Air Heating Systems

WORKSHOP IN

THE PRACTICAL ASPECTS OF

SOLAR SPACE AND DOMESTIC WATER HEATING SYSTEMS

FOR

RESIDENTIAL BUILDINGS

MODULE 8

AIR-HEATING SYSTEMS

SOLAR ENERGY APPLICATIONS LABORATORY COLORADO STATE UNIVERSITY FORT COLLINS, COLORADO NOVEMBER, 1978

TABLE OF CONTENTS

									Page
LIST OF FIGURES									8-ii
LIST OF TABLES .									8 -i i
INTRODUCTION .	•								8-1
OBJECTIVE									8-1
SYSTEM ARRANGEMENTS									8-2
DOUBLE BLOWER	DESIG	N							8-2
SINGLE BLOWER	DESIG	N							8-6
COMPONENTS AND INST	TALLAT	ION							8-7
SYSTEM SIZING .		•							8-10
RULES OF THUME	3.	•							8-11
THE f-CHART ME	THOD		٠			•	•		8-12
Basic App	broach	٠	•	•		٠			8-12
Correctio	on for	Co11	ector	Air	Flow	Rate	(к ₁)		8-14
Correctio	on for	Stor	age S	ize (к ₂)	٠			8-15
Calculat	ion Pr	ocedu	re		•				8-16
EXAMPLE 8-1	•	•			•	•		•,	8-18
SOLAR FRACTION FOR	DIFFE	RENT	COLLE	CTOR	SIZES		•		8-27
THE RELATIVE AREAS	METHO	D	•	•	•		•		8-29
EXAMPLE 8-2 .	•		•	•	•				8-34
REFERENCES .				•	•				8-41

LIST OF FIGURES

Figure		Page
8-1	Heating Building Directly from Collectors	8-2
8-2	Storing Heat from Collectors	8-4
8-3	Heating Building from Storage Unit (Also Heating from Auxiliary	8-4
8-4	Service Hot Water Heating (Summer Operation) .	8-5
8-5	Single Blower System	8-6
8-6	f-Chart for Solar Air Heating Systems	8-13
8-7	Collector Flow Factor (Air), K ₁	8-15
8-8	Storage Capacitance Factor, K ₂	8-16
8-9	Annual Solar Fraction as a Function of $\log_{e}(A/A_{50})$.	8-32

LIST OF TABLES

Table		Page
8-1	Control Truth Table for a Two-Blower, Air-Heating Solar System Operation	8-3
8-2	Rules of Thumb for Air System Component Sizing .	8-12
8-3	Monthly Temperature (T _m) in °F at Source for City Water in 14 Selected Cities	8-30
8-4	F Values for Different Collector Areas (for a given building and location)	8-31
8-5	Constants for Relative Areas Method	8-39

8-ii

INTRODUCTION

Components of a solar heating system must be compatibly sized and carefully assembled in order to ensure that the system will function properly. Collectors, heat storage units, blowers. controls and the heat exchanger for domestic water heating must be compatible. Generally, the collector area is decided first, and from the collector area storage volume is then selected. The air flow rate through the collector is selected to be within a nominal range and blower size can then be decided. The air delivery rate to the rooms is based upon the size of the house, and the size of the auxiliary furnace is determined from the building heating load. Selection of the types and locations of dampers in the solar system is particularly important. If attention is not given to details in system layout and during assembly, the system may not perform as expected, even if the best available components in the market are selected.

OBJECTIVE

The objective of this module is to describe the relationships between the components of an air heating system. The participants of this workshop should be able to:

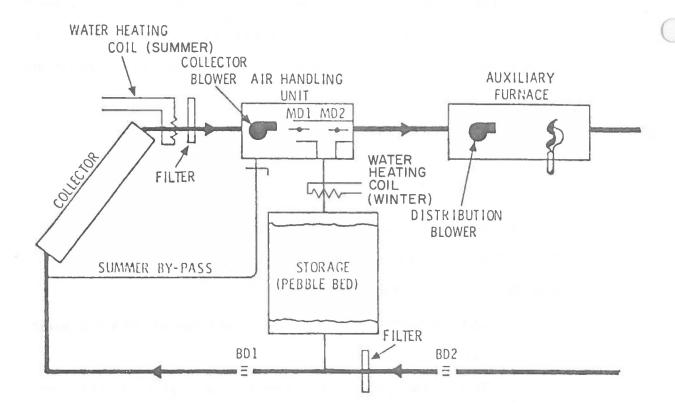
- Develop schematic and working plans for air heating solar systems;
- Select and specify the components of a solar air-heating system;
- Describe the different modes of operation of a solar airheating system;

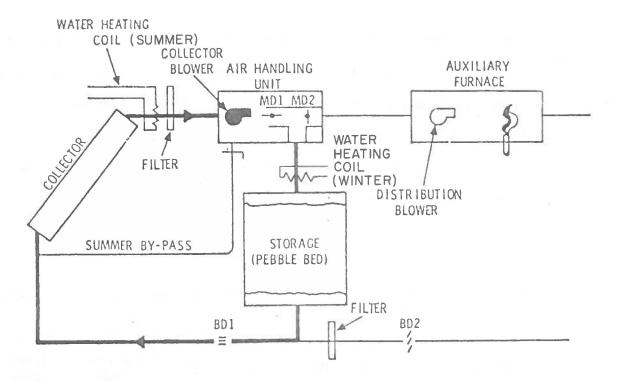
- 4. Determine the size of the system components;
- 5. Estimate the fraction of annual load that the solar system is expected to supply.

SYSTEM ARRANGEMENTS

DOUBLE BLOWER DESIGN

A schematic design of a two-blower air-heating solar system for both space and domestic water heating is shown in Figure 8-1 and comprises six principal components; solar collector, heat storage unit, air handler, auxiliary heater, two water heating coils and a controller (not shown). One water heating coil is used for winter operation and the




Figure 8-1. Heating Building Directly from Collectors

other for summer operation. By combining the blower and dampers in an "air handler", installation and operation of the system can be simplified. The control sequences to operate the system in all modes are detailed in a "truth table" (Table 8-1). The operating modes are shown in Figures 8-1 through 8-4. In the table and figures the abbreviations, MD, denotes a motorized damper and BD, a back draft damper.

