176,510	321,378	1\%	404)	
Minimal Action			61,350	74,064	135,414	114\%	2.2\%										\#DIV/0!	(347,782)	100\%
Rail with IMC			56,509	74,643	131,152	107\%	2.1\%	132,900	175,529	308,429	30,282	25,795	56,077	163,181	201,324	364,505	15\%	16,724	5\%
AGS			55,533	74,966	130,498	106\%	2.1\%	130,979	176,793	307,772	32,192	27,422	59,614	163,170	204,216	367,386	16\%	19,604	6\%
Dual-Mode Bus (DMB)			59,336	74,665	134,001	111\%	2.2\%	139,659	175,720	315,379	32,954	20,983	53,937	172,612	196,703	369,315	15\%	21,534	6\%
Diesel Bus			58,486	74,550	133,036	110\%	2.1\%	137,659	175,449	313,109	32,188	20,495	52,683	169,847	195,945	365,792	14\%	18,010	5\%
6-Lane Highway			62,922	85,417	148,339	134\%	2.5\%	148,167	201,114	349,282	743	1,694	2,438	148,911	202,809	351,719	1\%	3,938	1\%
Reversible Lane			63,236	86,028	149,264	135\%	2.5\%	148,716	202,297	351,013	733	1,670	2,403	149,449	203,967	353,416	1\%	5,634	2\%
Combination 6-Lane Highway \& Rail with IMC			59,316	85,171	144,487	128\%	2.4\%	139,518	200,310	339,829	31,170	26,552	57,723	170,689	226,863	397,551	15\%	49,770	14\%
Combination 6-Lane Highway \& AGS			59,816	86,139	145,956	130\%	2.4\%	142,327	204,940	347,268	33,319	28,382	61,701	175,646	233,323	408,968	15\%	61,187	18\%
Combination 6-Lane Highway \& DMB			60,366	86,704	147,070	132\%	2.4\%	142,013	203,949	345,961	37,339	21,948	59,286	179,351	225,896	405,248	15\%	57,466	17\%
Combination 6-Lane Highway \& Diesel Bus			60,575	87,002	147,577	133\%	2.4\%	142,503	204,650	347,152	34,482	20,112	54,594	176,984	224,762	401,746	14\%	53,965	16\%
Minimum Program			59,173	74,022	133,195	110\%	2.1\%	140,591	174,540	315,132	32,192	27,422	59,614	172,783	201,963	374,746	16\%	26,964	8\%
Summer Sunday at Twin Tunnels	2000 Hwy.	$\begin{aligned} & 2000 \text { Hwy. } \\ & \text { Peran Trin } \end{aligned}$	WB 2035 Highway	EB 2035 Highway	$\begin{gathered} 2035 \\ \text { Hiahwav } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { \% Growth } \\ 2000 \text { to } 2035 \end{array}$	$\begin{gathered} \text { Avg. \% } \\ \text { Growth in } \mathrm{VT} \end{gathered}$	2035 WB Highway	2035 EB Highway	$\overbrace{\text { Highway }}^{2035}$	$\underset{\text { Transit }}{2035 \mathrm{WB}}$	$\underset{\text { Transit }}{2035 \mathrm{~EB}}$	$\stackrel{2035}{\text { Transit }}$	${ }_{\text {ctal }}^{2035 \mathrm{WB}}$ Total	2035 EB Total	2035 Total	Transit as \% of Total	Trip Sup	$\begin{aligned} & \text { ession/ } \\ & \text { nent } \end{aligned}$
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	${ }_{\text {PT }}$	${ }_{\text {PT }}$	PT	PT	PT	PT	PT	PT		PT	PT Diff.	\% Diff.
Baseline	67,700	144,500	41,783	60,359	102,142	51\%	1.2\%	97,287	140,493	237,779	363	1,386	1,749	97,649	141,879	239,528	1\%		
No Action			41,933	47,347	89,281	32\%	0.8\%	97,287	110,090	207,376	363	1,386	1,749	97,649	111,476	209,125	1\%	30,403)	13
Minimal Action			40,844	47,547	88,391	31\%	0.8\%										\#DIV/0!	(239,528)	100\%
Rail with IMC			35,847	47,811	83,659	24\%	0.6\%	83,197	110,935	194,132	20,736	21,686	42,421	103,933	132,621	236,554	18\%	2,975)	
AGS			35,015	48,395	83,410	23\%	0.6\%	81,588	112,733	194,321	22,579	23,613	46,192	104,167	136,346	240,513	19\%	985	0\%
Dual-Mode Bus (DMB)			39,448	48,437	87,885	30\%	0.7\%	91,609	112,447	204,056	19,285	19,818	39,103	110,894	132,265	243,159	16\%	3,630	2\%
Diesel Bus			37,985	48,353	86,339	28\%	0.7\%	88,212	112,252	200,464	18,727	19,245	37,972	106,939	131,497	238,436	16\%	(1,092)	0\%
6-Lane Highway			43,570	64,710	108,280	60\%	1.4\%	101,511	150,715	252,227	377	1,440	1,817	101,888	152,156	254,044	1\%	14,516	6\%
Reversible Lane			44,470	64,263	108,733	61\%	1.4\%	103,375	149,339	252,714	361	1,379	1,739	103,735	150,718	254,453	1\%	14,925	6\%
Combination 6-Lane Highway \& Rail with IMC			39,912	62,368	102,280	51\%	1.2\%	92,640	144,722	237,362	20,029	22,976	43,004	112,669	167,698	280,366	15\%	40,838	17\%
Combination 6-Lane Highway \& AGS			39,352	61,993	101,344	50\%	1.2\%	92,279	145,337	237,616	23,731	24,660	48,392	116,011	169,997	286,008	17\%	46,480	19\%
Combination 6-Lane Highway \& DMB			40,085	62,686	102,770	52\%	1.2\%	93,010	145,409	238,419	20,779	23,155	43,934	113,790	168,564	282,353	16\%	42,825	18\%
Combination 6-Lane Highway \& Diesel Bus			40,427	63,218	103,645	53\%	1.2\%	93,804	146,644	240,448	18,778	20,570	39,349	112,582	167,214	279,797	14\%	40,268	17\%
Minimum Program			36,764	48,774	85,538	26\%	0.7\%	92,283	109,719	202,002	18,736	27,510	46,246	111,019	137,229	248,248	19\%	8,719	4\%
Summer Sunday e/o Empire Jct																			
Summer Sunday elo Empire Jat	Vehicle	Person Trips	Highway	Highway	Highway	2000 to 2035	Growth in VT	Highway	Highway	Highway	Transit	Transit	Transit	Total	Total	2035 Total	$\begin{aligned} & \text { Iransit as } \\ & \% \text { of Total } \end{aligned}$	Induce	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	62,300	132,900	40,707	58,824	99,531	60\%	1.3\%	94,644	136,767	231,411	452	1,339	1,791	95,095	138,106	233,202	1\%		
No Action			40,767	46,399	87,166	40\%	1.0\%	94,644	107,877	202,521	452	1,339	1,791	95,095	109,216	204,312	1\%	28,890)	12
Minimal Action			40,042	46,451	86,494	39\%	0.9\%										\#DIV/0!	(233,202)	100\%
Rail with IMC			34,766	47,622	82,389	32\%	0.8\%	80,593	110,400	190,993	20,296	21,159	41,456	100,889	131,559	232,448	18\%	75	
AGS			34,011	47,888	81,899	31\%	0.8\%	79,155	111,455	190,610	22,016	22,952	44,968	101,171	134,407	235,578	19\%	2,376	1\%
Dual-Mode Bus (DMB)			37,966	47,521	85,487	37\%	0.9\%	88,030	110,191	198,221	18,357	19,914	38,271	106,387	130,105	236,492	16\%	3,291	1\%
Diesel Bus			36,684	47,549	84,233	35\%	0.9\%	85,056	110,255	195,311	17,864	19,379	37,243	102,920	129,633	232,554	16\%	(648)	0\%
6-Lane Highway			42,437	62,901	105,338	69\%	1.5\%	98,754	146,380	245,134	663	1,143	1,806	99,416	147,523	246,940	1\%	13,738	6\%
Reversible Lane			43,230	62,507	105,737	70\%	1.5\%	100,378	145,141	245,519	663	1,143	1,806	101,040	146,284	247,325	1\%	14,123	6\%
Combination 6-Lane Highway \& Rail with IMC			39,016	60,553	99,568	60\%	1.3\%	99,568	140,328	239,897	19,584	22,420	42,004	119,152	162,748	281,900	15\%	48,699	21\%
Combination 6-Lane Highway \& AGS			38,477	60,168	98,645	58\%	1.3\%	90,114	140,919	231,033	23,031	24,071	47,102	113,145	164,990	278,135	17\%	44,934	19\%
Combination 6-Lane Highway \& DMB			39,178	60,857	100,035	61\%	1.4\%	90,785	141,028	231,812	20,190	22,601	42,791	110,975	163,629	274,603	16\%	41,402	18\%
Combination 6-Lane Highway \& Diesel Bus			39,484	61,332	100,816	62\%	1.4\%	91,496	142,129	233,625	18,328	20,163	38,491	109,824	162,291	272,115	14\%	38,914	17\%
Minimum Program			35,413	47,534	82,947	33\%	0.8\%	83,292	110,924	194,216	21,568	22,525	44,092	104,860	133,449	238,309	19\%	5,107	2\%

I-70 PEIS 2035 Travel Demand Estimates

Summer Sunday at EJMT	$\begin{aligned} & 2000 \text { Hwy. } \\ & \text { Vehicle } \end{aligned}$	$\begin{array}{\|c\|} \hline 2000 \text { Hwy. } \\ \text { Person Trips } \end{array}$	$\begin{aligned} & \text { WB } 2035 \\ & \text { Highway } \end{aligned}$	$\begin{aligned} & \hline \text { EB } 2035 \\ & \text { Highway } \end{aligned}$	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{gathered} \text { \% Growth } \\ 2000 \text { to } 2035 \end{gathered}$	Avg. \% Growth in VT	$\begin{aligned} & 2035 \text { WB } \\ & \text { Highway } \end{aligned}$	$\begin{aligned} & 2035 \text { EB } \\ & \text { Highway } \end{aligned}$	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{gathered} 2035 \text { WB } \\ \text { Transit } \end{gathered}$	$\begin{gathered} \hline 2035 \text { EB } \\ \text { Transit } \end{gathered}$	$\begin{aligned} & \hline 2035 \\ & \text { Transit } \end{aligned}$	$\begin{gathered} 2035 \text { WB } \\ \text { Total } \end{gathered}$	$2035 \mathrm{~EB}$ Total	2035 Total PT	Transit as \% of Total	Trip Suppression/Inducement	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT	PT	PT	PT	PT	PT					PT Diff.	\% Diff.
Baseline	49,100	106,800	32,300	46,517	78,817	61%	1.4\%	75,356	108,524	183,880	386	871	1,256	75,741	109,395	185,136	1\%		
No Action			32,326	38,350	70,676	44\%	1.0\%	75,356	89,474	164,830	386	871	1,256	75,741	90,345	166,086	1\%	(19,050	-10\%
Minimal Action			32,320	38,386	70,705	44\%	1.0\%										\#DIV/0!	(185,136)	-100%
Rail with IMC			27,109	39,060	66,169	35\%	0.9\%	63,015	90,798	153,813	14,823	16,241	31,065	77,838	107,040	184,878	17\%		
AGS			26,835	38,666	65,501	33\%	0.8\%	62,625	90,237	152,863	15,262	16,722	31,984	77,887	106,959	184,847	17\%	(289)	0\%
Dual-Mode Bus (DMB)			27,397	39,473	66,870	36\%	0.9\%	63,667	91,732	155,399	13,693	15,888	29,581	77,359	107,620	184,980	16\%	(156)	
Diesel Bus			27,396	39,472	66,869	36\%	0.9\%	63,665	91,730	155,396	13,684	15,878	29,562	77,349	107,609	184,958	16\%	(178)	0\%
6 -Lane Highway			34,038	49,032	83,070	69\%	1.5\%	79,488	114,505	193,993	496	789	1,285	79,983	115,294	195,278	1\%	10,142	5\%
Reversible Lane			34,073	49,083	83,157	69\%	1.5\%	79,410	114,392	193,802	489	779	1,267	79,898	115,171	195,069	1\%	9,933	5\%
Combination 6-Lane Highway \& Rail with IMC			32,633	47,015	79,648	62\%	1.4\%	75,815	109,236	185,051	14,504	17,617	32,121	90,320	126,853	217,172	15\%	32,037	17\%
Combination 6-Lane Highway \& AGS			32,542	46,884	79,426	62\%	1.4\%	76,237	109,838	186,076	16,120	17,730	33,851	92,358	127,568	219,926	15\%	34,790	19\%
Combination 6-Lane Highway \& DMB			32,960	47,485	80,445	64\%	1.4\%	76,527	110,251	186,778	14,233	16,894	31,127	90,759	127,145	217,905	14\%	32,769	18\%
Combination 6-Lane Highway \& Diesel Bus			33,013	47,561	80,573	64\%	1.4\%	76,649	110,428	187,076	13,589	16,064	29,654	90,238	126,492	216,730	14\%	31,594	17\%
Minimum Program			27,450	38,698	66,148	35\%	0.9\%	64,720	90,312	155,032	15,251	16,784	32,036	79,971	107,096	187,067	17\%	1,931	1\%
Summer Sunday w/o Silverthorne		2000 Hwy.	WB 2035	EB 2035															
	Vehicle	Person Trips	Highway	Highway	Highway	$2000 \text { to } 2035$	Growth in VT	Highway	Highway	Highway	Transit	Transit	$\begin{aligned} & 2035 \\ & \text { Transit } \end{aligned}$	2035 WB Total	2035 EB Total	$2035 \text { Total }$	Transit as \% of Total	Inip	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	49,000	106,500	33,078	47,529	80,607	65\%	1.4\%	76,885	110,515	187,399	614	734	1,348	77,498	111,249	188,747	1\%		
No Action			33,002	40,754	73,756	51\%	1.2\%	76,778	94,844	171,623	657	703	1,359	77,435	95,547	172,982	1\%	(15,765)	-8\%
Minimal Action			32,944	41,305	74,249	52\%	1.2\%										\#DIV/0!	(188,747)	-100\%
Rail with IMC			27,744	39,878	67,622	38\%	0.9\%	64,250	92,383	156,633	15,273	16,498	31,770	79,523	108,880	188,404	17\%	(343)	0%
AGS			27,473	39,489	66,961	37\%	0.9\%	63,870	91,836	155,705	15,714	16,974	32,688	79,584	108,810	188,394	17\%	(353)	0\%
Dual-Mode Bus (DMB)			28,413	40,820	69,232	41\%	1.0\%	65,720	94,452	160,171	13,857	16,196	30,053	79,577	110,648	190,225	16\%	1,478	1\%
Diesel Bus			28,403	40,806	69,209	41\%	1.0\%	65,697	94,420	160,117	13,850	16,188	30,038	79,548	110,607	190,155	16\%	1,408	1\%
6-Lane Highway			34,906	50,151	85,058	74\%	1.6\%	81,202	116,710	197,912	661	715	1,375	81,863	117,425	199,287	1\%	10,540	6\%
Reversible Lane			34,943	50,204	85,147	74\%	1.6\%	81,138	116,618	197,756	652	705	1,356	81,789	117,323	199,112	1\%	10,365	5\%
Combination 6-Lane Highway \& Rail with IMC			33,458	48,097	81,555	66\%	1.5\%	77,412	111,318	188,730	15,056	17,779	32,836	92,468	129,098	221,566	15\%	32,819	17\%
Combination 6-Lane Highway \& AGS			33,283	47,846	81,129	66\%	1.5\%	77,719	111,759	189,478	16,577	17,964	34,541	94,297	129,723	224,019	15\%	35,272	19\%
Combination 6-Lane Highway \& DMB			33,844	48,623	82,468	68\%	1.5\%	78,217	112,413	190,630	14,613	17,006	31,618	92,830	129,419	222,249	14\%	33,502	18\%
Combination 6-Lane Highway \& Diesel Bus			33,898	48,700	82,598	69\%	1.5\%	78,342	112,592	190,933	13,920	16,208	30,128	92,261	128,800	221,061	14\%	32,314	17\%
Minimum Program			27,945	40,738	68,684	40\%	1.0\%	65,219	95,031	160,250	15,674	16,996	32,671	80,893	112,027	192,921	17\%	4,174	2\%
Summer Sunday at Vail Pass	2000 Hwy. Vehicle	2000 Hwy. Person Trips	$\begin{aligned} & \text { WB } 2035 \\ & \text { Highway } \end{aligned}$	EB 2035 Highway	2035 Highway	\% Growth 2000 to 2035	Avg. \% Growth in VT	2035 WB Highway	2035 EB Highway	2035 Highway	2035 WB Transit	2035 EB Transit	2035 Transit	2035 WB Total	2035 EB Total	2035 Total	Transit as \% of Total	Trip Sup Induc	ssion/ ent
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	27,400	60,100	26,565	34,910	61,475	124\%	2.3\%	61,283	80,651	141,934	62	145	207	61,345	80,796	142,140	0\%		
No Action			26,291	32,058	58,349	113\%	2.2\%	60,896	74,325	135,221	70	138	208	60,966	74,464	135,429	0\%	(6,711)	5\%
Minimal Action			26,193	32,406	58,600	114\%	2.2\%										\#DIV/0!	(142,140)	100\%
Rail with IMC			23,766	31,397	55,163	101\%	2.0\%	54,524	72,107	126,631	7,255	7,769	15,023	61,779	79,875	141,655	11\%	86)	0\%
AGS			23,195	30,642	53,837	96\%	1.9\%	53,395	70,614	124,009	8,542	9,147	17,688	61,937	79,760	141,697	12\%	(443)	0\%
Dual-Mode Bus (DMB)			23,571	31,105	54,676	100\%	2.0\%	53,833	71,137	124,970	7,409	9,603	17,012	61,242	80,740	141,982	12\%	(159)	0\%
Diesel Bus			23,621	31,172	54,793	100\%	2.0\%	53,948	71,289	125,237	7,282	9,438	16,721	61,230	80,728	141,958	12\%	(182)	0\%
6-Lane Highway			26,620	35,128	61,748	125\%	2.3\%	61,490	81,256	142,746	73	136	210	61,564	81,392	142,956	0\%	815	1\%
Reversible Lane			26,614	35,120	61,734	125\%	2.3\%	61,431	81,176	142,607	73	135	208	61,504	81,312	142,815	0\%	675	0\%
Combination 6-Lane Highway \& Rail with IMC			25,730	33,976	59,705	118\%	2.3\%	58,851	77,815	136,666	7,140	8,830	15,971	65,992	86,645	152,637	10\%	10,496	7\%
Combination 6-Lane Highway \& AGS			25,176	33,268	58,444	113\%	2.2\%	58,337	77,162	135,499	9,020	9,668	18,687	67,356	86,830	154,186	12\%	12,046	8\%
Combination 6-Lane Highway \& DMB			25,671	33,879	59,550	117\%	2.2\%	58,629	77,480	136,109	7,750	10,090	17,840	66,379	87,569	153,949	12\%	11,808	8\%
Combination 6-Lane Highway \& Diesel Bus			25,723	33,948	59,671	118\%	2.2\%	58,751	77,641	136,393	7,431	9,585	17,016	66,182	87,227	153,409	11\%	11,269	8\%
Minimum Program			23,962	32,056	56,018	104\%	2.1\%	54,917	73,571	128,488	8,712	9,342	18,054	63,628	82,913	146,542	12\%	4,401	3\%