Table 8-1

Control Truth Table for a Two-Blower, Air-Heating Solar System Operation

						F IIIIIII
Mode	MD 1	MD 2	BD 1	BD 2	Collector Blower	Distribution Blower
Room Heating from Collector (Figure 8-1)	0pen	Open	Open	Open	On	On
Heating Storage (Figure 8-2)	0pen	Closed	Open	Closed	On	Off
Room Heating from Storage (Figure 8-3)	Closed	Open	Closed	Open	Off	On
Heating from Auxiliary (Figure 8-3)	Closed	Open	Closed (auxili	Open ary on)	Off	On
Preheating water from Coil No. 1 (Figure 8-2)	0pen	Closed	Open	Closed	On	On or Off (water pump) on)
Preheating Water from Coil No. 2 (Figure 8-4)	Closed	Closed	Closed	Closed	On	Off

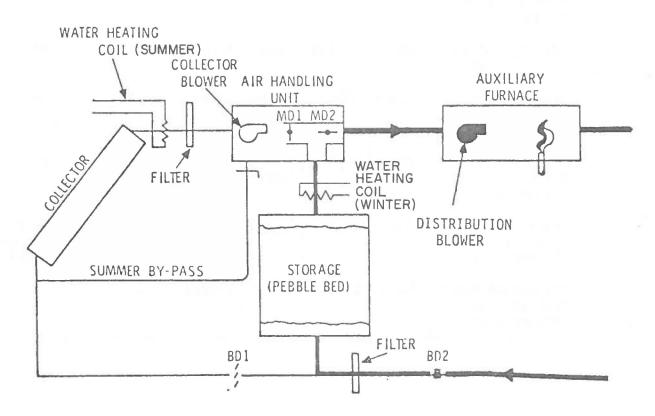


Figure 8-3. Heating Building from Storage Unit (Also Heating from Auxiliary)

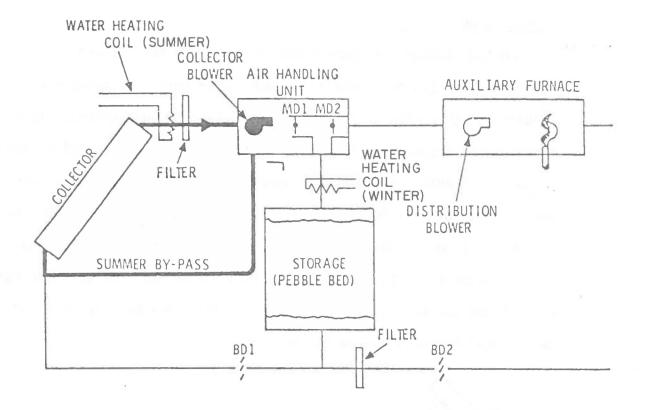


Figure 8-4. Service Hot Water Heating (Summer Operation)

So that the domestic hot water supply can be solar heated in the summer when no space heating is needed, the heat storage unit and heated space can be by-passed as shown in Figure 8-4. A manual damper is opened in the by-pass duct so that air is circulated in a closed loop between collector, water heating coil, and the collector blower. Dampers MD 1 and MD 2 in closed positions prevent flow of hot air to storage or the rooms.

Most commercially available warm-air furnaces for residential use contain a blower for circulation of warm air through the building via the distribution ducts. In a typical all-air solar installation, the furnace blower is used in the normal manner for distributing warm air, supplied either from the collectors or from storage. The solar system blower operates only when air is circulated through the collector.

SINGLE BLOWER DESIGN

Another damper arrangement does not require the furnace blower, so only the solar system blower is needed. Four motorized dampers are required (rather than two), but only two actuators are needed. This system type is shown in Figure 8-5, with the blower and motorized dampers in an "air handler" cabinet. Although the cost of a blower and motor can be saved by this design, two additional dampers are required, the controls are more complicated, and airflow rates in the several modes are less adjustable. This arrangement is applicable when the air flow rate through the collectors is nearly equal to the air flow rate required in the heat delivery system to the rooms.

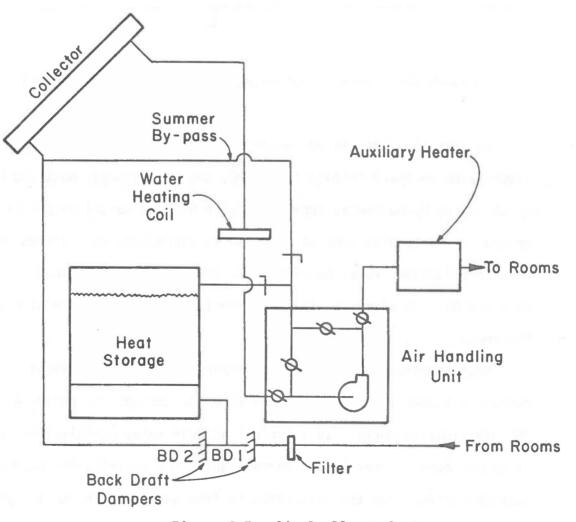


Figure 8-5. Single Blower System

8-6

COMPONENTS AND INSTALLATION

Important operating considerations in the air-type system are blower power requirements and air leakage. A well-designed air system has approximately equal pressure loss through the collectors and pebble-bed, typically about 0.3 inch water gauge in each unit. With ducting and filters, the total system pressure drop can approach one inch of water which is about twice that usually encountered in a conventional forced air distribution system, so additional blower power is required to operate the solar system. Typical requirement in a conventional system is one-half to three-fourths horsepower for a 1500 cfm system. In a double blower system the collector blower motor should be three-fourths or one horsepower depending on collector area, and the distribution blower motor is of conventional size. In a one blower system a one horsepower motor will generally be required. The blowers also operate for longer periods than in the conventional system because of their use both for solar heat collection and for heat distribution. A one-inch water gauge pressure loss is about the maximum acceptable from the standpoint of blower power cost.

Leakage of air in ducts, collectors, and storage is of greater concern in a solar heating system than in a conventional system because the pressure is higher, there is more ducting, the system operates for longer periods, and there may be more ducting through unheated space. Ducts should therefore be carefully inspected during installation and all joints should be sealed with a silicone sealing compound if sheet metal ducts are used. Ducts made of fiberglass board should be taped carefully at all corners and joints. Insulation is needed to reduce

heat loss through the duct walls, particularly in unheated spaces such as attics. At least one inch of fiberglass with a rating of R-4 is recommended for duct insulation, with two inches for ducts in unheated spaces.

It is especially important with a solar air system that a well scheduled installation be made. More space and access must be provided in the building for ducting than for pipes in a liquid system. Ductwork and component assembly can be done at the same time that the distribution ducts and furnace are installed in a typical construction schedule. There must be provision for construction and installation space and for full access to the space for systems and components.

If fiberglass ductboard is used for the air duct, it should not be in locations where it can be damaged by moving objects or occupants. Joints should be well sealed with tapes or mastics recommended by the industry. Duct bends should be provided with turning vanes to reduce losses. Ducts should be sized for air velocities between 600 and 800 feet per minute.

Blowers, dampers, and auxiliary heaters may be provided by a single solar system supplier or they may be purchased separately. If separately purchased, blowers should be forward-curved squirrel cage type and preferably belt-driven to enable adjustments in air-flow rates. Direct coupled blowers with motors in the air stream may be used and have the advantage of quieter operation but a disadvantage is that no adjustment can be made so that initial sizing is important. Flexible connections between blowers and ducts are recommended.

Louver-type dampers with neoprene or live silicon rubber seals are recommended for positive shutoff and smooth stroking. Damper drive motors should be located on the outside of ducts and direct coupled to the damper shaft or through linkages. Special attention should be given to linkages during installation to assure tight damper closure. Damper pairs may be operated by the same drive motor such that one is closed when the other is open. Damper motors are available which operate on low voltage (24 volt) and have spring returns.

Back draft dampers, used in ducts to prevent reverse flow, may be of the flexible flat type or shutter type. They must be mounted to provide a positive seal against reverse airflow.

To prevent fouling and increased pressure loss in the pebble-bed, filters should be installed in the air streams entering both ends of the storage unit. The filters should be changed or cleaned every few weeks during the first several months of operation to remove the initial dust in the system and building.

Provision for supply of domestic hot water can be easily made in the air system by the use of an air-to-water heat exchanger in the hot air duct between the blower and storage unit. The particular location is chosen to prevent freezing during winter operation. The heat exchanger coil is a finned type, with one or two rows of tubes. A small pump circulates water from the bottom of an insulated tank (usually about 80-gallon capacity), through the coil, and back to the top of the tank. The cold water enters the solar-heated tank and warm water flows to a conventional automatic water heater whenever a hot water faucet is opened in the building. During the summer, an alternate heat exchanger coil located between the collector and blower is used. A duct by-pass, as shown in Figure 8-4 permits operation of the service hot water coil without heating the pebble-bed. The water line to the summer heating coil should be purged when winter operation begins. A thermostatic mixing value can be installed in the line connected to the service hot water tank from the cold water main to prevent delivery of scalding hot water.

The complete solar heating installation will require heating and sheet metal workers to install collectors, ducts, dampers, and the conventional system, electricians to wire blowers and dampers, plumbers to connect the domestic water heating system, and carpenters or masonry workers to construct the pebble-bed container. Consequently, the general contractor and the solar system contractor should coordinate their activities so that each task is accomplished at the most appropriate and convenient stage during construction. Quality installation is an important requirement to obtain a high performance air-heating solar system.

SYSTEM SIZING

Solar heating systems are sized to provide a desired fraction of the total annual heating load of the building. The desired fraction of heating load can be chosen arbitrarily, or determined from economic analysis, so that the annual heating cost of the solar-auxiliary system is minimized. The collector area is the main component to be determined and from the collector area the storage size is selected. The size of the auxiliary furnace is based upon the design heating load and desired heat delivery rate. The blowers and duct sizes depend primarily upon collector area and heat delivery rate. There are various methods for determining the fraction of annual heating load supplied by solar systems, varying from detailed hour-byhour computer simulations to rules of thumb. There are two methods described in this module, one is the "f-chart" method developed by Klein, Beckman and Duffie at the University of Wisconsin, and the other is the "relative-areas" method introduced by Barley and Winn at Colorado State University. The f-chart method is based on hour by hour simulations of performance for typical solar heating systems covering a wide range of system parameters at several geographic locations. Generalized correlation charts (f-charts) for predicting average solar fraction of the monthly heating load were developed. There is one chart which applies to a liquid-heating system and another for an air-heating system.

The relative areas method requires tabulated values of 4 constants and a simple equation to determine the annual solar fraction directly. The tabulated values are based on the results of computerized f-chart calculations.

RULES OF THUMB

Rules of thumb have been suggested for relative sizing of components for solar systems based upon computer designs, experiments and several years of practical experience. They are presented in Table 8-2 and are to be used only as general guides in selecting component sizes. Collector area is not listed in the table because there is considerable freedom to choose areas arbitrarily. For a selected collector area, other components of the system may be established and the total system can be tested by one of the performance prediction methods.

8-11

Table 8-2

Rules of Thumb for Air System Component Sizing

Collector slope	Latitude +15°
Collector airflow rate	1.5 to 2.5 cfm/ft^2 of collector
Pebble-bed storage size	<pre>1/2 to 1 ft³ of rock/ft² of collector</pre>
Rock depth	4 to 8 feet in airflow direction
Pebble size	3/4" to 1-1/2" washed and screened concrete aggregate
Duct insulation	l"-2" fiberglass
Pressure drops:	editore i tradicio
Pebble-bed	0.1 to 0.3" W.G.
Collector (12-14 ft lengths)	0.2 to 0.3" W.G.
Collector (18-20 ft lengths)	0.3 to 0.5" W.G.
Ductwork	~0.08" W.G./100 ft duct length

THE F-CHART METHOD

Basic Approach

The procedure for calculating the long-term performance of solar heating and/or domestic hot water systems is applicable for liquid- and air-based systems. Performance of the system is characterized by the fraction of the monthly space and water heating load, f, provided by the solar system.

The f-chart for air-based systems is given in Figure 8-6. The coordinate axes X and Y characterize collector performance in relationship to the heating load for a specific month. In the tradition of labeling graphs, X is the abscissa (horizontal axis) and Y is the