I-70 PEIS 2035 Travel Demand Estimates

Summer Sunday at Dowd Canyon	2000 Hwy.	$\begin{array}{\|c\|} \hline 2000 \text { Hwy. } \\ \text { Person Trips } \end{array}$	WB 2035	$\begin{aligned} & \hline \text { EB } 2035 \\ & \text { Highway } \end{aligned}$	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	$\begin{gathered} \text { \% Growth } \\ 2000 \text { to } 2035 \end{gathered}$	$\begin{array}{c\|} \text { Avg. \% } \\ \text { Growth in VT } \end{array}$	$\begin{aligned} & 2035 \text { WB } \\ & \text { Highway } \end{aligned}$	2035 EB Highway	$\begin{gathered} 2035 \\ \text { Highway } \end{gathered}$	2035 WB Transit	$\begin{gathered} \hline 2035 \text { EB } \\ \text { Transit } \end{gathered}$	$\begin{aligned} & \hline 2035 \\ & \text { Transit } \end{aligned}$	$\begin{aligned} & 2035 \text { WB } \\ & \text { Total } \end{aligned}$	$\begin{gathered} 2035 \text { EB } \\ \text { Total } \end{gathered}$	2035 Total PT	$\begin{array}{\|l\|} \hline \text { Transit as } \\ \% \text { of Total } \end{array}$	Trip Suppression/Inducement	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT	PT	PT	PT	PT	PT					PT Diff.	\% Diff.
Baseline	40,500	81,400	36,980	40,011	76,991	90\%	1.9\%	77,748	84,273	162,021	730	1,111	1,841	78,478	85,383	163,861	1\%		
No Action			36,040	39,763	75,804	87\%	1.8\%	76,144	84,138	160,283	730	1,111	1,841	76,874	85,249	162,123	1\%	(1,7	-1\%
Minimal Action			36,054	39,783	75,838	87\%	1.8\%										\#DIV/0!	(163,861)	-100\%
Rail with IMC			32,732	36,702	69,434	71\%	1.6\%	68,132	76,516	144,648	9,682	10,100	19,782	77,814	86,616	164,430	12\%	569	0\%
AGS			32,374	36,301	68,675	70\%	1.5\%	67,644	75,968	143,612	10,248	10,690	20,938	77,891	86,658	164,549	13\%	688	0\%
Dual-Mode Bus (DMB)			33,305	37,347	70,652	74\%	1.6\%	68,779	77,268	146,047	7,471	10,560	18,031	76,250	87,828	164,078	11\%	217	0\%
Diesel Bus			33,435	37,493	70,928	75\%	1.6\%	69,048	77,570	146,618	7,193	10,168	17,361	76,241	87,738	163,979	11\%	118	0\%
6 -Lane Highway			36,609	41,036	77,645	92\%	1.9\%	76,906	86,360	163,265	679	1,243	1,923	77,585	87,603	165,188	1\%	1,327	1\%
Reversible Lane			36,569	40,991	77,559	92\%	1.9\%	76,831	86,276	163,107	670	1,228	1,898	77,502	87,503	165,005	1\%	1,144	1\%
Combination 6-Lane Highway \& Rail with IMC			35,100	39,367	74,467	84\%	1.8\%	74,467	82,030	156,497	9,576	11,328	20,904	84,043	93,358	177,401	12\%	13,540	8\%
Combination 6-Lane Highway \& AGS			34,425	38,609	73,033	80\%	1.7\%	73,856	82,964	156,820	10,601	11,072	21,673	84,457	94,036	178,493	12\%	14,632	9\%
Combination 6-Lane Highway \& DMB			35,452	39,760	75,212	86\%	1.8\%	73,191	82,232	155,423	8,916	11,133	20,050	82,107	93,366	175,473	11\%	11,612	7\%
Combination 6-Lane Highway \& Diesel Bus			35,743	40,086	75,829	87\%	1.8\%	73,792	82,909	156,701	7,928	9,860	17,788	81,720	92,769	174,489	10\%	10,628	6\%
Minimum Program			32,354	36,312	68,666	70\%	1.5\%	67,604	76,509	144,113	10,233	10,729	20,962	77,837	87,238	165,075	13\%	1,214	1\%
Summer Sunday e/o Eagle					2035														
	Vehicle	Person Trips	Highway	Highway	Highway	$2000 \text { to } 2035$	Growth in VT	Highway	Highway	Highway	Transit	Transit	$\begin{aligned} & 2035 \\ & \text { Transit } \end{aligned}$	2035 WB Total	2035 EB Total	$2035 \text { Total }$	Transit as \% of Total	Inip Sup	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	28,100	61,100	32,195	41,164	73,359	161\%	2.8\%	70,743	90,557	161,300	606	616	1,222	71,349	91,173	162,522	1\%		
No Action			32,348	41,343	73,691	162\%	2.8\%	70,743	90,557	161,300	606	616	1,222	71,349	91,173	162,522	1\%		
Minimal Action			32,378	41,379	73,757	162\%	2.8\%										\#DIV/0!	(162,522)	-100\%
Rail with IMC			30,417	38,836	69,253	146\%	2.6\%	66,531	85,021	151,553	6,948	7,142	14,090	73,479	92,163	165,642	9\%	3,120	2\%
AGS			30,462	38,893	69,354	147\%	2.6\%	67,320	86,029	153,349	7,271	7,473	14,744	74,591	93,503	168,093	9\%	5,571	3\%
Dual-Mode Bus (DMB)			30,802	39,339	70,141	150\%	2.6\%	67,164	85,883	153,048	6,473	7,527	13,999	73,637	93,410	167,047	8\%	4,525	3\%
Diesel Bus			30,517	38,975	69,492	147\%	2.6\%	65,925	84,298	150,223	6,209	7,220	13,429	72,134	91,518	163,652	8\%	1,130	1\%
6-Lane Highway			33,254	42,439	75,693	169\%	2.9\%	72,999	93,268	166,267	622	634	1,256	73,622	93,901	167,523	1\%	5,001	3\%
Reversible Lane			33,313	42,514	75,827	170\%	2.9\%	73,258	93,598	166,856	620	631	1,251	73,878	94,229	168,107	1\%	5,585	3\%
Combination 6-Lane Highway \& Rail with IMC			31,102	39,709	70,811	152\%	2.7\%	67,846	86,695	154,541	6,921	7,082	14,004	74,767	93,777	168,544	8\%	6,023	4\%
Combination 6-Lane Highway \& AGS			30,564	39,026	69,590	148\%	2.6\%	67,550	86,330	153,880	7,389	7,591	14,980	74,939	93,921	168,860	9\%	6,338	4\%
Combination 6-Lane Highway \& DMB			31,655	40,435	72,090	157\%	2.7\%	69,640	89,062	158,702	6,614	7,635	14,249	76,254	96,697	172,951	8\%	10,429	6\%
Combination 6-Lane Highway \& Diesel Bus			31,308	39,991	71,299	154\%	2.7\%	67,565	86,406	153,971	6,299	7,314	13,613	73,864	93,720	167,583	8\%	5,062	3\%
Minimum Program			30,686	39,174	69,860	149\%	2.6\%	67,579	86,348	153,927	7,349	7,575	14,925	74,928	93,923	168,852	9\%	6,330	4\%
Summer Sunday at No Name																		Trip Sup	
	Vehicle	Person Trips	Highway	Highway	Highway	2000 to 2035	Growth in VT	Highway	Highway	Highway	Transit	Transit	Transit	Total	Total	2035 PT Total PT	\% of Total	Induc	
Alternative	Trips (VT)	(PT)	VT	VT	VT	VT	per Yr.	PT		PT	PT Diff.	\% Diff.							
Baseline	24,300	44,500	24,467	32,199	56,666	133\%	2.4\%	53,041	69,864	122,905	356	372	727	53,396	70,236	123,632	1\%		
No Action			24,466	32,217	56,683	133\%	2.4\%	53,041	69,864	122,905	356	369	724	53,396	70,233	123,629	1\%	3)	0\%
Minimal Action			24,511	32,257	56,768	134\%	2.5\%										\#DIV/0!	123,632)	100\%
Rail with IMC			24,242	31,849	56,091	131\%	2.4\%	52,340	68,799	121,139	1,927	1,903	3,830	54,268	70,702	124,969	3\%	1,337	1\%
AGS			24,215	31,813	56,027	131\%	2.4\%	52,335	68,792	121,127	1,934	1,909	3,842	54,269	70,701	124,969	3\%	1,337	1\%
Dual-Mode Bus (DMB)			23,272	30,612	53,885	122\%	2.3\%	49,800	65,554	115,355	5,969	6,755	12,725	55,769	72,310	128,079	10\%	4,447	4\%
Diesel Bus			23,057	30,329	53,386	120\%	2.3\%	49,340	64,948	114,288	5,966	6,752	12,718	55,306	71,700	127,006	10\%	3,374	3\%
6-Lane Highway			25,143	33,038	58,180	139\%	2.5\%	54,692	71,908	126,600	352	368	721	55,044	72,276	127,320	1\%	3,688	3\%
Reversible Lane			25,187	33,096	58,283	140\%	2.5\%	54,801	72,052	126,852	352	368	721	55,153	72,420	127,573	1\%	3,941	3\%
Combination 6-Lane Highway \& Rail with IMC			24,295	31,920	56,215	131\%	2.4\%	52,494	68,998	121,492	1,764	2,033	3,797	54,258	71,031	125,289	3\%	1,656	1\%
Combination 6-Lane Highway \& AGS			23,850	31,337	55,187	127\%	2.4\%	52,353	68,823	121,176	1,993	1,970	3,963	54,346	70,794	125,139	3\%	1,507	1\%
Combination 6-Lane Highway \& DMB			23,487	30,901	54,388	124\%	2.3\%	50,277	66,195	116,472	5,989	6,764	12,752	56,266	72,959	129,224	10\%	5,592	5\%
Combination 6-Lane Highway \& Diesel Bus			23,225	30,556	53,781	121\%	2.3\%	49,716	65,456	115,172	5,985	6,766	12,751	55,701	72,222	127,923	10\%	4,291	3\%
Minimum Program			24,240	31,839	56,079	131\%	2.4\%	52,381	68,830	121,210	1,923	1,914	3,837	54,304	70,743	125,047	3\%	1,415	1\%

Highway Travel Times

Highway Travel Times

Element of PRN		Free- Flow	2000	CE Aterative	${ }_{\text {Baseline }}^{2035}$	$\underset{\substack{\text { No Action } \\ \text { Alterative }}}{\text { a }}$		Transit Ateratives				Highway atteratives			Combination Highway/Trasitit Aternatives				
		2						3	4	5	6	7	8	9	10	11	12		
														${ }_{\text {c-Lane Highway with Rail and }}^{\text {ImC }}$	6 -Lane Highway with AGs	6-Lane Highway with Dual-Mode	6-Lane Hithway with Diesel Bus		
								Guideway System		Diesel ${ }_{\text {diel }}^{\text {Diess }}$	-Lane Highway 55 mph	6-Lane Highway 65 mph	Hov/for Lines						
														$9_{a-\text {-aium }}$					
Travel time:$\begin{aligned} & \text { summer } \\ & \text { weekday } \\ & \text { highway EB }\end{aligned}$	Clienvod Springs to Eagle Count Line		15	15												16	$\xrightarrow{10}{ }_{10 a}^{16}$	II Ila 16	12 $12 a$ 16
	(Friday		15	15	16	18	16	16	16	16	16	16	16	16	16	$\frac{9 a}{9 b}$	${ }_{\substack{10 a}}^{100}$	${ }_{\text {Ila }}^{\text {Il }}$	${ }^{12 a}$
																${ }^{9} 9$	${ }_{10 a}^{10}{ }^{10}{ }^{42}$	11 10 42	${ }^{12} \times 42$
	Eaale Couny Line to Edxards (friday)		${ }^{26}$	32	${ }^{42}$	231	70	68	66	67	67	70	${ }^{43}$	${ }^{43}$	${ }^{43}$	$\frac{9 a}{9 b}$	${ }_{1}^{10 a}$	$\frac{11 a}{1 / b}$	${ }_{1}^{12 a}$
																30	$10 \quad 30$	11	12
	Exwars Io vail East Entrance (friday)	15	22	30	66	61	61	61	61	${ }^{62}$	${ }^{63}$	${ }^{31}$	${ }^{31}$	${ }^{31}$	$\frac{9 a}{9 b}$	${ }_{1}^{10 a}$	$\frac{11 a}{11 b}$	${ }_{1}^{12 a}$	
	Vail East Entrance to Copper Mountain	16	16	20	${ }^{23}$	26	26	${ }^{26}$	26	${ }^{26}$	${ }^{26}$	22	22	22	${ }^{20}$	${ }_{10 a}^{10}{ }^{\text {20 }}$	${ }_{\text {ll }}^{11}$ - ${ }^{21}$	${ }_{12}^{12}$	
	(Fiday	16			${ }^{23}$						${ }^{26}$	22	22	22	$\frac{9 a}{9 b}$	${ }_{\text {Ioa }}^{10}$	$\frac{11 a b}{1!}$	${ }_{12 a}^{126}$	
	Copper Mountai to Silverthome	9	12	11	${ }^{12}$	12	12	12	12	${ }^{12}$	${ }^{12}$	12	12	12	11	${ }_{\substack{10 \\ 10 a}}$	${ }_{\text {IIa }}^{\text {IIa }}$	${ }_{12}^{12}$	
	(Thursay)														$\frac{9 a}{9 b}$	${ }_{\text {IVab }}^{10}$	${ }_{\text {Ila }}$		
	Silvertorne to Loveland Pass mierchange	12	12	14	${ }^{21}$	21	18	14	14	14	14	17	17	22	16	${ }_{10}^{10}$	${ }_{\text {Il }}^{\text {IIa }}$	${ }_{12}^{12}$	
	(Thussay)														${ }_{9}$		${ }_{\text {Il }}$	${ }_{12}^{12}$	
	Loveland Pass Interchange to Downieville	16	16	26	54	54	38	22	22	23	${ }^{23}$	19	19	20	${ }^{18}$	${ }_{10 a}^{10}{ }_{10}{ }^{18}$	11 $11 a$	12 $12 a$	
															$9 b$		${ }^{\text {Ilb }}$	${ }_{12}{ }^{12}$	
	Downieville to Hiden Valley (Thursay)	8	8	19	21	21	17	14	14	14	14	10	10	11	10	${ }_{10}^{10}{ }_{10}^{10}$	${ }_{\text {lla }}^{11} \quad 10$	${ }_{12 a}^{12} \quad 10$	
	Hidden Valleyto Beave Brook (Thurstay)	5	5	7	6	6	6	7	7	7	7	7	7	7	${ }_{9 a}^{9} \quad{ }^{9}$	${ }_{10}^{10} \longrightarrow$	$\stackrel{\text { Ila }}{11}$	${ }_{12 a}^{12}$	
															9	10	${ }^{\text {IIb }}$		
	Baver Brook to C.470 (Thurstay)	11	14	16	17	17	16	16	16	16	16	17	17	17	$\frac{9}{9 a}$	${ }_{10 a}^{10}{ }_{10}{ }^{16}$		${ }_{12 a}^{12}$	
																$\stackrel{100}{10}$	$\stackrel{116}{l \mid}$		
Travel time: summer weekday highway WB	C.470 to Beaver Brook (Thurstay)	12	15	51	102	35	34	${ }^{3}$	${ }^{34}$	${ }^{34}$	${ }^{34}$	19	19	19	19	${ }_{10 a}^{10}$	$\stackrel{1}{11 a}$	${ }_{12 a}^{12}$	
															9	$\frac{106}{10}$	${ }_{\text {Ilb }}{ }^{\text {l }}$	${ }_{12}^{12}$	
	Beaver Brook to Hidden Valley (Thussay)	5	5	10	22	12	12	12	12	12	12	7	7	5	${ }_{9 a}^{9} \quad 7$	${ }_{100}^{10}$	$\stackrel{7}{11 a}$	${ }_{12 a}^{12} \quad 7$	
															${ }_{9}{ }_{9}$	${ }_{10}^{10}$	${ }_{\text {llb }}^{11} \quad 12$	${ }_{12}^{12}$	
	Hidden Valley to Downieville (Thursay)	8	8	17	34	18	18	18	19	20	20	12	12	8	${ }_{9 a}{ }_{9}$	${ }_{10 a}^{10}$	${ }_{\text {Ila }}$	${ }_{12 a}^{12}$	
															92	${ }_{10}^{10}{ }^{10}$	$\stackrel{116}{11} \quad 29$	${ }^{12} \times 2$	
	Downievill (Thursday)	18	18	${ }^{41}$	${ }^{47}$	${ }^{38}$	${ }^{37}$	${ }^{36}$	${ }^{36}$	37	${ }^{37}$	29	29	28	9	10	${ }_{\text {Ila }}$	${ }^{12}$	
															${ }_{9}{ }^{12}$	${ }_{10}^{10}{ }^{12}$	${ }_{11}{ }^{11}$	${ }_{12}^{126}{ }^{12}$	
	$\begin{aligned} & \text { Loveland P } \\ & \text { (Thursday) } \end{aligned}$	10	10	12	12	11	12	12	12	12	12	12	12	12	$\frac{9 a}{9 a}$	$\frac{10 a}{10 a}$	$\frac{11 a}{\text { In }}$	${ }^{12 a}$	
															$9 \quad 16$	$10 \quad 16$	${ }^{\text {II }}$	$12 \quad 16$	
	$\begin{aligned} & \text { Silverthorn } \\ & \text { (Thursday) } \end{aligned}$	9	12	15	76	${ }^{43}$	44	44	${ }^{43}$	45	${ }^{44}$	16	16	16	$\frac{9 a}{9 b}$	${ }_{\substack{10 a}}^{10 a}$	$\frac{11 a}{\text { Il }}$	${ }_{\substack{12 a \\ 12 a}}^{12}$	
															$9 \quad 20$	$10 \quad 19$	${ }^{\text {II }}$	${ }_{12}^{12} \quad 20$	
	(Firiay)	15	15	19	177	70	77	${ }^{84}$	${ }^{85}$	${ }^{85}$	${ }^{84}$	20	20	20	$\frac{9 a}{a b}$	${ }_{\text {loa }}^{10 a}$	$\frac{11 a}{l \mid}$	${ }_{\substack{12 a \\ 12 a}}^{\text {a }}$	
															$9{ }^{23}$	$10 \quad 23$	${ }^{11} \quad{ }^{24}$	$12 \quad 24$	
	Vail East Entrance to Eduards (Friday)	15	25	${ }^{23}$	${ }^{82}$	48	49	50	50	50	50	26	26	${ }^{26}$	9	${ }_{\text {Ioa }}^{100}$	${ }_{\text {Ila }}^{\text {Ila }}$	${ }_{\text {l }}^{12 a}$	
															$9{ }^{38}$	$10 \quad 38$	${ }^{11} \quad 38$	12	
	Edwards to Eagle County Line (Firiay)	26	30	35	${ }^{35}$	${ }^{36}$	36	36	${ }^{36}$	${ }^{36}$	${ }^{36}$	${ }^{38}$	${ }^{38}$	${ }^{38}$	$\frac{9 a}{9 b}$	$\frac{10 a}{10 a}$	${ }_{\text {Ila }}{ }_{\text {Il }}$	${ }_{12 a}^{12}$	
	Eagle County Line to Glenwood Springs	15	15	15	15	15	15	15	15	15	15	15	15	15	9 9	${ }_{10 a}^{10}{ }^{10}$	${ }_{\text {Il }}^{11} \times 15$	${ }_{12 a}^{12} \quad{ }^{15}$	
															${ }^{\text {b }}$	106	${ }^{\text {Ilb }}$	126	

Highway Travel Times

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{6}{*}{Element of PRN}} \& \multirow{6}{*}{Free-Flow} \& \multirow{6}{*}{2000} \& \multirow{6}{*}{CE Aterative} \& \multirow{6}{*}{\({ }_{\text {Baseline }}^{2035}\)} \& \multirow{6}{*}{\(\underset{\substack{\text { No Action } \\ \text { Alterative }}}{\text { a }}\)} \& \multirow{6}{*}{\begin{tabular}{l}
Minimal Action \\
Alternative
\end{tabular}} \& \multicolumn{4}{|c|}{Transit Aternatives} \& \multicolumn{3}{|c|}{Highway atteratives} \& \multicolumn{4}{|c|}{Combination Highway/Trasitit Aternatives} \\
\hline \& \& \& \& \& \& \& \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& 9 \& 10 \& 11 \& 12 \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \({ }_{\text {c-Lane Highway with Rail and }}^{\text {ImC }}\) \& 6 -Lane Highway with AGs \& 6-Lane Highway with Dual-Mode \& 6-Lane Hithway with Diesel Bus \\
\hline \& \& \& \& \& \& \& \& \& Guideway
System \& \& diesel Ius \& 6-Lane Highway
55 mph \& 6-Lane Highway
65 mph \& Hov/for Lines \& \& \& \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \(9_{a-\text {-aium }}\) \& \& \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \multirow{20}{*}{summer Saturday highway E} \& Glenwood Springs to Eagle Couny Line \& \& 15 \& 15 \& \& \& \& \& \& 15 \& 15 \& \& \& \& \({ }_{9}{ }^{\circ} \quad 15\) \& \({ }_{10}^{10}{ }_{10}{ }^{15}\) \& \begin{tabular}{ll}
II \& 15 \\
\hline 10 \&
\end{tabular} \& \\
\hline \& \({ }^{\text {cienwood Spings } 10 \text { Eagle Couny Line }}\) \& 15 \& 15 \& 15 \& 15 \& 15 \& 15 \& 15 \& 15 \& 15 \& 15 \& 18 \& 18 \& 18 \& \(\frac{9}{9}\) \& \({ }_{\text {Ita }}^{106}\) \& \({ }_{\text {Ila }}\) \& \({ }_{\substack{12 a \\ 126}}\) \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \({ }^{34}\) \& \({ }^{10} \quad 35\) \& \({ }^{11}{ }^{35}\) \& \(12 \quad 36\) \\
\hline \& Eagle Conny Line to Edwards \& \({ }^{26}\) \& 28 \& 35 \& \({ }^{41}\) \& \({ }^{41}\) \& 40 \& 38 \& \({ }^{38}\) \& \({ }^{38}\) \& \({ }^{38}\) \& \({ }^{38}\) \& \({ }^{38}\) \& \({ }^{38}\) \& \& \({ }^{10 a}\) \& \(\frac{1 l a}{\text { Ilb }}\) \& \({ }_{\substack{12 a \\ 120}}^{\text {a }}\) \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \({ }^{21}\) \& \({ }_{10}^{10} \quad 21\) \& \({ }^{11}\) \& \({ }_{12}^{12} \quad 23\) \\
\hline \& Etwards to vall East Entrance \& 15 \& 17 \& \({ }^{23}\) \& \({ }^{28}\) \& 28 \& \({ }^{26}\) \& 24 \& \({ }^{24}\) \& 25 \& \({ }^{27}\) \& 25 \& 25 \& 25 \& \({ }_{\substack{9 a}}^{\substack{\text { ab }}}\) \& \({ }_{1}^{10 a}\) \& \(\frac{11 a}{11 b}\) \& \(\frac{12 a}{12 b}\) \\
\hline \& Vail East Entrancel I Coperer Mountin \& 16 \& 18 \& 16 \& 30 \& 30 \& 28 \& \({ }^{26}\) \& \({ }^{27}\) \& \({ }^{27}\) \& \({ }^{27}\) \& \({ }^{23}\) \& \({ }^{23}\) \& \({ }^{23}\) \& 22 \& \({ }_{10}^{10}\) \& Il

11 \& ${ }_{12}^{12}$

\hline \& Vait Easit Enranace lo Copper Mounain \& 16 \& 18 \& 16 \& ${ }^{30}$ \& ${ }^{30}$ \& ${ }^{28}$ \& ${ }^{26}$ \& ${ }^{27}$ \& ${ }^{27}$ \& ${ }^{27}$ \& ${ }^{23}$ \& ${ }^{23}$ \& ${ }^{23}$ \& $\frac{9 a}{9 b}$ \& ${ }_{\text {Ioa }}^{10}$ \& $\frac{11 a b}{1!}$ \& ${ }_{12 a}^{126}$

\hline \& Copper Mountain to Silverthorne \& 9 \& 10 \& ${ }^{11}$ \& ${ }^{12}$ \& ${ }^{12}$ \& 12 \& 12 \& 12 \& 12 \& ${ }^{13}$ \& 16 \& 16 \& 16 \& ${ }_{9 a}^{9} \quad 11$ \& ${ }_{10 a}^{10} \quad{ }^{11}$ \& ${ }_{\text {Il }}^{11}$ \& ${ }^{12}$

\hline \& copper Mounain o Siveriome \& \& \& \& \& \& \& \& 12 \& 12 \& 13 \& \& \& \& ${ }_{9 b}{ }_{9 b}$ \& ${ }_{\text {IVab }}^{10}$ \& \&

\hline \& Silvertome to Loveland Pass niercrange \& 12 \& 12 \& 12 \& 22 \& 22 \& 20 \& 17 \& 17 \& 17 \& 18 \& 17 \& 17 \& 18 \& ${ }_{9}^{9} \quad 15$ \& ${ }_{10}^{10}{ }_{10} \quad 15$ \& \& ${ }_{12 a}^{12} \quad 16$

\hline \& sivertuone ot Loveland Pass fierechange \& 12 \& 12 \& 12 \& ${ }^{22}$ \& 22 \& 20 \& 17 \& 17 \& 17 \& 18 \& 17 \& 17 \& 18 \& $\frac{9 a}{9 b}$ \& ${ }_{\text {coab }}^{10}$ \& ${ }_{\text {ILI }}$ \& ${ }_{12 a}^{12 a}$

\hline \& Loveland Pass Inecrchange to Downieville \& 16 \& 20 \& 32 \& 67 \& 67 \& 47 \& 27 \& 27 \& 28 \& 28 \& 24 \& 24 \& 26 \& ${ }_{9 a}^{9} \quad 22$ \& ${ }_{10 a}^{10} \quad 22$ \& ${ }^{11} \times 2$ \& ${ }_{12 a}^{12} \quad 22$

\hline \& \& 16 \& \& 32 \& 6 \& 67 \& 47 \& 27 \& 27 \& 28 \& \& \& \& \& $9 b$ \& 10a \& \&

\hline \& rieville to Hiden Valley \& 8 \& 10 \& 24 \& 27 \& 27 \& 22 \& 18 \& 18 \& 18 \& 18 \& 13 \& 13 \& 22 \& ${ }^{13}$ \& ${ }_{10 a}^{10} \quad{ }^{13}$ \& ${ }_{1 l a}^{11}{ }^{\text {Il }}$ \& ${ }_{12 a}^{12} \quad{ }^{13}$

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& ${ }^{\text {Ilb }}$ \&

\hline \& Hiden Valley t Baver Brook \& 5 \& 5 \& 8 \& 7 \& 7 \& 7 \& 8 \& 8 \& 8 \& 8 \& 8 \& 8 \& 8 \& $\stackrel{9}{9 a}$ \& ${ }_{10 a}^{10}$ \& ${ }_{\text {IIa }}^{\text {IIa }}$ \& ${ }_{12}^{12}$

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& 9 \& ${ }^{106}$ \& ${ }^{\text {Ilb }}$ \& ${ }^{126}$

\hline \& Baaer Brook to C.470 \& ${ }_{11}$ \& 14 \& 16 \& 17 \& ${ }^{17}$ \& 16 \& 16 \& 16 \& 16 \& 16 \& 17 \& 17 \& 17 \& ${ }_{9 a}^{9 a}$ \& ${ }_{10 a}^{10}{ }_{10}^{16}$ \& ${ }_{\text {Ila }}^{11}{ }^{16}$ \& ${ }_{12 a}^{12} \quad 16$

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& 9 \& \& \&

\hline \multirow{19}{*}{Travel time: summer Saturday highway WB} \& C.470 to Beaver Brook \& ${ }_{12}$ \& 16 \& 49 \& ${ }^{123}$ \& 30 \& 31 \& 31 \& ${ }_{3}$ \& ${ }^{33}$ \& ${ }^{33}$ \& 42 \& 42 \& 11 \& ${ }^{43}$ \& ${ }_{10 a}^{10}{ }^{\text {a }}$ \& $\frac{11}{11 a}$ \& ${ }_{12 a}^{12}$