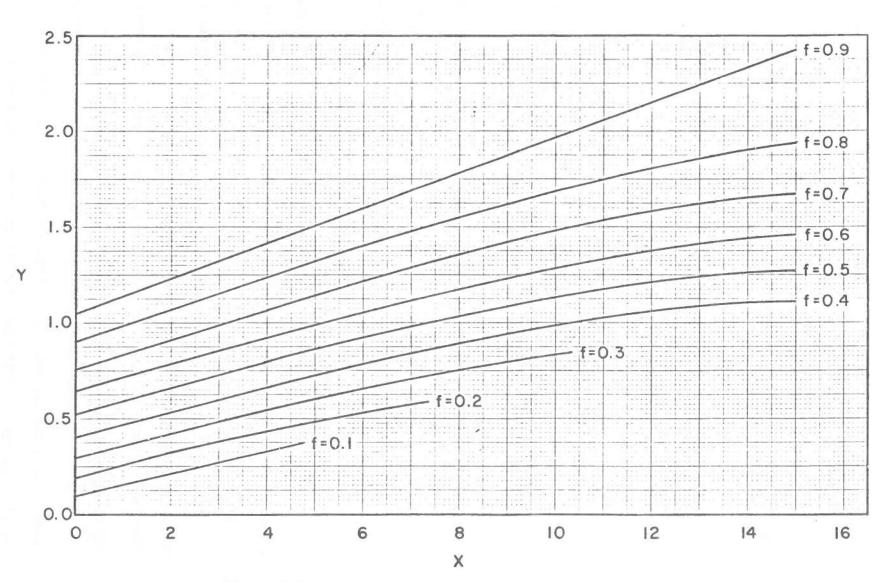


Figure 8-6. f-Chart for Solar Air Heating Systems

8-13

ordinate (vertical axis). In particular,

$$X = \frac{\text{collector losses}}{\text{monthly heating load}} = \frac{A_c F_R U_L (T_{ref} - T_a) \Delta t}{L}$$
(8-1)

and

$$Y = \frac{\text{collector heat gain}}{\text{monthly heating load}} = \frac{A_c F_R \tau \alpha S}{L}$$
(8-2)

Both X and Y are dimensionless

In Equations (8-1) and (8-2)

Ac	is the total collector area, ft ²
FRUL	is the slope of the collector efficiency curve, Btu/(hr•ft ² •°F)
F _R Ta	is the intercept on the collector efficiency curve, corrected for effective value throughout a day, dimensionless
^T ref	is 212°F
Ta	is the average ambient (air) temperature for a specific month, °F
∆t	is the number of hours for a specific month, hr/mo
L	is the monthly space and water heating load, Btu/mo
S	is the average monthly solar radiation on a tilted collector per unit area, Btu/(ft²•mo)

The area is chosen arbitrarily, $F_R U_L$ and $F_R \tau \alpha$ are determined for a specific collector from performance curves, and T_a for specific cities are given in Table 5-5 (for Colorado cities). The monthly heating load, L is the sum of the DHW and space heating load, and S is determined from the monthly average daily solar radiation on a tilted surface (as described in Module 5), multiplied by the number of days in the month. <u>Correction for Collector Air Flow Rate (K₁)</u>

In an air system, collector efficiencies are sensitive to airflow rates through the collector and correction factors are appropriate if the air flow rate is different from the collector manufacturer's recommendation. The correction factor is applied to the X value as follows:

$$X (new value) = X (from Eq. 8-1) \cdot K_1$$
(8-3)

where ${\rm K}_{\rm l}$ is determined from Figure 8-7.

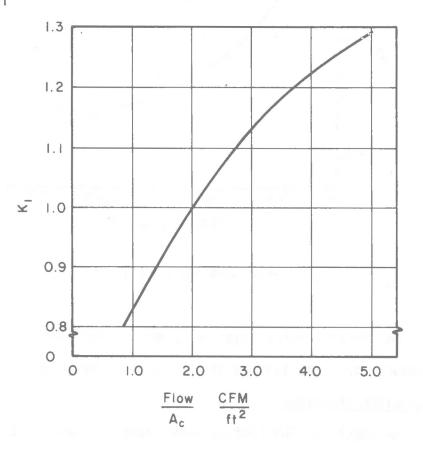


Figure 8-7. Collector Flow Factor (Air), K1

Correction for Storage Size (K_2)

The nominal storage capacity is assumed to be 0.75 ft³ of pebbles per square foot of collector for an air system. When storage size differs from this value, the system performance is affected. The correction is made to the X value in the following way:

X (corrected value) = X (from Eq. 8-1 or 8-3) \cdot K₂ (8-4) where K₂ is determined from Figure 8-8.

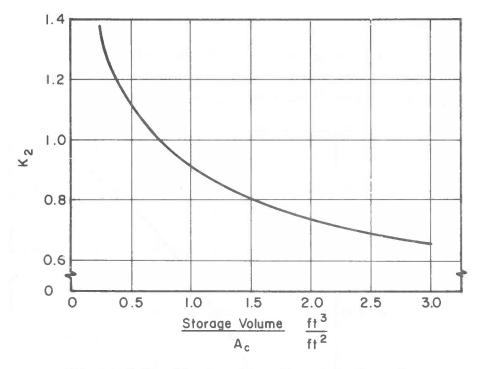


Figure 8-8. Storage Capacitance Factor, K₂

The f-chart method described above is outlined in a step-by-step procedure for clarification and is followed by an example calculation. <u>Calculation Procedure</u>

The space and DHW heating loads must be known or determined before beginning an f-chart performance analysis of a solar system. It is helpful to use the worksheets included in this module to organize the computations necessary in the f-chart procedure.

Step 1. List the data for the solar system by completing Work-Sheet A. Use available data from blueprints, specifications, inspections and handbooks. A heat load analysis for the building (using techniques of Module 3) is required. A summary table useful for calculating monthly heating loads is given in worksheet B.

- Step 2. Determine the monthly and annual heating/DHW loads, L. Use Worksheet B. If the design heating load for the building is not available, an analysis is required.
- <u>Step 3</u>. Calculate the total monthly solar radiation, S. Use Worksheet C.
- Step 4. Determine the collector performance parameters, $F'_R(\tau\alpha)$, F'_RU_L . Use Worksheet D. Lines 1, 2, 3 and 4 are transferred from Worksheet A.

Corrections to $F_R(\tau\alpha)_n$, F_RU_L are necessary when the horizontal axis on the collector efficiency chart is based on fluid temperature other than the inlet temperature to the Collector, T_i . Although collector test standards are suggested, efficiency curves are not presented in a uniform manner by the manufacturers. The corrections to $F_R(\tau\alpha)_n$, and F_RU_L for different cases are explained below.

<u>Case 1</u>. In $\frac{T^* - T_a}{I_T}$, T* is T_{in}.(fluid inlet temperature)

No correction is needed

<u>Case 2</u>. If T* is $\frac{T_i + T_{out}}{2}$, which is the average of the inlet and outlet temepratures,

 $F_{R}(\tau\alpha)_{n}$ (new value) = $F_{R}(\tau\alpha)_{n}$ (from efficiency curve) $\cdot \left| \frac{1}{1 + \frac{F_{R}U_{L}A_{c}}{2C_{a}}} \right|$

Where C_c is heat capacitance rate of the collector fluid ($m c_p$)_c Btu/(hr·°F)

$$F_{R}U_{L}$$
 (new value) = $F_{R}U_{L}$ (from efficiency curve) $\cdot \left[\frac{1}{1 + \frac{F_{R}U_{L}A_{c}}{2C_{c}}}\right]$

 $C_{c} = \dot{m} c_{p} = (volumetric) (fluid specific) (heat capacitance) (time conversion) (conversion)$

Case 3. If T* is T_{out} (fluid outlet temperature)

$$F_{R}(\tau\alpha)_{n} = F_{R}(\tau\alpha)_{n} \text{ (from efficiency curve)} \cdot \left[\frac{1}{1 + \frac{F_{R}U_{L}A_{c}}{C_{c}}}\right]$$

$$F_{R}U_{L} = F_{R}U_{L} \text{ (from efficiency curve)} \cdot \left[\frac{1}{1 + \frac{F_{R}U_{L}A_{c}}{C_{c}}}\right]$$

Corrections to transmittance, τ , through the cover plates and absorptance, α , for the absorber plate are necessary because of sun angle variations on the collector during the day. The $F_R(\tau\alpha)_n$ determined for normal incidence during collector testing, must be corrected for an effective $F_R(\tau\alpha)$ for a day on a fixed-position collector.

$$\frac{F_R^{\tau\alpha}}{F_R(\tau\alpha)_n} = \begin{cases} 0.91 \text{ for two cover plates} \\ 0.93 \text{ for one cover plate} \end{cases}$$

EXAMPLE 8-1

Design a solar heating and hot water system for the sample home of Module 3 located in Denver, Colorado. We will assume the house has been weatherized to Level 3 (defined in Module 3).

The heat loss calculations for the building have been made, and the overall UA (heat conductance) is 276 $Btu/(hr \cdot {}^{\circ}F)$. Using the time conversion from hour to day, the heating and domestic hot water load for the building is 9,415 Btu/DD. Complete Worksheets A through G.

<u>Answer</u>. For collector area of 200 ft^2 , the air-heating system will provide 74 percent of the total annual space and DHW heating load.

(Text continues on page 8-27)

SOLAR SYSTEM DATA

0

Buildin	g Owner	Mr	4	Mrs	Jo	hn	54	in body
Address	0	Mr enver	, (olora	do	_ Ph	482	-0000
		lar Con						
Type of	System (1	iquid or air	, H/Dł	W	air	, t	1/D	HW
Site ar	nd Building	Data						
1.	Locatio	n: Nearest	City	Denven	r	_ Latit	ude	<u>39.5°N</u>
2.	Buildin	g UA	27	6			Btu/(hr•°F)
3.	DHW vol	ume per day		80		<u></u>	gallo	ons/day
4.	Collect	or manufactu	irer	50	laro	n		
5.	Collect	or area		200			_ft²	
6.	Collect	or tilt		55			degre	es
7.	. Tilt =	latitude + _		15			_degre	es
8.	. Collect	or orientati	ion	0 deg	rees		from	south
9.	. Collect	or shading _			0		_% in	December
10.	. Collect	or efficienc	y data	1				
	(a) F _R (τα) _n			0	. 69	_	
	(b) F _R U	1			0	.80	_ Btu/	(hr•ft²•°F)
	(c) Flu	- id temperatu	ire ba	sis (circ	le one)		
	Ca	ise 1	(Ti				
	Ca	use 2		$\frac{T_i + T_{ou}}{2}$	<u>t</u>			
	Ca	ise 3		Tout				

11.	Gollector Fluid:	
	(a) Composition:	Air
	(b) Flow rate G	600 ft ³ /min
Storage Da	ata	
12.	Storage medium	Pebble bed
13.	Unit volume	$\int \int dt $
14.	Total volume (item 5 x 13)	200 ft ³
Auxiliary	Furnace/Boiler	
		ot Air
	Manufacturer	Lennox
	Rated Capacity	40,000 Btu/hr
	Auxiliary energy source	995
Auxiliary	DHW Unit	
	Size	40 gal
	Auxiliary energy source	995
	Hot water set temperature	<u> 140 </u> °F

12

Worksheet B AIR SYSTEMS

HEATING AND/OR DOMESTIC HOT WATER LOAD, L

	1	2		3	4	5	6	7
Month	Monthly Uegree Days DD °F∙days	Monthly Space Htg Load Q _s Btu/Mo.	No. of Days/ Mo. N	Vol. of DHW Used/Mo. Gal./Mo.	Temp. Water Main Sup, T _m °F	DHW Temp. Rise T _{HW} -T _m °F	Monthly DHW Load Q _W Btu/Mo.	Total Heating Load L Btu/Mo.
Jan.	1132	X 10 6 7.5	31	2480	39	101	X 10°	X106 9.6
Feb.	938	6.2	28	2240	40	100	1.9	8.1
March	887	5.9	31	24-80	43	97	2.0	7.9
April	558	3.7	30	2400	49	91	1.8	5.5
May	288	1.9	31	2480	55	85	1.8	3.7
June	66	0.4	30	2400	60	80	1.6	2.0
July	6	0.04	31	2480	63	17	1.6	1.64
Aug.	9	0.06	31	2480	64	76	1.6	1.66
Sept.	117	0.8	30	2400	63	77	1.5	2.3
Oct.	428	2.8	31	24-80	56	84	1.7	4.5
Nov.	819	5.4	30	2400	45	95	1.9	: 1.3
Dec.	1035	6.9	31	24-80	31	103	2.1	· · 9.0
	6283					Total	21	63.2

Project Sunbody Residence

19,812 $Q_d =$ Btu/h (Given data or calculate

Denver

as in Module 3)

$$DTD = 70 - T_0$$

= 70 - (-2) = 72° F

Where: $T_0 = 99\%$ winter design temperature. (From ASHRAE Fundamentals, or Table 3-2)

8-21

$$UA = \frac{Q_d}{DTD} = 276 \frac{BTU}{H_F \cdot \circ F}$$

1400 T_{HW} =

1. From Table 3-2 or Figures 3-2 through 3-13 2. $Q_s = (24)(UA)(Degree Day)$

3. (Vol/day)x(no. days/mo.) = <u>80</u> (gal./day)x(no. days/mo.)