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& gb \& ${ }^{10}$ \& \&

\hline \& Beaver Brook to Hididen Valley \& 5 \& 7 \& ${ }^{8}$ \& 15 \& ${ }^{11}$ \& 10 \& 10 \& 10 \& 10 \& 10 \& 9 \& 9 \& 5 \& ${ }_{9}{ }_{9}$ \& ${ }_{10}^{10}$ \& ${ }_{\text {IIa }}^{\text {IIa }}$ \& ${ }_{12}^{12}$

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& 9 \& 10 \& ${ }^{\text {Ilb }}$ \&

\hline \& Hidden Valley to Downieville \& 8 \& 12 \& 15 \& 26 \& 18 \& 17 \& 16 \& 17 \& 18 \& 18 \& 16 \& 16 \& 11 \& ${ }_{9 a}^{9} \quad 14$ \& ${ }_{10 a}^{10} \quad{ }^{13}$ \& ${ }_{\text {Il }}^{11}{ }^{\text {II }}$ \& ${ }_{12}^{12} \quad{ }^{12}$

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& ${ }^{106}$ \& ${ }^{11}$ \&

\hline \& Downieville to Loveland Pass minerchange \& 18 \& 26 \& 31 \& ${ }^{38}$ \& 44 \& 42 \& 39 \& 38 \& 40 \& ${ }^{39}$ \& ${ }^{30}$ \& ${ }^{30}$ \& ${ }^{34}$ \& ${ }_{9 a}^{9} \quad{ }^{25}$ \& ${ }_{10 a}^{10} \quad{ }^{25}$ \& $\stackrel{11}{11 a}$ \& ${ }_{12 a}^{12} \quad 27$

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& $9{ }^{\text {g }}$ \& 1 10b \& ${ }^{\text {Ilb }}$ \& ${ }^{12}$

\hline \& Loveland Pass Interchange to Silverthome \& 10 \& 12 \& 12 \& 11 \& 11 \& 11 \& 11 \& 11 \& 11 \& 11 \& 13 \& 13 \& 18 \& ${ }_{9 a}^{9} \quad 11$ \& ${ }_{10}^{10}{ }_{10}^{10}$ \& ${ }_{\text {lla }}^{11} \quad 12$ \& ${ }_{12}^{12} \quad 12$

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& 9 \& ${ }^{106}$ \& ${ }_{1!}^{1 l}$ \&

\hline \& Silverthome to Copper Mountain \& 9 \& 10 \& 27 \& 14 \& 13 \& 13 \& 12 \& 12 \& ${ }^{13}$ \& ${ }^{13}$ \& 18 \& 18 \& 18 \& ${ }_{9 a}^{9} \quad 14$ \& ${ }_{10 a}^{10}{ }^{14}$ \& ${ }_{\text {IIa }}^{1 /}$ \& ${ }_{12 a}^{12} \quad 14$

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& ${ }_{9}{ }_{0}$ \& ${ }_{10}^{10}$ \& ${ }_{\text {llb }}^{11}$ \& ${ }_{12}^{12}$

\hline \& Copper Mountain to vail East Entrance \& 15 \& 17 \& ${ }^{21}$ \& ${ }^{25}$ \& 24 \& 24 \& ${ }^{23}$ \& ${ }^{23}$ \& ${ }^{23}$ \& ${ }^{23}$ \& 26 \& 26 \& 26 \& $9{ }_{9}$ \& ${ }_{10}{ }^{10}$ \& ${ }_{\text {Ila }}$ \& ${ }_{12}{ }^{2}$

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& 20 \& ${ }^{100}$ \& ${ }_{11}^{116}$ \& ${ }_{12}^{12}$

\hline \& \& 15 \& 18 \& 18 \& 60 \& 60 \& 54 \& 48 \& 48 \& 51 \& 52 \& 22 \& 22 \& 22 \& , \& ${ }_{10}^{10}$ \& Ila \& ${ }_{12}^{12}$

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& ${ }_{9}{ }^{34}$ \& ${ }_{10}^{10}$ \& ${ }_{11} 11$ \& ${ }_{12}^{12}$ - ${ }^{35}$

\hline \& Is to Eagle Couny Line \& 26 \& ${ }^{26}$ \& 12 \& ${ }^{35}$ \& 34 \& 32 \& 30 \& ${ }^{30}$ \& ${ }^{30}$ \& ${ }^{30}$ \& ${ }^{36}$ \& ${ }^{36}$ \& 36 \& $\frac{9 a}{9 b}$ \& ${ }_{\text {lob }}^{100}$ \& $\frac{11 a}{11 b}$ \& ${ }_{1}^{12 a}$

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& ${ }^{15}$ \& ${ }_{10}^{10} \quad 15$ \& ${ }^{\text {II }}$ \& ${ }_{12}{ }^{15}$

\hline \& Eagle Count Line to Glenvod Springs \& 15 \& 15 \& 15 \& 15 \& 15 \& 15 \& 15 \& 15 \& 15 \& 15 \& 15 \& 15 \& 15 \& $\frac{9 a}{9 b}$ \& $\frac{10 a}{106}$ \& $\frac{11 a}{I l b}$ \& ${ }_{1}^{12 a}$

\hline
\end{tabular}

Highway Travel Times

Element of PRN		Free- Fow	2000	CE Aterrative	${ }_{\text {Baseline }}^{2035}$	$\underset{\substack{\text { No Action } \\ \text { Alterative }}}{\text { a }}$		Transit Ateratives				Highway atteratives			Combination Highway/Trasitit Aternatives				
		2						3	4	5	6	7	8	9	10	11	12		
														${ }_{\text {c-Lane Highway with Rail and }}^{\text {ImC }}$	6-Lane Highway with Ass	6-Lane Highway with Dual-Mode	6-Lane Hithway with Diesel Bus		
								Guideway System		Din Sesel us	-Lane Highway 55 mph	6-Lane Highway 65 mph	Hov/for Lines						
														$9_{a-\text {-aium }}$					
Travel time: summer Sunday highway EB	Glenvood Springs to Eagle Couny Line		15	15	16					15			18		18	9 9	$\xrightarrow{10}{ }_{10}^{10}{ }_{10}$	II Ila 1	12 $12 a$ 16
	Clenwood Springs to Eagle Couny Line		15	15	16	16	16	16	16	15	16	16	18	18	18	$\frac{9}{9}$	${ }_{\text {Ita }}^{106}$	${ }_{\text {Ila }}$	${ }^{12 a}$
																${ }^{41}$	$10 \quad 41$	${ }^{11}$	$12 \quad 42$
	Eagle Couny Line to Edvards		26	32	39	${ }^{58}$	58	53	47	47	50	47	${ }^{43}$	${ }^{43}$	${ }^{43}$	$\frac{9 a}{9 b}$	${ }_{\substack{10 a}}^{10 a}$	${ }_{\text {Ila }}^{\text {Ila }}$	$\frac{12 a}{12 b}$
																${ }^{24}$	${ }^{10}$	${ }^{\text {II }}$	$12 \quad 25$
	Eawars to vail Eas Entrance	15	18	${ }^{23}$	29	29	${ }^{26}$	22	${ }^{22}$	${ }^{23}$	${ }^{24}$	${ }^{26}$	${ }^{26}$	${ }^{26}$	$\frac{9 a}{9 b}$	${ }_{10 a}^{100}$	${ }_{\text {Ila }}^{\text {Ila }}$	${ }_{1}^{12 a}$	
	Vail East Entranecto Copper Mountain		22	20	${ }^{31}$	${ }^{31}$	30	28	${ }^{28}$	${ }^{28}$	${ }^{28}$	24	24	24	22	${ }_{10}^{10}{ }^{21}$	${ }^{11} \quad 22$	12	
	Vait East Enranace lo Copper Mountain	16	22	20	${ }^{31}$	${ }^{11}$	${ }^{30}$	${ }^{28}$	${ }^{28}$	${ }^{28}$	${ }^{28}$	${ }^{24}$	${ }^{24}$	${ }^{24}$	$\frac{9 a}{9 b}$	${ }_{1}^{10 a}$	${ }_{\text {Ila }}{ }_{\text {Il }}$	${ }_{12 a}^{12 a}$	
	Copper Moumain to Silverthome	9	12	${ }^{12}$	25	25	24	22	20	25	25	17	17	17	14	${ }^{10} \quad 14$	${ }^{11} \quad 15$	12	
															${ }_{9}$				
	Silvertome to Loveland Pass niercrange	12	25	15	231	53	54	54	53	55	${ }_{5} 5$	18	18	17	${ }^{9}+\quad 20$	${ }_{10 a}^{10}$	${ }_{\text {Ila }} \mathrm{Il}$ - 20	${ }_{12 a}^{12} \quad 21$	
	Loveland Pass mercrhange to Downieville	16	39	35	164	42	37	31	32	${ }^{32}$	${ }^{32}$	${ }^{24}$	${ }^{24}$	${ }^{23}$	${ }^{9} 90 \quad 20$	${ }_{10 a}^{10} \quad{ }^{20}$		${ }_{12 a}^{12} \quad 20$	
															$9{ }^{\text {a }}$	${ }^{10}$	${ }^{1 / 6}$	126	
	Downieville to Hidden Valley	8	20	30	52	${ }^{43}$	${ }^{43}$	44	45	45	${ }^{44}$	21	21	20	18	${ }_{10 a}^{10}{ }_{10}{ }^{18}$	11 $11 a$ 18 18	${ }_{12}^{12} \times 19$	
																${ }^{106}$	${ }^{\text {Ilb }}$		
	Hidden Valley lo Baver Brook	5	6	6	6	6	6	6	6	6	6	9	9	9	${ }_{9}$	${ }_{10}^{10}$	${ }_{11}^{11} \quad 10$	${ }_{12 a}^{12} \quad 10$	
															gb	100	${ }^{11}$		
	Beave Brook to C.470	11	12	25	18	${ }^{17}$	16	15	15	16	16	15	15	16	${ }_{90}{ }^{9} \quad 16$	${ }_{10}^{10}{ }^{16}$	${ }_{\text {Il }}^{11}$	${ }_{12}^{12}$	
	Seaversrookoc-470														$\frac{9 a}{9 b}$	${ }_{\text {or }}^{10 a}$			
Travel time: summer Sunday highway WB	C.470 to Beaver Brok	${ }^{12}$	${ }^{13}$	45	${ }^{89}$	${ }^{31}$	30	29	${ }^{30}$	${ }^{30}$	${ }^{30}$	${ }^{17}$	${ }^{17}$	15	17	${ }^{10}{ }^{17}$	${ }^{\text {II }}$	${ }_{12}^{12}$	
	C-4nobearemook											17	1		${ }_{9}{ }^{\text {a }}$	${ }_{10}^{106}$	${ }_{\text {Il }}{ }^{\text {ab }}$		
	Baver Brook to Hidden Valley	5	5	11	22	12	12	12	12	${ }^{13}$	${ }^{13}$	${ }^{8}$	8	7	$\stackrel{9}{9}$	${ }_{10}^{10}$	${ }_{\text {Ila }}^{11}$	${ }_{12}^{12}$	
															$9 b$	${ }^{10}$	${ }^{1 /}$	126	
	Hidden Valley to Downieville	8	10	20	42	22	22	22	23	24	24	14	14	19	14	${ }_{10 a}^{10} \quad{ }^{14}$		${ }_{12 a}^{12} \quad 14$	
															9b				
	Downieville to Loveland Pass niterchange	18	22	26	32	37	35	${ }^{3}$	32	${ }^{34}$	${ }^{33}$	25	25	29	${ }_{9 a}^{9} \quad 21$	${ }_{10 a}^{10} \quad{ }^{21}$	${ }_{\text {Illa }}^{11} \quad{ }^{\text {II }}$	${ }_{12}^{12}$	
															g	10	${ }^{1 l}$	${ }^{12}$	
	Pland Pass herchane to Siverthome	${ }^{10}$	${ }^{12}$	14	14	13	13	14	14	14	14	14	14	${ }^{17}$	14	${ }_{10}^{10}$	${ }_{1 l}^{\text {Il }}$	${ }^{12}$	
	Sveland Pass Inerchange co siveritome														${ }_{0}$	${ }_{\text {Ioa }}^{10}$	${ }_{\text {Ila }}$	${ }_{12 a}^{12 a}$	
	Silvertome to Copper Mountain	9	9	11	57	32	33	33	32	${ }^{34}$	${ }^{33}$	${ }^{12}$	12	12	12	(10a		${ }_{\substack{12 a \\ 120}}^{120}$	
															-				
	Copper Mountain to Vail East Entance	15	15	19	22	${ }^{21}$	${ }^{21}$	20	20	20	20	${ }^{23}$	${ }^{23}$	${ }_{23}$			${ }^{1 l}{ }^{1 l a}$	${ }_{12}^{12} \quad 22$	
	Vail East Entance to Edvards	15	15	15	50	50	45	40	40	${ }^{43}$	${ }^{43}$	18	18	18	${ }_{9}{ }^{17}$	(100	$\stackrel{\text { Ila }}{\text { Ilb }}$	${ }_{\substack{12 a}}^{12} \times 18$	
															$9{ }^{5}$				
	Edwardsto Eaglc Count Line	${ }^{26}$	26	12	${ }^{35}$	${ }^{34}$	32	30	${ }^{30}$	${ }^{30}$	${ }^{30}$	36	${ }^{36}$	${ }^{36}$	${ }_{9 a}^{9 a} \quad 3$		${ }_{\text {Ilab }}^{\text {Ila }}$	$\xrightarrow{12}$	
															${ }_{9}$				
	Eagle Conty Line to Glenvod Springs	15	15	15	15	15	15	15	15	15	15	15	15	15	${ }^{9} 9{ }^{9} \times$	$\xrightarrow{10 a}$		${ }_{\substack{12 a \\ 120}}^{120}$	
															96				

Transit Travel Times

\begin{tabular}{|c|}
\hline \multirow{16}{*}{Travel time: summer weekday transit EB} \& \(|\)\begin{tabular}{l}
\(\begin{array}{l}\text { Glenwood Springs to Eagle County Line } \\
\text { (Friday }\end{array}\) \\
\hline
\end{tabular} \& N/A \& 16 \& 16 \& 16 \& 16 \& N/A \& N/A \& N/A \& \(\frac{9}{9 a}\) \& \begin{tabular}{l}
16 \\
\(\begin{array}{l}16 \\
\text { NA }\end{array}\) \\
\hline 1
\end{tabular} \& \begin{tabular}{l}
10 \\
100 \\
100 \\
\hline 10
\end{tabular} \& 16
16
N/ \& \(\stackrel{I l}{1 / a}\) \& \begin{tabular}{|c}
16 \\
16 \\
N/
\end{tabular} \& 12
\(12 a\)
\(12 b\)
\(12 a\) \& 16
\(1 / 8\)
N/ \& 16 \& 16 \& 16 \& 16 \\
\hline \& Easale County Line to Edwards (Friday) \& N/A \& 62 \& 54 \& 46 \& 48 \& N/A \& N/A \& N/A \& \(\stackrel{9}{9 a}\) \& \(\begin{array}{r}58 \\ 62 \\ \hline\end{array}\) \& \({ }_{10}^{10 a}\) \& \({ }_{54}{ }_{5}\) \& \({ }_{\text {Il }}^{\text {IIa }}\) \& 48
46 \& \({ }_{12}^{12 a}\) \& \begin{tabular}{l}
50 \\
48 \\
\hline 8
\end{tabular} \& 45 \& 45 \& 49 \& 49 \\
\hline \& \& \& \& \& \& \& \& \& \& g \({ }^{\text {b }}\) \& N/A
26 \& \(\frac{100}{10}\) \& \(\stackrel{\text { N/A }}{17}\) \& \(\stackrel{I l b}{l \mid}\) \& \({ }^{\text {N/A }}\) \& \({ }_{12}^{12}\) \& N/A
20 \& \& \& \& \\
\hline \& Edwards to Vail East Entrance \& N/A \& \({ }^{26}\) \& 17 \& 19 \& \({ }^{20}\) \& N/A \& N/A \& N/A \& \(\frac{9 a}{9 b}\) \& 26
NA \& \(\stackrel{10 a}{10 b}\) \& \({ }_{\text {17/A }}^{17}\) \& \({ }_{\text {Ilab }}^{\text {Ilab }}\) \& \(\stackrel{19}{\text { NA }}\) \& \& \({ }_{20}^{20}\) \& 17 \& \({ }^{17}\) \& 17 \& \({ }^{17}\) \\
\hline \& Vail East Entrance to Copper Moumtain \& N/A \& 23 \& 19 \& 22 \& 24 \& N/A \& N/A \& N/A \& \({ }_{9}{ }^{\text {a }}\) \& \({ }_{23}^{23}\) \& \(\stackrel{10}{10 a}\) \& 19
19 \& \({ }_{\text {IIa }}^{\text {IIa }}\) \& \({ }_{22}^{22}\) \& \({ }_{12 a}^{12}\) \& \({ }_{24}^{24}\) \& 19 \& 19 \& 19 \& 19 \\
\hline \& Var East Enrance to Copper Mommain \& N/A \& 23 \& 19 \& 22 \& 24 \& N/A \& N/A \& N/A \& \(\frac{9 a}{9 b}\) \& \(\stackrel{23}{\text { N/ }}\) \& \(\frac{10 a}{10 b_{0}}\) \& \({ }_{\text {N/A }}\) \& \& \({ }_{\text {N/A }}\) \& \& \({ }_{\text {N/A }}\) \& 19 \& 19 \& 19 \& 19 \\
\hline \& Copper Mountain to Siverthome \& n/A \& 17 \& 15 \& 16 \& 17 \& N/A \& N/A \& N/A \& \({ }_{9 a}\) \& \({ }_{17}^{17}\) \& \({ }^{10}\) \& \({ }_{15}^{15}\) \& \({ }_{\text {Ila }}^{\text {IIa }}\) \& \({ }_{16}^{16}\) \& \({ }_{12 a}^{12}\) \& \({ }_{17}^{17}\) \& 15 \& 15 \& 15 \& 15 \\
\hline \& \& \& \& \& \& \& \& \& \& 9 \& \(\stackrel{\mathrm{N} / \mathrm{A}}{14}\) \& \({ }^{100}\) \& \({ }_{1}^{\text {N/A }}\) \& \({ }_{11}^{111}\) \& N/A
15 \& \({ }_{1}^{12}\) \& \({ }_{\text {N/A }}\) \& \& \& \& \\
\hline \& Silvertorne to Loveland Pass Inercrhange \& n/A \& 14 \& 12 \& 16 \& 16 \& N/A \& N/A \& N/A \& \(\frac{9 a}{9}\) \& \(\frac{14}{14}\) \& \({ }_{\text {IVa }}^{10}\) \& \({ }_{12}^{12}\) \& \({ }_{\text {Ila }}^{1 / \mathrm{l}}\) \& \(\begin{array}{r}16 \\ \hline 14 \\ \hline 10\end{array}\) \& \(\stackrel{12 a}{12 a}\) \& \({ }_{16}^{16}\) \& 12 \& 12 \& 12 \& 12 \\
\hline \& Loveland Pass Inerchange to Downieville \& N/A \& 25 \& 22 \& 25 \& 28 \& N/A \& N/A \& N/A \& \(\stackrel{9}{9}\) \& 25
25 \& \(\stackrel{10}{10 a}\) \& \({ }_{2}^{22}\) \& \(\frac{\text { III }}{\text { Ila }}\) \& \begin{tabular}{l}
25 \\
25 \\
\hline 1
\end{tabular} \& \({ }^{2}\) \& \(\begin{array}{r}\text { 28 } \\ \\ 28 \\ \hline 18\end{array}\) \& 20 \& 20 \& 20 \& 20 \\
\hline \& \& \& \& \& \& \& \& \& \& \(\stackrel{\text { ab }}{ }\) \& \({ }_{\text {N/A }}\) \& \({ }_{1}^{10 a}\) \& \& \& \({ }_{\text {N/ }}\) \& \& \({ }_{\text {N/A }}^{28}\) \& 20 \& 20 \& 20 \& 20 \\
\hline \& Downievilie to Hididen Valley \& N/A \& 11 \& 9 \& 12 \& 11 \& N/A \& N/A \& N/A \& \(\stackrel{9}{9 a}\) \& \({ }_{11}^{11}\) \& \({ }_{10 a}^{100}\) \& \(\stackrel{9}{9}\) \& \({ }_{1 / 1 / a}^{1 / 4}\) \& 12
12 \& \({ }_{12}^{12}\) \& \({ }_{11}^{11}\) \& 11 \& 11 \& 11 \& 11 \\
\hline \& \& \& \& \& \& \& \& \& \& 9 \& \(\frac{\mathrm{NA}}{10}\) \& \(\frac{100}{10}\) \& \(\stackrel{\text { N/A }}{ }\) \& \(\frac{11 b}{l l}\) \& \(\frac{\mathrm{NA}}{10}\) \& 足 \& \(\frac{\mathrm{N} / \mathrm{A}}{10}\) \& \& \& \& \\
\hline \& Hiden Valley to Baverer Brok \& N/A \& 10 \& 9 \& \({ }^{10}\) \& 10 \& N/A \& N/A \& N/A \& \(\frac{9 a}{9 b}\) \& 10
N/ \& \(\stackrel{10 a}{10 b}\) \& \(\stackrel{9}{\text { N/A }}\) \& \({ }_{\text {Ilab }}^{\text {Ilab }}\) \& 10
NA \& \& \(\stackrel{10}{\text { N/ }}\) \& 9 \& 9 \& 9 \& 9 \\
\hline \& Beave Brook to C-470 \& N/A \& 16 \& 14 \& 16 \& 20 \& N/A \& N/A \& N/A \& \(\frac{9}{9 a}\) \& 16
16 \& \(\stackrel{10}{10 a}\) \& \({ }_{14}^{14}\) \& \(\frac{11}{\text { Ila }}\) \& 16
16 \& \({ }_{12}^{12}\) \& 20
20 \& 14 \& 14 \& 14 \& 14 \\
\hline \& Seaver brook to C-40 \& N/ \& 16 \& \& \& \& \& N/ \& N/ \& \(\frac{\square}{9 b}\) \& N/ \& \& \(\stackrel{14}{\text { N/A }}\) \& \& N/ \& 兂 \& \({ }_{\text {N/ }}\) \& \& \& 14 \& \\
\hline \multirow{16}{*}{Travel time: summer weekday
transit WB transit WB} \& C.470 to Beaver Brook \& N/A \& 16 \& 14 \& 16 \& 20 \& N/A \& N/A \& N/A \& \({ }_{9}\) \& 16 \& \({ }_{10}{ }^{1}\) \& 14 \& \({ }_{\text {Ila }}\) \& 16 \& \({ }_{12 a}^{12}\) \& \({ }_{20}\) \& 14 \& 14 \& 14 \& 14 \\
\hline \& \& \& \& \& \& \& \& \& \& 9 \& \({ }^{\mathrm{N} / \mathrm{A}}\) \& \({ }^{100} 10\) \& \(\stackrel{\text { N/A }}{ }\) \& \({ }_{11}^{11}\) \& \({ }_{1}^{\text {N/ }}\) \& \({ }_{12}^{12}\) \& \({ }_{\text {N/A }}^{10}\) \& \& \& \& \\
\hline \& Beaver Brook to Hidden Valley \& n/A \& 10 \& 9 \& 10 \& 10 \& N/A \& N/A \& N/A \& \(\frac{9 a}{9 b}\) \& \(\stackrel{10}{\text { NA }}\) \& \(\frac{10 a}{10 a}\) \& \(\stackrel{9}{\text { N/ }}\) \& \(\frac{11 a}{\text { Il }}\) \& \({ }_{10}^{10}\) \& \& \({ }_{\text {N/ }}^{10}\) \& 9 \& 9 \& 9 \& 9 \\
\hline \& Hidden Valley to Downieville \& N/A \& 11 \& 9 \& 12 \& 11 \& N/A \& N/A \& N/A \& \(\stackrel{9}{9 a}\) \& \(\frac{11}{11}\) \& \begin{tabular}{l}
10 \\
\(10 a\) \\
\hline
\end{tabular} \& 9 \& \({ }_{\text {Ila }}^{\text {Ila }}\) \& \(\frac{12}{12}\) \& \({ }^{12 a}\) \& \(\frac{11}{11}\) \& \({ }^{13}\) \& \({ }^{13}\) \& \({ }^{13}\) \& \({ }^{13}\) \\
\hline \& masr valeyodomeme \& \& \& \& \& \& \& Na \& N/ \& 9b \& \(\stackrel{\text { N/ }}{\text { N/ }}\) \& \(\frac{10 a}{100}\) \& N/A \& \({ }_{\text {In }}^{\text {Ilab }}\) \& \(\stackrel{\text { N/ }}{\text { N/ }}\) \& \({ }_{12 a}^{122}\) \& \({ }_{\text {N/ }}\) \& \& \& \& \\
\hline \& Dovvievilit ot Loveland Pass Inercrange \& N/A \& 27 \& 24 \& 27 \& 29 \& N/A \& N/A \& N/A \& \(\frac{9}{9}\) \& \(\begin{array}{r}27 \\ \hline \text { NA }\end{array}\) \& \(\frac{10}{10 a}\) \& 24
24
Wa \& \(\frac{1 I}{\text { Ia }}\) \& \(\begin{array}{r}27 \\ \hline \text { NA } \\ \hline\end{array}\) \& \begin{tabular}{l}
12 \\
\(12 a\) \\
\(12 a\) \\
\hline 1
\end{tabular} \& 29

NA \& 20 \& 20 \& 20 \& 20

\hline \& \& \& \& \& \& \& \& \& \& 9 \& | N/ |
| :--- |
| 14 |
| 14 | \& $\frac{10}{10}$ \& | N/ |
| :---: |
| 12 |
| 12 | \& $\frac{11}{11}$ \& - ${ }_{\text {NA }}$ \& | 12 |
| :--- |
| 12 |
| 12 |
| 12 |
| 1 | \& ${ }_{1}^{\mathrm{NA}}$ \& \& \& \&

\hline \& Loveland Pass mererchange to Silverthome \& n/A \& 14 \& 12 \& 12 \& 13 \& N/A \& N/A \& N/A \& $\frac{9 a}{9 b}$ \& $\frac{14}{\text { N/ }}$ \& $\frac{10 a}{100}$ \& $\frac{12}{\text { N/A }}$ \& ${ }_{1 / \mathrm{Ila}}^{1 / b}$ \& ${ }_{\text {N/ }} 12$ \& ${ }_{12 a}^{12 a}$ \& ${ }_{\text {N/A }}$ \& 12 \& 12 \& 12 \& 12

\hline \& Silverthorne to Copper Moumain \& N/A \& 17 \& 15 \& 18 \& 19 \& N/A \& N/A \& N/A \& ${ }_{9}$ \& ${ }_{17}$ \& ${ }_{10 a}^{10}$ \& ${ }_{15}^{15}$ \& ${ }_{\text {IIa }}^{1 /}$ \& 18
18 \& ${ }_{12 a}^{12}$ \& 19 \& 15 \& 15 \& 15 \& 15

\hline \& Sivertome of Copper Moman \& \& \& 15 \& 18 \& 19 \& N/ \& N/ \& N/A \& $\frac{9 a}{9 b}$ \& $\stackrel{\text { N/ }}{ }$ \& $\stackrel{\substack{10 a \\ 100}}{ }$ \& $\stackrel{\text { N/A }}{ }$ \& \& $\stackrel{18}{\text { N/A }}$ \& ${ }_{12}^{12 a}$ \& ${ }_{\text {N/ }}^{19}$ \& 15 \& 15 \& 15 \& 15

\hline \& Copper Mountain to Vail East Entrance \& n/A \& 23 \& 19 \& 19 \& 21 \& N/A \& N/A \& N/A \& 9 \& ${ }_{23}$ \& ${ }_{10}^{10}$ \& 19 \& ${ }_{\text {Ila }}$ \& 19 \& ${ }_{12 a}^{12 a}$ \& ${ }_{21}^{21}$ \& 19 \& 19 \& 19 \& 19

\hline \& \& \& \& \& \& \& \& \& \& 9 \& $\stackrel{\text { N/A }}{19}$ \& ${ }^{100}$ \& $\stackrel{\text { N/A }}{17}$ \& ${ }^{111}$ \& ${ }_{18}^{\text {N/ }}$ \& ${ }_{12}^{12}$ \& ${ }_{19}^{\text {N/A }}$ \& \& \& \&

\hline \& ast Entrance to Edwards \& N/A \& 19 \& 17 \& 18 \& 19 \& N/A \& N/A \& N/A \& $\frac{9 a}{9 b}$ \& 19 \& ${ }_{\substack{10 a \\ 10 b}}$ \& ${ }_{\text {N/A }}^{17}$ \& ${ }_{\text {Ilab }}^{11 / b}$ \& ${ }_{18}^{18}$ \& $\stackrel{12 a}{12 a}$ \& ${ }_{19}^{19}$ \& 17 \& 17 \& 17 \& 17

\hline \& Edvards to Eagle Couny Line (Friday) \& N/A \& 54 \& 46 \& 47 \& 49 \& N/A \& N/A \& N/A \& ${ }_{\text {a }}$ \& $\begin{array}{r}54 \\ 54 \\ \hline\end{array}$ \& ${ }^{10}$ \& ${ }_{46}^{46}$ \& ${ }_{\text {Ila }}^{\text {Ila }}$ \& 47 \& ${ }^{12 a}$ \& ${ }_{49}^{49}$ \& 43 \& ${ }^{43}$ \& 46 \& 46

\hline \& \& \& \& \& \& \& \& \& \& $9 b$ \& N/ \& 100 \& N/A \& ${ }^{116}$ \& N/ \& ${ }^{26}$ \& NA \& \& \& \&

\hline \& $\underset{\substack{\text { Eagle County Line to G Cenvood Springs } \\ \text { (friday })}}{ }$ \& n/A \& 16 \& 16 \& 17 \& 17 \& N/A \& N/A \& N/A \& | $\frac{9}{9 a}$ |
| :--- |
| 9 |
| 9 | \& | 16 |
| :--- |
| 16 |
| $1 / 4$ | \& | 10 |
| :--- |
| $\frac{10}{10 a}$ |
| 100 | \& 16