6. $Q_{W} = (vol. of water) \times 8.34 \times 1 \times (T_{HW}-T_{m}).$

7. $L = Q_{s} + Q_{w}$

TOTAL MONTHLY SOLAR RADIATION AVAILABLE, S

Project	Sunbody Residence
Location	Denver
Collector Tilt	Lat. + 150
Nearest Data Site	Denver

]	2	3
Month	Monthly Avg. Daily Rad. on Tilt Surf. I _T Btu/(Day•ft ²)	No. of Days in month N	Tot. Monthly Radiation on Tilt Surf. S Btu/(Mo•ft ²)
Jan.	1975	31	61,225
Feb.	2057	28	57, 596
March	2008	31	62,248
April	1816	30	54,480
May	1673	31	51,863
June	1710	30	51,300
July	1679	31	52,049
Aug.	1876	31	58,156
Sept.	2046	30	61,380
Oct.	2064	31	63,984
Nov.	1864	30	55,920
Dec.	1768	31	54,808

[1] From Table 5-5 for Colorado cities

[3] Column [1] x Column [2]

COLLECTOR COMBINED PERFORMANCE CHARACTERISTICS,
$$F_R(\overline{\tau\alpha})$$
, F_RU_L
PROJECT Sum body Residence.
Collector Efficiency Data from Worksheet A (lines 10(a), (b))
1. Intercept, $F_R(\tau\alpha)_n = \underline{0.69}$
2. Slope, $F_RU_L = \underline{0.69}$
Reference Temperature Basis: 1. $(\underline{t_{in}})^2$. $\underline{t_{in} + t_{out}}^{t}$, 3. t_{out}
3. Collector area, $A_c = \underline{200}$ ft²
4. Collector volumetric flow rate (Worksheet A, 11(d))
6. Case 1: (no correction) $F_R(\tau\alpha)_n = \underline{0.69}$
 $F_RU_L = \underline{0.80}$
6. Case 2: $F_R(\tau\alpha)_n = F_R \tau\alpha \times \left[\frac{1}{1 + \frac{F_RU_L A_C}{2C_c}}\right] = \underline{0.80}$
 $F_RU_L = F_RU_L \times \left[\frac{1}{1 + \frac{F_RU_L A_C}{2C_c}}\right] = \underline{0.750}$
 $F_RU_L = F_RU_L \times \left[\frac{1}{1 + \frac{F_RU_L A_C}{2C_c}}\right] = \underline{0.750}$
 $F_RU_L = F_R(\tau\alpha)_n = F_R(\tau\alpha)_n \times \left[\frac{1}{1 + \frac{F_RU_L A_C}{2C_c}}\right] = \underline{0.750}$
7. Case 3: $F_R(\tau\alpha)_n = F_R(\tau\alpha)_n \times \left[\frac{1}{1 + \frac{F_RU_L A_C}{2C_c}}\right] = \underline{0.750}$
 $F_RU_L = F_RU_L \times \left[\frac{1}{1 + \frac{F_RU_L A_C}{2C_c}}\right] = \underline{0.750}$
 $F_RU_L = F_R(\tau\alpha)_n \times \left[\frac{1}{1 + \frac{F_RU_L A_C}{2C_c}}\right] = \underline{0.750}$
 $F_RU_L = F_R(\tau\alpha)_n \times \left[\frac{1}{1 + \frac{F_RU_L A_C}{2C_c}}\right] = \underline{0.750}$
 $F_RU_L = F_R(\tau\alpha)_n \times \left[\frac{1}{1 + \frac{F_RU_L A_C}{2C_c}}\right] = \underline{0.750}$
 $F_RU_L = F_R(\tau\alpha)_n \times \left[\frac{1}{1 + \frac{F_RU_L A_C}{2C_c}}\right] = \underline{0.750}$
 $F_R(\tau\alpha)_n = F_R(\tau\alpha)_n \times \left[\frac{1}{1 + \frac{F_RU_L A_C}{2C_c}}\right] = \underline{0.750}$
 $F_RU_L = F_RU_L \times \left[\frac{1}{1 + \frac{F_RU_L A_C}{2C_c}}\right] = \underline{0.750}$
 $F_RU_L = F_RU_L \times \left[\frac{1}{1 + \frac{F_RU_L A_C}{2C_c}}\right] = \underline{0.750}$
 $F_RU_L = F_RU_L \times \left[\frac{1}{1 + \frac{F_RU_L A_C}{2C_c}}\right] = \underline{0.750}$
 $F_RU_L = F_RU_L \times \left[\frac{1}{1 + \frac{F_RU_L A_C}{2C_c}}\right] = \underline{0.750}$
 $F_RU_L = F_RU_L \times \left[\frac{1}{1 + \frac{F_RU_L A_C}{2C_c}}\right] = \underline{0.750}$
 $F_RU_L = F_RU_L \times \left[\frac{1}{1 + \frac{F_RU_L A_C}{2C_c}}\right] = \underline{0.750}$
 $F_RU_L = F_RU_L \times \left[\frac{1}{1 + \frac{F_RU_L A_C}{2C_c}}\right] = \underline{0.750}$
 $F_R(\tau\alpha)_n = \frac{F_R(\tau\alpha)_n}{200} = \frac{1.590}{200}$, for one cover plates
8. $F_R(\tau\alpha)_n = \frac{F_R(\tau\alpha)_R A_C}{200}$

CORRECTION FACTORS, K1, K2

1.1

Collector Flow Factor, K1

1. Air Flow Rate (Worksheet A, line 11(b)) = <u>600</u> cfm 2. A_c (from Worksheet A, line 5) = <u>200</u> ft² 3. <u>Air Flow Rate</u> = <u>3</u> cfm/ft²

 $K_1 = (from Figure 8-7) =$ 4.