16
N/ \& $\stackrel{\text { IId }}{\text { Ila }}$ \& 17
17

N/ \& | 12 |
| :--- |
| $12 a$ |
| $12 b$ |
| 12 | \& 17

N/ \& 16 \& 16 \& 16 \& 16

\hline
\end{tabular}

Transit Travel Times

\begin{tabular}{|c|}
\hline \& Gilenvod Springs to Eagle Couny Line \& N/A \& 15 \& 15 \& 15 \& 15 \& N/A \& N/A \& N/A \& \(\frac{9}{9 a}\) \& \[
\begin{aligned}
\& \frac{15}{15} \\
\& \hline
\end{aligned}
\] \& \(\stackrel{10}{10 a}\) \& 15
15
15 \& \& \(\begin{array}{r}15 \\ \hline 15 \\ \hline\end{array}\) \& 12
\(12 a\)
122 \& \(\begin{array}{r}16 \\ \hline 15 \\ \hline 14\end{array}\) \& 15 \& 15 \& 15 \& 15 \\
\hline \& \& \& \& \& \& \& \& \& \& 9 \& N1
51
51 \& \(\frac{10}{10}\) \& NA
4
46 \& \(\frac{I I}{\text { Il }}\) \& NA
4
46 \& 12
12
12
12 \& \begin{tabular}{r}
N/ \\
\hline 48 \\
48
\end{tabular} \& \& \& \& \\
\hline \& Eagle Couny Line to Edwards \& N/A \& 52 \& 46 \& 46 \& 48 \& N/A \& N/A \& N/A \& \(\frac{9 a}{9 b}\) \& N/A
N/ \& \({ }_{\text {Ioa }}^{10}\) \& \begin{tabular}{c}
46 \\
N/ \\
\hline
\end{tabular} \& \(\frac{I l a}{\text { Ilb }}\) \& \({ }_{\text {4 }}^{\text {N/ }}\) \& \({ }_{12 a}^{12 a b}\) \& \(\stackrel{48}{\text { N/ }}\) \& 45 \& 45 \& 45 \& 45 \\
\hline \& Edwards to Vail East Enrance \& N/A \& 26 \& 17 \& 19 \& 20 \& N/A \& N/A \& N/A \& \({ }_{9 a}\) \& \& \(\stackrel{10}{10 a}\) \& 17
17
Wa \& \(\frac{11}{1 / a}\) \& 19
19
Na \& \({ }_{1}^{12}\) \& \begin{tabular}{|c}
20 \\
20 \\
\(N\)
\end{tabular} \& 17 \& 17 \& 17 \& 17 \\
\hline \& \& \& \& \& \& \& \& \& \& \({ }_{9}\) \& \({ }_{2}^{\text {N/ }}\) \& \({ }^{100}\) \& \(\stackrel{\mathrm{N} / \mathrm{A}}{19}\) \& \(\frac{11}{\text { II }}\) \& \({ }_{2}{ }_{2}\) \& \(\frac{12 b}{12}\) \& \({ }_{24}\) \& \& \& \& \\
\hline \& Vail East Entrance to Copper Mountain \& N/A \& 23 \& 19 \& 22 \& 24 \& N/A \& N/A \& N/A \& \(\frac{9 a}{9 b}\) \& \({ }_{\text {N/A }}^{23}\) \& \(\frac{10 a}{100}\) \& \(\frac{19}{\text { N/A }}\) \& \({ }_{\text {Ila }}^{11 b}\) \& \({ }_{\text {N/A }}^{22}\) \& \({ }_{12 a}^{12 a}\) \& \({ }_{\text {24 }}^{\text {N/A }}\) \& 19 \& 19 \& 19 \& 19 \\
\hline \& Copper Mountain to Silverthome \& N/A \& 17 \& 15 \& 16 \& 17 \& N/A \& N/A \& N/A \& \({ }_{9 a}\) \& \({ }_{17}^{17}\) \& \(\frac{10}{10 a}\) \& 15
15 \& \({ }_{\text {IIa }}^{\text {Ila }}\) \& 16
16 \& \({ }_{12 a}^{12}\) \& \({ }_{17}^{17}\) \& 15 \& 15 \& 15 \& 15 \\
\hline summer Saturday \& coper moman (Sinemome \& \& \& \& \& 17 \& , \& \& Na \& \(\frac{9}{9}\) \& N/A \& \(\stackrel{10 a}{10}\) \& N/A \& \({ }_{11}^{1 / b}\) \& \(\stackrel{\text { N/ }}{15}\) \& \({ }_{12}^{122}\) \& N/A \& 15 \& 15 \& \& \\
\hline \& Silverthore to Loveland Pass inerchange \& N/A \& 14 \& 12 \& 15 \& 15 \& N/A \& N/A \& N/A \& \({ }_{9 a}\) \& \({ }_{14}^{14}\) \& \({ }_{10}^{10}\) \& 12 \& \({ }_{1 / 2}^{1 / a}\) \& 15
15 \& \({ }_{12}^{12}\) \& \({ }_{15}^{15}\) \& 12 \& 12 \& 12 \& 12 \\
\hline \& \& \& \& \& \& \& \& \& \& \(\frac{9}{9}\) \& 25

25 \& $\frac{10}{10 a}$ \& 22
22

22 \& $\frac{I I}{\text { Ila }}$ \& \begin{tabular}{l}
25

25

\hline 2

 \& $\stackrel{12}{12 a}$ \&

N/

${ }_{28} 8$

\hline 1
\end{tabular} \& \& \& \&

\hline \& Loveland Pass Interchange to Downieville \& N/A \& 25 \& 22 \& 25 \& 28 \& N/A \& N/A \& N/A \& $\frac{9 a}{9 b}$ \& ${ }_{\text {N/A }}$ \& ${ }_{\text {Ioa }}^{10}$ \& ${ }_{\text {2/ }}^{22}$ \& $\frac{11 a}{1 / b}$ \& $\stackrel{25}{\text { N/ }}$ \& $\stackrel{12 a}{12 b}$ \& ${ }_{28}^{28}$ \& 20 \& 20 \& 20 \& 20

\hline \& Downieville to Fidden Valley \& N/A \& 11 \& 9 \& 12 \& 11 \& N/A \& N/A \& N/A \& ${ }_{9 a}$ \& ${ }_{11}^{11}$ \& ${ }^{10}$ \& 9 \& ${ }_{\text {Ila }}^{1 / 2}$ \& ${ }_{12}^{12}$ \& ${ }_{12 a}^{12 a}$ \& 11 \& 11 \& 11 \& 11 \& 11

\hline \& \& \& \& \& \& \& \& \& \& 9 \& ${ }_{10}^{\text {N/A }}$ \& ${ }^{100}$ \& $\stackrel{\mathrm{N} / \mathrm{A}}{9}$ \& ${ }_{\text {II }}^{11}$ \& $\stackrel{\mathrm{NA}}{10}$ \& ${ }_{12}^{126}$ \& ${ }_{1}^{\text {N/A }}$ \& \& \& \&

\hline \& Hiden Valley to Baver Brook \& N/A \& 10 \& 9 \& 10 \& 10 \& N/A \& N/A \& N/A \& $\frac{9 a}{9 b}$ \& $\stackrel{10}{10}$ \& $\stackrel{10}{10 a}$ \& $\stackrel{9}{\text { N/ }}$ \& ${ }_{\text {Ila }}^{1 / \mathrm{lb}}$ \& $\stackrel{10}{\text { W/ }}$ \& ${ }_{\substack{12 a \\ 12 b}}^{12}$ \& $\frac{10}{\text { Na }}$ \& 9 \& 9 \& 9 \& 9

\hline \& Beaver Brook to C.470 \& N/A \& 16 \& 14 \& 16 \& 20 \& N/A \& N/A \& N/A \& ${ }_{9}{ }_{9}$ \& ${ }_{16}^{16}$ \& ${ }^{10}$ \& ${ }_{14}^{14}$ \& $\frac{\text { Ila }}{\text { Ila }}$ \& ${ }_{16}^{16}$ \& ${ }_{12}^{12}$ \& ${ }_{20}^{20}$ \& 14 \& 14 \& 14 \& 14

\hline \& Saaer brookloc-40 \& N/A \& 16 \& \& \& \& \& \& \& $\frac{9 a}{9 b}$ \& $\stackrel{16}{\text { N/A }}$ \& $\frac{10 a b}{100^{\text {a }}}$ \& $\stackrel{14}{\text { N/A }}$ \& $\frac{11 a b}{1 /}$ \& $\stackrel{16}{\text { N/A }}$ \& ${ }_{1}^{12 a b}$ \& $\stackrel{\text { N/A }}{ }$ \& 14 \& 14 \& 14 \& 14

\hline \multirow{16}{*}{Travel time: summer Saturday transit WB} \& C.470 to Beaver Brook \& N/A \& 16 \& 14 \& 16 \& 20 \& N/A \& N/A \& N/A \& ${ }_{9 a}$ \& ${ }_{16}^{16}$ \& ${ }_{10 a}^{10}$ \& ${ }_{14}^{14}$ \& ${ }_{\text {IIa }}$ \& ${ }_{16}^{16}$ \& ${ }^{12}$ \& ${ }_{20}^{20}$ \& 14 \& 14 \& 14 \& 14

\hline \& \& \& \& \& \& \& \& \& \& $9{ }_{9}$ \& $\frac{\mathrm{N} / \mathrm{A}}{10}$ \& $\frac{106}{10}$ \& $\stackrel{\mathrm{N} / \mathrm{A}}{9}$ \& $\frac{117}{I I}$ \& $\stackrel{\mathrm{NA}}{10}$ \& $\frac{12 b}{12}$ \& $\frac{\mathrm{N} / \mathrm{A}}{10}$ \& \& \& \&

\hline \& Beaver Brookto Hiden V Valey \& N/A \& 10 \& 9 \& 10 \& 10 \& N/A \& N/A \& N/A \& $\frac{9 a}{9}$ \& ${ }_{10}^{10}$ \& ${ }_{\text {loa }}^{10}$ \& 9 \& ${ }_{\text {Ila }}$ \& $\stackrel{10}{10}$ \& $\stackrel{12 a}{12 a}$ \& ${ }_{10}^{10}$ \& 9 \& 9 \& 9 \& 9

\hline \& Hiden Valley to Downieville \& N/A \& 11 \& 9 \& 12 \& 11 \& N/A \& N/A \& N/A \& 9 \& \& ${ }_{10}^{10}$ \& 9 \& ${ }_{\text {Il }}^{1 /}$ \& ${ }_{12}^{12}$ \& 12 \& \& \& ${ }^{13}$ \& 13 \& ${ }^{13}$

\hline \& \& \& 11 \& \& 12 \& 11 \& N/A \& N/A \& N/A \& $\frac{9 a}{9 b}$ \& $\stackrel{\text { N/ }}{ }$ \& \& N/ \& ${ }_{\text {Ila }}^{1 /{ }^{\text {Il }}}$ \& $\underset{\text { N/ }}{12}$ \& ${ }_{1}^{12 a b}$ \& $\stackrel{11}{\text { N/A }}$ \& ${ }^{13}$ \& ${ }^{13}$ \& ${ }^{13}$ \& ${ }^{13}$

\hline \& Dowievivile to Loveland Pass Inercrange \& N/A \& 27 \& 24 \& 27 \& 29 \& N/A \& N/A \& N/A \& ${ }_{9}$ \& ${ }_{27}{ }^{27}$ \& ${ }_{10}^{10}$ \& ${ }_{24}^{24}$ \& ${ }_{1 / a}$ \& 27 \& ${ }_{12 a}^{12}$ \& ${ }_{29}^{29}$ \& 20 \& 20 \& 20 \& 20

\hline \& \& \& \& \& \& \& \& \& \& ${ }_{9}^{96}$ \& $\stackrel{\text { N/A }}{14}$ \& ${ }^{106}$ \& $\stackrel{\text { N/ }}{12}$ \& ${ }_{\text {Il }}^{1 /}$ \& $\stackrel{\text { N/ }}{12}$ \& ${ }_{12}^{12}$ \& N/A \& \& \& \&

\hline \& Loveland Pass Interchange to Silverthorme \& N/A \& 14 \& 12 \& 12 \& ${ }^{3}$ \& N/A \& N/A \& N/A \& $\frac{9 a}{9 b}$ \& 14
NA
NA \& $\underset{\substack{10 a \\ 10 b}}{ }$ \& 12
NA
NA \& $\frac{1 / a}{1 / a b}$ \& 12
N/
N/ \& $12 a$
$12 b$
122 \& $\begin{array}{r}13 \\ \text { N/ } \\ \hline 1\end{array}$ \& 12 \& 12 \& 12 \& 12

\hline \& \& \& \& \& \& \& \& \& \& 9 \& \& 10 \& 15 \& ${ }^{1 I}$ \& 18 \& 12 \& 19 \& \& \& \&

\hline \& Silverthome to Copper Mountain \& N/A \& 17 \& 15 \& 18 \& 19 \& N/A \& N/A \& N/A \& $\frac{9 a}{9 b}$ \& ${ }_{\text {N/A }}$ \& $\frac{10 a}{10 b}$ \& ${ }_{15}^{15}$ \& ${ }_{\text {Ila }}^{1 / b}$ \& ${ }_{18}^{18}$ \& ${ }_{1}^{12 a}$ \& $\frac{19}{\text { N/ }}$ \& 15 \& 15 \& 15 \& 15

\hline \& Copper Mountain to Vail East Entrance \& N/A \& 23 \& 19 \& 19 \& 21 \& N/A \& N/A \& N/A \& $\frac{9}{9 a}$ \& $\begin{array}{r}23 \\ \\ 23 \\ \hline 18\end{array}$ \& $\frac{10}{10 a}$ \& 19
19

19 \& $\frac{11}{1 / a}$ \& $\begin{array}{r}19 \\ 19 \\ \hline 10\end{array}$ \& | 12 |
| :--- |
| $12 a$ |
| $12 a$ |
| 12 | \& \& 19 \& 19 \& 19 \& 19

\hline \& Valmanemee Edur \& \& \& \& \& \& \& \& \& 9 \& 19 \& 10 \& 17 \& II \& 18 \& ${ }_{12}$ \& 19 \& 17 \& 17 \& \&

\hline \& Vail East Entrance to Edwards \& \& 19 \& 17 \& 18 \& 19 \& N/A \& N/A \& N/A \& $\frac{9 a}{9 b}$ \& ${ }_{\text {N/A }}$ \& ${ }_{\text {IVa }}^{10}$ \& N/ \& ${ }_{\text {Ila }}{ }_{\text {Ilb }}$ \& ${ }_{\text {N/ }}^{18}$ \& ${ }_{1}^{12 a b}$ \& N/ \& 17 \& 17 \& 17 \& 17

\hline \& Edwards to agale County Line \& N/A \& 50 \& 42 \& 42 \& 44 \& N/A \& N/A \& N/A \& ${ }_{9 a}$ \& 50
50 \& ${ }_{10}^{10}$ \& ${ }_{42}^{42}$ \& ${ }_{\text {IIa }}^{1 / a}$ \& ${ }_{42}^{42}$ \& ${ }_{12 a}^{12}$ \& ${ }_{44}^{44}$ \& 41 \& 41 \& ${ }^{43}$ \& 43

\hline \& \& \& \& \& \& \& \& \& \& 9 \& $\stackrel{\text { N/A }}{16}$ \& ${ }^{100}$ \& N/A
16 \& ${ }^{\text {Ilb }}$ \& $\stackrel{\text { NA }}{17}$ \& ${ }_{12}^{12}$ \& ${ }_{17}$ \& \& \& \&

\hline \& Easte County Line to Glenvood Springs \& N/A \& 16 \& 16 \& 17 \& 17 \& N/A \& N/A \& N/A \& $9 a$
$9 b$
9 \& $\stackrel{16}{\text { N/A }}$ \& $\frac{108}{10 b}$ \& $\stackrel{16}{\text { N/ }}$ \& $\frac{11 a}{11 b}$ \& $\stackrel{17}{\text { N/ }}$ \& $\frac{12 a}{12 b}$ \& $\frac{17}{\text { N/A }}$ \& 16 \& 16 \& 16 \& 16

\hline
\end{tabular}

Transit Travel Times

\begin{tabular}{|c|}
\hline \& Gilenvod Springs to Eagle Couny Line \& / \& 16 \& 15 \& 16 \& 16 \& N/A \& N/A \& N/A \& \(\frac{9}{9 a}\) \& 16
16
N/ \& 10
\(10 a\)
100
10 \& 16
15
15 \& \(\frac{I l}{\text { Ila }}\) \& 16
16
NA \& 12
\(12 a\)
\(12 b\)
120 \& \begin{tabular}{|c}
16 \\
\(\substack{16 \\
\text { NA }}\) \\
\hline
\end{tabular} \& 16 \& 16 \& 16 \& 16 \\
\hline \& \& \& \& \& \& \& \& \& \& \(\stackrel{9}{9}\) \& \& \({ }_{\text {lob }}^{10}\) \& (\(\begin{gathered}\text { N/ } \\ 48 \\ 48\end{gathered}\) \& \(\frac{1 l b}{\text { Il }}\) \& N/
47
46 \& \({ }^{12 b}{ }_{12}^{12}\) \& (\(\begin{gathered}\text { N/ } \\ 50 \\ 48\end{gathered}\) \& \& \& \& \\
\hline \& Eagle Conty Line to Edwards \& N/A \& 54 \& 48 \& 46 \& 48 \& N/A \& N/A \& N/A \& \(9 a\) \& ¢/a \& \(\frac{10 a}{10 b}\) \& 48
N/ \& \(\frac{11 a}{\text { Ilb }}\) \& \({ }_{\substack{46 \\ \text { N/ }}}\) \& \(\frac{12 a}{12 b}\) \& \begin{tabular}{l}
48 \\
N/ \\
\hline
\end{tabular} \& 46 \& 46 \& 47 \& 47 \\
\hline \& Edwards to vail East Entrance \& N/A \& 26 \& 17 \& 19 \& \({ }^{20}\) \& N/A \& N/A \& N/A \& \(\frac{9}{9 a}\) \& \& \(\frac{10}{10 a}\) \& \(\frac{17}{17}\) \& \(\frac{{ }^{\prime \prime}}{\frac{1 / a}{l a}}\) \& 19
19
Na \& \({ }_{\substack{12 \\ 12 a \\ 12 a}}^{12 b}\) \& 20
20
NA \& 17 \& 17 \& 17 \& 17 \\
\hline \& \& \& \& \& \& \& \& \& \& 9 \& N/