Storage Mass Capacitance Factor K₂

- 5. Unit Volume (Worksheet A, line 13) =
- 6. $K_2 = (\text{from Figure 8-8}) =$

 1.0	ft³/ft²	(
 0.92		

Worksheet F AIR SYSTEMS

SYSTEM PERFORMANCE PARAMETERS X, Y

PROJECT Sunbody House LOCATION Denver Lat = 39.4°

	1	2	3	4	5	6	7	8
Month	Tot. Monthly Radiation on Tilt Surf. S Btu/(Mo•ft ²)	Total Heating Load L Btu/Mo.	S/L	Y F ₁ •[3]	Mo. Av. Temp. T _a °F	212-T °F ^a	Tot. Hrs in Mo. ∆ time hr.	x
Jan.	61,225	X 106 9.6	.00638	0.81	182	182	744	2.29
Feb.	57,596	8.1	.00711	0.89	180	180	672	2.42
larch	62,248	1.9	.00788	0.99	175	175	744	2.67
April	54,480	5.5	.00991	1.25	164	164	720	3.48
May	51,863	3.7	.01402	1.17	155	155.	744	5.05
June	51,300	2.0	.02565	3.23	146	146	720	8.5
luly	52,049	1.64	.03174	4.00	139	139	744	10.21
Aug.	58,156	1.66	.03503	4.41	140	140	744	10.17
Sept.	61,380	2.3	. 02669	3.36	149	149	720	7.55
)ct.	63,984	4.5	.014-22	1.79	160	160	744	4.29
lov.	55,920	1.3	.00766	0.91	173	113	720	2.77
Dec.	54,808	9.0	.00609	0.77	180	180	744	2.41
. From Workshee . From Workshee	et B, Col. 7			Α _c F _R τα	=	().63 (t² Wksht D)
4. $Y = \frac{A_c F_R(\tau \alpha)}{L}$	$- = F_1 \cdot \frac{S}{L}$			FRUL	=			Wksht D)
5. From Table 5-	-5			κ _l	=		1.1	Wksht E)
$X = \frac{A_c F_R U_L (T_r)}{A_c F_R U_L (T_r)}$	ref ^{-T} a)∆time L x Kı	х К ₂		К2	=			Wksht E)
					= $A_c F_R \overline{\tau \alpha}$			
= F ₂ •[(6)•(/)]:(2)			F2	$= A_{c}F_{R}U_{L}K$	1K2 =	162	

Worksheet G AIR SYSTEMS

FRACTION OF TOTAL HEATING LOAD SUPPLIED BY SOLAR ENERGY, FAnnual

PROJECT Sunbody Residence

]	2	3	4	5
Month	Tot. Mo. Htg. Load L x 10 ⁶ Btu/mo.	System Parameters X	System Parameters Y	Solar Fraction/ mo. f	Actual Solar en/mo E x 10 ⁶ Btu/mo.
Jan.	4.6	2.29	0.81	0.60	5.76
Feb.	8.1	2.42	0.89	0.64	5.18
March	7.9	2.67	0.99	0.69	5.45
April	5.5	3.48	1.25	0.83	4.57
May	3.7	5.05	1.77	1.00	3.70
June	2.0	8.51	3.23	1.00	2-00
July	1.64	10.21	4.00	1.00	1.64
Aug.	1.66	10.17	4.41	1.00	1.66
Sept.	2.3	7.55	3.36	1.00	2.30
Oct.	4.5	4.29	1.79	1.00	4.50
Nov.	7.3	2.17	0.91	0.66	4.82
Dec.	9.0	2.91	0.77	0.55	4-95

COLLECTOR AREA 200ft² LOCATION Denver

63.2×106 Bty L_{tot} =

 $E_{tot} = 46.5 \times 10^6$ Bty

Etot $\frac{46.5}{0.74}$ = 0.74 F_{Annua}1 63.2 tot

1. From Worksheet B

From Worksheet F, Column 8
 From Worksheet F, Column 4
 From "f chart", Figure 8-6
 E = f x L

SOLAR FRACTION FOR DIFFERENT COLLECTOR SIZES

In Example 8-1, the detailed calculations yielded the result that solar energy, with 200 ft² of Solaron collectors and compatible system components, provide 74 percent of the total annual space and domestic hot water heating load for the building. To determine the annual solar fraction provided by a system with different collector areas, the f-chart used for the computations with 200 ft² of collectors, and only worksheet G are needed. It is not necessary to rework the entire calculation procedure from worksheet A through worksheet G.

As an example, the monthly and annual solar fractions for 150 ft^2 of collectors can be determined by following the procedure below:

Step 1. - Calculate the area ratio ($\frac{\text{New Area}}{\text{Old Area}}$) (In this example $\frac{150 \text{ ft}^2}{200 \text{ ft}^2} = 0.75$

- Step 2. For each month multiply the f-chart parameters X and Y (Columns 2 and 3, Worksheet G) by this area ratio.
- Step 3. Use the f-chart (Figure 8-6) and determine the new solar fractions for each month
- Step 4. Complete a new worksheet G and determine the annual fraction, F.

The procedure described above is followed and results are shown on a new worksheet G. With 150 ft^2 of collectors, the system will provide 63 percent of the annual space and DHW heating load.

		FRACTION OF TOTA	AL HEATING LUAD	SUPPLIED BY SU		0
	-				PROJECT	Sunbody Residence
[1	2	3	4	5	COLLECTOR AREA 150 ft ²
Month	Tot. Mo. Htg. Load L x 10 ⁶ Btu/mo.	System Parameters X	System Parameters Y	Solar Fraction/ mo. f	Actual Solar en/mo E x 10 ⁶ Btu/mo.	LOCATION Denver
Jan.	9.6	1.12	0.61	0.48	4.61	
Feb.	8.1	1.82	0.67	0.5	4.13	
March	1.9	2.00	0.74	0.56	4.42	
April	5.5	2.61	0.94	0.69	3.80	
May	3.7	3.79	1.33	0.86	3.18	
June	2.0	6.38	2.42	1.00	2.00	
July	1.64	7.66	3.00	1.00	1.64	
Aug.	1.66	7.63	3.31	1.00	1.66	
Sept.	2.3	5.66	2.52	1.00	2.30	
Oct.	4.5	3.22	1.34	0.90	4.05	
Nov.	7.3	2.08	0.73	0.56	4.09	
Dec.	9.0	1.81	0.58	0.45	4.05	

FRACTION OF TOTAL HEATING LOAD SUPPLIED BY SOLAR ENERGY E

 $L_{tot} = 6.32 \times 10^{6}$ Btu

 $E_{tot} = 39.9 \times 10^{6}$

 $\frac{E_{tot}}{L_{tot}} = \frac{39.9}{63.2} = 0.63$ $|\mathbf{s}_{+\mathbf{u}}| = \frac{1}{L}$

- 1. From Worksheet B
- From Worksheet F, Column 8
 From Worksheet F, Column 4
 From "f chart", Figure 8-6
 E = f x L

8-28

THE RELATIVE AREAS METHOD

The solar fraction of the annual heating load is determined from the quantity of solar heat expected from the solar system and the total annual heat requirements calculated for the building. The solar fraction therefore describes the performance of a solar system either for space heating or space and domestic water heating combined. As is evident from Example 8-1, the f-chart calculations when undertaken by "hand", requires considerable time. To facilitate calculations computer programs have been written and are available for sale through the University of Wisconsin, for both large computers and small programmable hand held calculators. However, because not everyone has ready access to either large or small computers, a hand calculation method which saves computational time has considerable utility. The relative areas method, developed by Barley and Winn at Colorado State University is one such method.