23 \& ${ }_{100}^{10}$ \& N/A
19 \& ${ }_{\text {Il }}{ }_{\text {Il }}$ \& ${ }_{22}$ \& ${ }_{12}^{12}$ \& N/A
24
24 \& \& \& \&

\hline \& Vail East Entrance to Copper Mountain \& N/A \& 23 \& 19 \& 22 \& 24 \& N/A \& N/A \& N/A \& ${ }_{\text {ga }}^{9 a}$ \& $\stackrel{23}{\text { N/A }}$ \& ${ }_{\substack{10 a \\ 10 b}}$ \& $\stackrel{19}{\text { N/ }}$ \& $\frac{11 a}{1 l b}$ \& $\stackrel{22}{\text { N/A }}$ \& $\stackrel{12 a}{12 b}$ \& $\underset{\text { NA }}{\substack{\text { N/ }}}$ \& 19 \& 19 \& 19 \& 19

\hline \& Copper Mountain to Silverthome \& N/A \& 17 \& 15 \& 16 \& 17 \& N/A \& N/A \& N/A \& $\stackrel{9}{9}$ \& ${ }_{17}^{17}$ \& $\stackrel{10}{10 a}$ \& 15
15 \& ${ }_{\text {II }}^{1 / a}$ \& ${ }_{16}^{16}$ \& ${ }_{12}^{12}$ \& 17 \& 15 \& 15 \& 15 \& 15

\hline ${ }_{\text {semamer }}^{\text {summer Sunday }}$ (ransit EB \& \& \& \& \& \& \& \& \& \& 9 \& N/A \& ${ }_{10}^{10}$ \& NA \& ${ }_{\text {Il }}{ }^{1 / b}$ \& N/ \& ${ }_{12}^{12}$ \& N/A \& \& \& \&

\hline \& Silverthome to Loveland Pass Interchange \& N/A \& 14 \& 12 \& 15 \& 15 \& N/A \& N/A \& N/A \& ${ }_{9 a}$ \& ${ }_{14}^{14}$ \& $\frac{10}{10 a}$ \& ${ }_{12}^{12}$ \& $\frac{1 / a}{1 / a}$ \& ${ }_{15}^{15}$ \& ${ }_{12}^{12 a}$ \& 15
15 \& 12 \& 12 \& 12 \& 12

\hline \& \& \& \& \& \& \& \& \& \& \& \& 10 \& 22 \& ${ }^{1 I}$ \& 25 \& 12 \& 28 \& \& \& \&

\hline \& Loveland Pass Interchange to Downie ville \& N/A \& 25 \& 22 \& 25 \& 28 \& N/A \& N/A \& N/A \& $\frac{9 a}{9 b}$ \& ${ }_{\text {N/A }}$ \& $\frac{10 a}{10 b}$ \& ${ }_{\text {2/ }}^{22}$ \& ${ }_{1 / 2 a}^{1 / b}$ \& ${ }_{\text {N/A }}$ \& ${ }_{12 a}^{12 a}$ \& ${ }_{28}^{28}$ \& 20 \& 20 \& 20 \& 20

\hline \& Downievilie to Hidden Valley \& N/A \& 11 \& 9 \& 12 \& 11 \& N/A \& N/A \& N/A \& ${ }_{9 a}$ \& ${ }_{11}^{11}$ \& ${ }_{10}^{10}$ \& $\stackrel{9}{9}$ \& $\frac{11}{11 a}$ \& ${ }_{12}^{12}$ \& $\stackrel{12}{12 a}$ \& $\frac{11}{11}$ \& 11 \& 11 \& 11 \& 11

\hline \& \& \& \& \& \& \& \& \& \& 9 \& 10 \& ${ }_{100}^{10}$ \& 9 \& ${ }_{\text {II }}$ \& ${ }_{10}^{\text {W/A }}$ \& ${ }_{12}^{12}$ \& 10 \& \& \& \&

\hline \& Hiden Valley to Baver Brook \& N/A \& 10 \& 9 \& 10 \& 10 \& N/A \& N/A \& N/A \& $\frac{9 a}{9 b}$ \& ${ }_{\text {N/A }}^{10}$ \& | $10 a$ |
| :--- |
| 100 |
| 10 | \& $\stackrel{9}{\text { N/ }}$ \& $\frac{11 a}{1 / l^{\prime}}$ \& ${ }_{\text {10 }}^{10}$ \& ${ }_{12 a}^{12 a}$ \& $\stackrel{10}{\text { N/A }}$ \& 9 \& 9 \& 9 \& 9

\hline \& Beaver Brook to C-470 \& N/A \& 16 \& 14 \& 16 \& 20 \& N/A \& N/A \& N/A \& ${ }_{9 a}$ \& ${ }_{16}^{16}$ \& ${ }_{10}^{10}$ \& ${ }_{1}^{14}$ \& $\frac{1 I}{\text { Ila }}$ \& ${ }_{16}^{16}$ \& ${ }_{12 a}^{12}$ \& $\underset{20}{20}$ \& 14 \& 14 \& 14 \& 14

\hline \& \& \& \& \& \& \& \& \& \& 9 \& \& $\frac{106}{10}$ \& $\stackrel{\text { N/ }}{14}$ \& $\frac{11]}{l \mid}$ \& $\frac{\mathrm{N} / \mathrm{A}}{16}$ \& $\frac{12}{12}$ \& $\frac{\mathrm{N} / \mathrm{A}}{20}$ \& \& \& \&

\hline \multirow{16}{*}{Travel time: transit WB} \& C.470 to Beaver Brook \& N/A \& 16 \& 14 \& 16 \& 20 \& N/A \& N/A \& N/A \& $9 a$ \& 16 \& ${ }_{10}^{10}$ \& 14 \& ${ }_{1 / a}$ \& 16 \& ${ }_{12}^{12 a}$ \& 20 \& 14 \& 14 \& 14 \& 14

\hline \& \& \& \& \& \& \& \& \& \& ${ }_{9}^{96}$ \& ${ }_{10}^{\text {N/A }}$ \& ${ }^{100} 10$ \& $\stackrel{\mathrm{N} / \mathrm{A}}{ }$ \& ${ }_{\text {Il }}^{1 I}$ \& $\stackrel{\text { N/A }}{10}$ \& ${ }_{12}^{120}$ \& $\stackrel{\text { N/A }}{10}$ \& \& \& \&

\hline \& Beaver Brook to Hiden Valley \& N/A \& 10 \& 9 \& 10 \& 10 \& N/A \& N/A \& N/A \& $9 a$ \& 10 \& ${ }^{10 a}$ \& 9 \& ${ }_{\text {Ila }}$ \& 10 \& ${ }^{12 a}$ \& 10 \& 9 \& 9 \& 9 \& 9

\hline \& \& \& \& \& \& \& \& \& \& 9 \& ${ }_{11}$ \& ${ }_{10}^{10}$ \& 9 \& ${ }_{\text {II }}$ \& ${ }_{12}$ \& ${ }_{12}$ \& \& \& \& \&

\hline \& Hidde V Valley to Downieville \& N/A \& 11 \& 9 \& 12 \& 11 \& N/A \& N/A \& N/A \& ${ }_{9}{ }^{\text {a }}$ \& ${ }^{11}$ \& ${ }^{10 a}$ \& 9 \& ${ }_{\text {Ila }}^{1 / \mathrm{l}}$ \& ${ }^{12}$ \& ${ }_{12 a}^{12 a}$ \& ${ }_{\text {11 }}^{11}$ \& ${ }^{13}$ \& 13 \& ${ }^{13}$ \& 13

\hline \& Downieville to Loveland Pass Interchange \& N/A \& 27 \& 24 \& 27 \& 29 \& N/A \& N/A \& N/A \& $\frac{9}{9}$ \& NA
27
27 \& $\stackrel{10}{10 a}$ \& N/
24
24 \& $\frac{1 I}{1 / a}$ \& NA
27
27 \& $\stackrel{12}{12}$ \& N/
$\substack{29 \\ 29}$ \& 20 \& 20 \& 20 \& 20

\hline \& Domien \& \& \& \& \& \& \& \& \& ${ }_{9}{ }_{9}$ \& N/A \& ${ }_{1}^{10 a}$ \& N/ \& ${ }_{11} 1{ }^{\text {a }}$ \& N/A \& ${ }_{12}^{12 a}$ \& N/A \& \& \& \&

\hline \& Loveland Pass Inerchange to Silverthome \& N/A \& 14 \& 12 \& 12 \& 13 \& N/A \& N/A \& N/A \& ${ }_{9 a}$ \& ${ }_{14}^{14}$ \& ${ }^{10}$ \& ${ }_{12}^{12}$ \& ${ }_{\text {Ila }}^{1 / a}$ \& ${ }_{12}^{12}$ \& ${ }_{12 a}^{12}$ \& ${ }_{13}^{13}$ \& 12 \& 12 \& 12 \& 12

\hline \& \& \& \& \& \& \& \& \& \& $\stackrel{9}{9}$ \& $\stackrel{\text { N/A }}{17}$ \& ${ }^{100}{ }_{10}$ \& $\stackrel{\text { N/A }}{15}$ \& ${ }_{\text {Il }}{ }_{\text {Il }}$ \& ${ }_{18}{ }_{18}$ \& ${ }_{12}^{12}$ \& $\stackrel{\text { N/A }}{19}$ \& \& \& \&

\hline \& Silverthome to Copper Mountain \& N/A \& 17 \& 15 \& 18 \& 19 \& N/A \& N/A \& N/A \& $\frac{9 a}{a b}$ \& 17 \& ${ }_{\text {IVa }}^{10}$ \& 15 \& ${ }_{\text {Ila }}^{1 / \mathrm{l}}$ \& 18 \& ${ }_{12 a}^{12 a}$ \& 19 \& 15 \& 15 \& 15 \& 15

\hline \& Copper Mountain ot $\mathrm{Vail}^{\text {East Entrace }}$ \& N/A \& 23 \& 19 \& 19 \& 21 \& N/A \& N/A \& N/A \& $\frac{9}{9}$ \& $\begin{array}{r}\text { N/ } \\ \\ 23 \\ \hline\end{array}$ \& $\stackrel{10}{10 a}$ \& 19
19
19 \& $\frac{I I}{\text { Ila }}$ \& 19
19
19 \& $\stackrel{12}{12}$ \& 21
21
21 \& 19 \& 19 \& 19 \& 19

\hline \& \& \& \& \& \& \& \& \& \& $9 b$ \& N/A \& 100 \& N/ \& ${ }_{11} 1{ }^{\text {b }}$ \& N/ \& ${ }_{12}{ }^{2}$ \& N/A \& \& \& \&

\hline \& Vail East Entrance to Edwards \& N/A \& 19 \& 17 \& 18 \& 19 \& N/A \& n/A \& n/A \& ${ }_{9 a}$ \& ${ }_{19}^{19}$ \& $\frac{10}{10 a}$ \& 17 \& ${ }_{1 / a}^{1 / a}$ \& 18
18 \& ${ }_{12 a}^{12}$ \& 19 \& 17 \& 17 \& 17 \& 17

\hline \& \& \& \& \& \& \& \& \& \& 9 \& ${ }_{48}^{\text {N/ }}$ \& ${ }_{10}^{10}$ \& ${ }_{4}{ }_{4}$ \& ${ }_{\text {II }}$ \& ${ }_{42}$ \& ${ }_{12}^{12}$ \& $\stackrel{\text { N/A }}{44}$ \& \& \& \&

\hline \& Edwards to Eagle County Line \& N/A \& 48 \& 42 \& ${ }^{42}$ \& 44 \& N/A \& N/A \& N/A \& ${ }_{\text {ga }}$ \& ${ }_{48}^{48}$ \& ${ }^{10 a}$ \& ${ }_{4}$ \& ${ }_{\text {Ila }}$ \& ${ }_{4}^{42}$ \& ${ }_{12 a}^{12 a}$ \& 44 \& ${ }^{41}$ \& ${ }^{41}$ \& ${ }^{43}$ \& ${ }^{43}$

\hline \& Eagle Count Line to Glenvood Springs \& N/A \& 16 \& 16 \& 17 \& 17 \& N/A \& N/A \& N/A \& $\frac{9}{9 a}$ \& ${ }_{16}^{16}$ \& $\frac{10}{10 a}$ \& 16
16
16 \& $\frac{{ }^{\text {I }}}{}$ \& 17
17 \& $\stackrel{12}{12 a}$ \& $\frac{17}{17}$ \& 16 \& 16 \& 16 \& 16

\hline
\end{tabular}

Element of P\&N				2000	${ }_{\text {saseline }}^{2035}$	Nonection		Minimal Action	Transit Alternatives				Highway Alternatives			Combination Highway/Transit Alternatives								
				2					3	4	5	6		${ }^{8}$		9		10		11		12		
																e Widening with rail and IMC		6 -Lane Widening with AGs		Wideening with oual-mode		Widening with Diesel Bus		
				Rail with IMc					(ticteemy	Bus in Guidenay	dien	${ }_{55}$	${ }_{65}$	${ }_{\text {den }}^{\substack{\text { Reversible/ } \\ \text { Hov/rot Lanes }}}$			10			-				
															${ }_{9}$.		.	${ }_{11} 1$	-	12 b			
Duration ofcongestionon I-70:annualcongestedanduncongestedhours	WB	Genesee	Congested hours		0	3,426	2,340	2,589	3,115	3,700	3,891	3,978	3,935	1,156	1,156	1,607	${ }_{9}{ }_{9}$	1,180 3,700 1,00		1,097 3,891 1,	${ }_{\text {IIa }}^{11}$	${ }_{\substack{1,161 \\ 3,978}}^{1,58}$	${ }_{12}^{12}$	${ }_{\substack{1,187 \\ 3,935}}^{1,55}$
			Congested hours															3,1,156		${ }^{1,1,156}$	${ }_{1!}{ }^{1}$	1,156	${ }^{12}$	3,935 1,156
																		7,580	10	7,663	"	7,599	12	7,573
			Unoongseted hours		8,760	5,334	6,420	6,171	5,645	5,660	4,869	4,782	4,825	7,604	7,604	8,760	9a	5,060 7,604	$\stackrel{100}{100}$	¢, 4,699	${ }_{\text {Ila }}^{\text {Ilb }}$		${ }_{\substack{12 a \\ 12 b}}$	¢,4,825 7.65
																	${ }^{13 \%}$	${ }^{0}$	${ }^{13 \%}$	${ }^{11}$	13\%	12	${ }^{14 \%}$	
			\%of amual hours under congestion	0\%	39\%	27\%	30\%	36\%	42\%	44\%	45\%	45\%	13\%	13\%	0\%	${ }_{\substack{9 a \\ 9 \\ 9}}$	${ }_{\text {cki }}^{\substack{42 \% \\ 13 \%}}$	$\underset{\substack{100 \\ 100}}{\substack{10}}$		${ }_{11}^{11 a}$	${ }_{138}^{450}$	${ }_{\substack{12 a \\ 12 b}}$	${ }_{138}^{450}$	
		$\begin{array}{\|c} \text { Top of Floyd } \\ \text { Hill } \end{array}$															2,772	${ }^{10}$	2,638	II	2,807	12	2,863	
			Congested hours	130	2,796	862	2,437	1,700	2,458	2,538	2,753	2,700	2,877	2,877	837	${ }_{\substack{9 a \\ o b}}$	$\xrightarrow{2,4858}$	100 100 1	2, ${ }_{2,838}$	${ }_{1}^{11 a}$	$\xrightarrow{2,785}$	${ }_{\substack{12 a \\ 12 b}}^{12}$	$\xrightarrow{2,780}$	
																		10	${ }_{6,122}^{2,88}$	II	5,953	12	5,997	
			sted ho	8,630	5,964	7,998	6,323	7,060	6,302	6,222	6,007	6,060	5,883	5,883	7,923	${ }_{\substack{9 a \\ 9 \\ 9}}$	$\underbrace{\substack{\text { c, }}}_{\substack{6,883 \\ 5,83}}$	100 100 10	$\underset{\substack{6,8,28 \\ 5,8}}{\text { 6,22 }}$	${ }_{1 l}^{11 a}$	${ }_{\substack{6,007 \\ 5,88}}^{\text {, }}$	${ }_{\substack{12 a \\ 12 b}}^{12}$	${ }_{\substack{6,060 \\ 5,883}}^{\text {, }}$	
																	${ }^{32 \%}$	10	30\%	11	${ }^{32 \%}$	12	${ }^{33 \%}$	
			\%of a amual hours under congestion	1\%	${ }^{32 \%}$	10\%	28\%	19\%	28\%	29\%	${ }^{31 \%}$	31\%	33\%	33\%	10\%	$9 a$ 9 9		100 100 10	${ }_{\text {chem }}^{293 \%}$	${ }_{1 l}^{\text {Ila }}$	$\underset{\substack{319 \% \\ 33 \%}}{ }$	${ }_{\substack{12 a \\ 12 b}}^{12}$		
		win Tunnels														9	${ }_{983}^{246}$	${ }_{10}^{10}$	${ }^{229}$	${ }^{\text {III }}$	278 1280	${ }_{12}^{12}$	${ }_{1295}^{292}$	
			Congested hours	70	1,223	417	712	689	983	961	1,260	1,206	333	333	125	${ }_{9}$	${ }_{333}^{983}$	$\xrightarrow[\substack{100 \\ 100}]{ }$	${ }_{333}^{961}$	${ }_{\text {lla }}^{1 / 2}$	1,260 333	${ }_{1}^{12 a b}$	1,206 333	
																9	${ }_{8,514}$	10	${ }_{8,531}$	${ }^{11}$	8,482	${ }^{12}$	8,465	
			Uncongested hours	8,690	7,537	8,343	8,048	8,071	7,777	7,799	7,500	7,554	8,427	8,427	8,635	${ }_{9}{ }_{9}$	${ }_{\text {c, }}^{\substack{1,777}}$	${ }_{\substack{100 \\ 100}}^{\text {cos }}$	${ }_{8,47}^{1,97}$	${ }_{11}^{11}$	${ }_{\text {l }}^{\substack{\text { 8,427 }}}$	${ }_{1}^{12 a}$		
			\% of amual hours under congestion	1\%	14\%	5\%	8\%	8\%	11\%	11\%	14\%	14\%	4\%	4\%	1\%	${ }_{9}$	3\%\%	$\stackrel{10}{10 a}$	3\%\%	${ }_{\text {IIa }}^{\text {IIa }}$	${ }_{\text {c }}^{3 \%}$	${ }_{12}^{12}$	${ }_{\text {cose }}^{\substack{3 \% \\ 14 \%}}$	
			anaus										4		\%	${ }_{\text {g }}$	${ }_{4}{ }^{18}$	${ }_{10}^{100}$	${ }_{4 \%}$	${ }_{1!}^{\text {Il }}$	${ }_{4 \%}$	${ }_{12 b}^{12 a b}$	${ }_{4} 4{ }^{46}$	
		East of Empire Juntion	Congested hours	80	1,059	475	153	314	169	153	252	237	125	125	168	${ }_{9}{ }_{9}$	84 169	${ }_{10}^{10}$	76 153	${ }_{\text {IIa }}^{\text {IIa }}$	98 252	${ }_{12}^{12}$	${ }_{237}^{106}$	
																${ }_{9}$	125	100	125	${ }^{11}$	125	${ }^{12}$	125	
			congesed hours	8,680	7,701	8,285	8,607	8,446	8,591	8,607	8,508	8,523	8,635	8,635	8,592	${ }_{9 a}$	8,676 8,591	${ }_{10}^{10}$	${ }_{\substack{8,684 \\ 8,607}}^{105}$	${ }_{11}^{11}$	8,662 8,508	${ }_{12}^{12}$	${ }_{\text {8,554 }}^{8,523}$	
																${ }_{9}$	${ }_{8,635}$	100	${ }_{8,635}$	${ }_{11} 1{ }^{\text {b }}$	8,635	${ }_{12}^{12}$	8,635	
			\%of ofmal hours under congestion	1\%	12\%	5\%	2\%	4\%	2\%	2\%	3\%	3\%	1\%	1\%	2\%	${ }_{9}{ }_{a}$	${ }_{2 \%}^{10 \%}$	${ }_{10}^{10}$	${ }_{2 \%}^{10 \%}$	${ }_{\text {IIa }}^{11}$		${ }_{12}^{12}$	${ }_{\text {\% }}^{10}$	
																${ }_{9}$	${ }_{1}^{1 \%}$	100	${ }_{1}^{1 \%}$	${ }_{17}$	${ }_{10}{ }^{1}$	${ }^{12}$	${ }_{10}^{10}$	
		$\begin{array}{\|c\|c\|} \hline \text { Eisenhower } \\ \text { /Johnson } \\ \text { Memorial } \\ \text { Tunnels } \end{array}$	sted hours	20	1,732	1,447	578	1,243	1,122	1,038	1,299	1,306	198	198	476	${ }_{9 a}$	-1,122	${ }_{10}^{10}$	1,038	$\stackrel{\text { Ila }}{11}$	1.25 1,29	${ }_{12}^{12}$	1,306	
																${ }_{9}$	(1988	${ }_{10}^{10}$	198 8.63	${ }_{11}^{116}$	198 8.65 1	${ }_{12}^{12}$	(1,	
			gested hours	8,740	7,028	7,313	8,182	7,517	7,638	7,722	7,461	7,454	8,562	8,562	8,284	${ }_{9 a}$		${ }_{10}^{10}$	$\xrightarrow{8,643}$\%,722	${ }_{11}^{11}$		${ }_{12}^{12}$	${ }_{\substack{8,588 \\ 7,454}}^{\text {c, }}$	
																${ }_{9}$	8,562	10	8,562	${ }^{11}{ }^{16}$	8,562	${ }^{12}$	8,562	
			amnual hours under congestion	0\%	20\%	17\%	7\%	14\%	13\%	12\%	15\%	15\%	2\%	2\%	5\%	9a		${ }_{10}^{10}$	$\underset{12 \%}{10}$	${ }_{\text {Ila }}^{11}$	${ }_{\substack{2 \% \\ 15 \%}}^{2 \%}$	${ }_{12}^{12}$	${ }_{\text {15\% }}^{\substack{2 \% \\ 15 \%}}$	
																9	2\%	$10{ }^{1}$	2\%	116	2\%	126	2\%	

 below baseli
2) These estimates are for non-incident reated congestion. Congestion hours due to incidents (such as accidents or breakkowns) are not accounted for.

				2000	${ }_{\text {Baseline }}^{2035}$	$\xrightarrow{\text { No atction }}$ Aterative			Transit Atternatives				Highway Alternatives			Combination Highway/Transit Alternatives										
				2							5 $\begin{array}{c}\text { Diesel Eus in } \\ \text { sudeway }\end{array}$															
				Rail with IMc								6 6 6-Lane Widening 55 mph	$\begin{array}{\|c\|} \hline 7 \\ \hline \begin{array}{c} \text { 6-Lane Widening } \\ 65 \mathrm{mph} \end{array} \\ \hline \end{array}$		9 6-Lane Widening with Rail and IMC 9 - Build Combination Simultaneously $9 a$ - Build Transit and Preserve for Highway $9 b$ - Build Highway and Preserve for Transit		10 6-Lane Widening with AGS 10 -Build Combination Simultaneously $10 a$ -Build Transit and Preserve for Highway $10 b$ -Build Highway and Preserve for Transit									
Element of P\&N																						0		0		
Duration of congestion on I-70: annual congested and hours	WB	West ofSilverthorne	Congested hours		0	0	0	0	0	0	0	0	0	0	0	0			${ }_{\substack{9 a \\ 9 b}}$	\bigcirc	${ }_{\text {on }}^{\substack{\text { a }}}$	\bigcirc	$\stackrel{\text { lla }}{11}$	\bigcirc	${ }_{\substack{2 a \\ 2 b}}$	\bigcirc
																	8,760	10	8,760	${ }^{11}$	8,760	12	8,760			
			Unongested hours	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	$9 a$ $9 b$	8,60 8,760	${ }_{\substack{100 \\ 100}}^{1}$	8,60 8,760	${ }_{\text {lla }}^{1 l a}$	8,760 8,760	$\underset{\substack{12 a \\ 12 b}}{ }$	ci,8,760 8,760			
																	\%	${ }^{\circ}$	\%	11	\%		8,60			
			of amnual hours under congestion	\%	0\%	\%\%	0\%	0\%	\%\%	0\%	0\%	0\%	0\%	0\%	0\%	$\xrightarrow{9 a}$	\%\%		O\%	${ }_{\text {lla }}^{1 l a}$	\%\%	${ }_{\substack{12 a \\ 12 b}}$	\%\%			
		Vail Pass															0	10	0	,	0	12	0			
			Congested hous	0	723	237	0	483	729	729	729	729	0	0	0	${ }_{\substack{9 a \\ p_{b}}}$	729 0	${ }_{\substack{100 \\ 100}}^{\text {cod }}$	729 0	${ }_{l}^{11 a}$	729 0	${ }_{\substack{12 a \\ 12 b}}$	729 0			
																	8,760	${ }_{10}$	8,760	${ }^{11}$	8,760	12	8,760			
			sted hours	8,760	8,037	8,523	8,760	8,277	8,031	8,031	8,031	8,031	8,760	8,760	8,760	${ }_{\substack{\text { ga } \\ \\ 9}}$	(i,310	$\underset{\substack{100 \\ 100}}{1}$	(i,	$\stackrel{1 l a}{119}$	(i,	${ }_{\substack{12 a \\ 12 b}}^{12}$	(i,			
																	8,760	${ }_{10}^{10}$		${ }_{11}^{11}$	8,760	${ }^{12}$	${ }_{\substack{8,760 \\ 0 \%}}$			
			\%of a mual hours under congestion	\%\%	${ }^{8 \%}$	3\%	0\%	6\%	8\%	${ }^{8 \%}$	${ }^{8 \%}$	${ }^{8 \%}$	0\%	0\%	0\%	${ }_{9}$	${ }^{8 \%}$	${ }_{10}$	${ }^{8 \%}$	Ila	${ }^{\text {8\% }}$	${ }^{12}$	${ }^{8 \%}$			
		$\underset{\substack{\text { Dowd } \\ \text { Canyon }}}{ }$														9	0	\%	0\%	$\stackrel{\text { Ilb }}{ }{ }^{\text {l }}$	0\%	${ }_{12}^{12}$	\%			
			Congested hours	0	2,632	2,069	0	2,321	2,684	2,572	3,708	3,824	0	0	0	${ }_{9}{ }_{\text {a }}$	2,684	$\stackrel{10}{10}$	2,572	$11 a$	3,708	${ }^{12}$	3,824			
																${ }_{9}{ }_{9}$	8,760	${ }_{10}^{10}$	8,760	${ }_{11}^{11}$	8,760	${ }^{12}$	8,760			
			congeseded hours	8,760	6,128	6,691	8,760	6,439	6,076	6,188	5,052	4,936	8,760	8,760	8,760	${ }_{\substack{\text { ga } \\{ }_{\text {a }}}}$	- $\begin{aligned} & \text { 6,076 } \\ & 8.760\end{aligned}$	$\underset{\substack{100 \\ 100}}{10}$		$11 a$	¢	${ }_{12}^{12 a}$				
																$\stackrel{9}{9}$		${ }_{10}^{10}$		${ }_{11}^{116}$		${ }_{12}^{12}$	${ }_{\substack{\text { 8,760 } \\ 0 \%}}$			
			\%of a mual hours under congestion	\%	30\%	24\%	0\%	26\%	${ }^{31 \%}$	29\%	42\%	44\%	0\%	0\%	0\%	${ }_{9 a}$	${ }_{\substack{31 \% \\ 0 \% 0}}$	$\underset{\substack{10 a \\ 100}}{10}$	$\underset{\substack{29 \%}}{\text { 20\% }}$	${ }_{\text {Ila }}$	${ }^{42 \%}$	${ }_{12}^{12 a}$	${ }^{449 \%}$			
		East of Eagle															0	${ }_{10}$	41	${ }^{\prime \prime}$	0	12	0			
			Congested hours	0	189	148	65	74	0	0	0	0	0	0	0	${ }_{9}{ }_{\text {a }}$	0	$\stackrel{100}{100}$	0	${ }_{\text {Ila }}^{11}$	0	${ }_{1}^{12 a}$	0			
																,	8,760	${ }_{10}$	8,719	${ }_{11} 11$	${ }_{8,760}$	${ }_{12}^{12}$	${ }_{8,760}$			
			Uncongested hours	8,760	8,571	8,612	8,695	8,686	8,760	8,760	8,760	8,760	8,760	8,760	8,760	${ }_{\substack{9 a \\ 9 \\ 9}}$	8,760 8,60	$\underset{\substack{100 \\ 100}}{10}$	8,60 8,760	${ }_{\text {Ila }}^{11 a}$	8,60 8,760	${ }_{\substack{12 a \\ 12 b}}^{12}$	8,60 8,760			
																9	8,0\%	${ }_{10}^{10}$	8,	$\stackrel{\text { ll }}{ }$	8,60	${ }_{12}^{12}$,			
			\%of amual hous under congestion	0\%	2\%	2\%	1\%	1\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%		\%\%	$\underset{\substack{100 \\ 100}}{\substack{\text { cosem }}}$	\%\%		\%\%	${ }_{\substack{12 a \\ 12 b}}$	\%\%			
		No NameTunnels														9	0	${ }_{10}^{10}$	0	${ }_{\text {Il }}$	0	${ }_{12}^{12}$	0			
			nested hours	0	0	0	0	0	0	0	0	0	0	0	0	${ }_{\substack{9 a \\ o b}}$	\bigcirc	$\underset{\substack{100 \\ 100}}{\substack{\text { ate }}}$	0	${ }_{11}^{11 a}$	0	$12 a$ $12 b$ 120	\bigcirc			
										8,760	8,760	8,760	8,760	8,760	8,760	\%	8,760 8,760	${ }_{10}^{10}$	${ }_{\substack{8,760 \\ 8.760}}^{\substack{\text { c }}}$	$\stackrel{\text { Il }}{11}$	8,760 8,760	${ }_{12}^{12}$	8,60 8,760			
			Igested hours	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	¢a ${ }_{\text {g }}$	隹, 8,760	$\underset{\substack{100 \\ 100}}{\substack{\text { cosem }}}$		${ }_{11}^{1 / a}$		${ }_{1}^{12 a}$				
			\%of amual hours under congestion	\%	\%	\%	\%	0\%	0\%	\%	\%	\%	0\%	\%	0\%	${ }_{9}$	\%\%\%	${ }_{10}^{10}$	\%\%	${ }_{11}^{11}$	- \%	${ }_{12}^{12}$	\%\%			
																		10b	0\%				0\%			

2) These estimates are for non-incidentr eleated congestion. Congestion hours due to tincidents (such as accidents or breakdowns) are not accounted tor.
3) The higway is assumed to oe congested when a queue is present.

[^0]
[^0]:
 These estimates are for non-incicientrtelated congestion. Congestion hours due to incidents (such as accidents or breakdowns) are not accounted for
 3) The higway is sssumed to be conesested when a queue is is resent.