The performance calculations for a solar system with two different collector areas were made in Example 8-1. If the f-chart calculations are continued for different collector areas, there would result a set of F values (annual solar fraction) corresponding to the set of collector areas, A_c . This has been done for a different building and the F values corresponding to six different collector areas, are listed in Table 8-3 along with two other values, A/A_{50} and $\log_e A/A_{50}$.

The collector areas A_{50} is identified as the area which provides 50 percent of the annual heating needs. That is, if the building of Table 8-4 is provided with 310 ft² of air-heating collectors, with the characteristics specified in the problem the system will provide 50 percent of the average annual heating needs. The last column in the table is the natural logarithm of the ratio A/A₅₀.

8-29

Ta	b1	е	8-	3

Monthly Temperature (T_m) in °F at Source for City Water in 14 Selected Cities

	City	Source	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1.	Phoenix	Ri, Re, W	48	48	50	52	57	59	63	75	79	69	59	54
2.	Miami	W	70	70	70	70	70	70	70	70	70	70	70	70
3.	Los Angeles	Ri, W	50	50	54	63	68	73	74	76	75	69	61	55
4.	Albuquerque	W	72	72	72	72	72	72	72	72	72	72	72	72
5.	Las Vegas	W	73	73	73	73	73	73	73	73	73	73	73	- 73
6.	Denver	Ri	39	40	43	49	55	60	63	64	63	56	45	37
7.	Ft. Worth	L	56	49	57	70	75	81	79	83	81	72	56	46
8.	Nashville	Ri	46	46	53	66	63	69	71	75	75	71	58	53
9.	Washington D.C.	Ri	42	42	52	56	63	67	67	78	79	68	55	46
10.	Salt Lake City	W, C	35	37	38	41	43	47	53	52	48	43	38	37
11.	Seattle	Ri	39	37	43	45	48	57	60	68	66	57	48	43
12.	Boston	Re	32	36	39	52	58	71	74	67	60	56	48	45
13.	Chicago	L	32	32	34	42	51	57	65	67	62	57	45	35
14.	New York City	Re	36	35	36	39	47	54	58	60	61	57	48	45

¹Data from Handbook of Air Conditioning System Design, p. 5-41, McGraw Hill Book Company, New York (1965). Abbreviations: C-creek, L-lake, Re-reservoir, Ri-river, W-well.

Table 8-4

A(ft ²)	F	A/A ₅₀	Log _e (A/A ₅₀)
500	0.68	1.61	0.48
400	0.59	1.29	0.25
310*	0.50	1.00	0.00
300	0.49	0.97	-0.03
200	0.33	0.65	-0.44
150	0.22	0.48	-0.78

F Values for Different Collector Areas (for a given building and location)

 $*A_{50} = 310 \text{ ft}^2$

When the annual solar fraction F is plotted against $\log_{e}(A/A_{50})$, a straight line can be fitted along the points on a graph as shown by the solid line in Figure 8-9. Using the solid line, a collector area for any specified solar fraction F can be determined, or conversely the solar fraction F can be easily calculated for any collector area between 150 and 500 ft². If the solid line is extended, F can be determined for larger collector areas directly from the graph.

The solid curve applies to a specific building with a UA of 714 Btu/(hr.°F) and for a specified collector. If a different collector is chosen for the solar system or the design is made for a different building with a different heating load, a different line would apply as shown by the dashed lines in the figure.

To make this simple procedure applicable for any air heating collector and any building load (i.e. different buildings) we need to know the

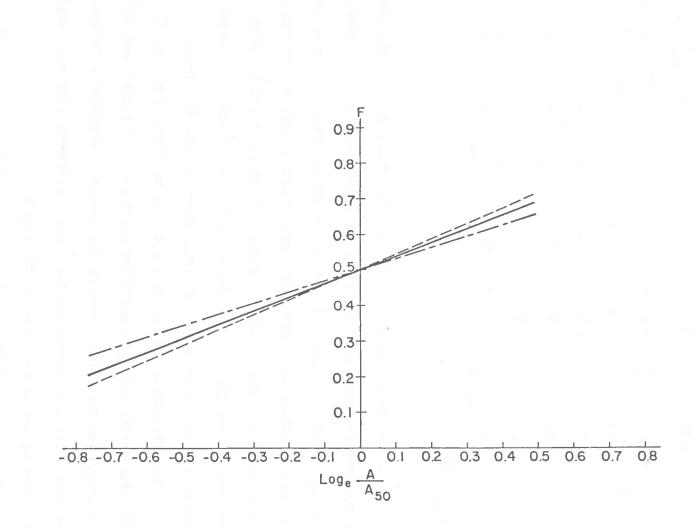


Figure 8-9. Annual Solar Fraction as a Function of $\log_{e}(A/A_{50})$

slope of the line, and the value of A_{50} . The collector area required to supply 50 percent of the building heating load obviously depends upon the building load as well as the quality of collectors used. With these factors known, A_{50} can be calculated from Equation (8-5).

$$A_{50} = \frac{A_{S}(UA)_{L}}{F_{R} \overline{\tau \alpha} - F_{R}U_{L}(Z)}$$
(8-5)

where

 A_c is a location dependent constant

 $\left(\text{UA} \right)_{L}$ is the thermal conductance for the building but it also may include the water heating load,

- $F_R^{\tau\alpha}$ is the $F_R(\tau\alpha)_n$ (intercept) of the collector efficiency curve corrected for effective $\tau\alpha$ and heat exchanger in the collector loop
- $F_R U_L$ is the $F_R U_L$ (slope) of the collector efficiency curve corrected for the effect of a heat exchanger in the collector loop,

Z is another location dependent constant

In Equation (8-5) once A_S and Z are known for a specific location, and with knowledge of (UA)_L and the characteristics of the collector, the annual fraction can be determined from

$$F = 0.5 + c_2 \log_e(A/A_{50}).$$

The lines in Figure 8-9 are drawn so that the point F = 0.5, $\log_e(A/A_{50}) = 0$ is on the line. If however, a "best fit" curve is drawn through the calculated points of F and $\log_e(A/A_{50})$, the intersept is not always at 0.5. The general equation for the best fit line is

$$F = c_1 + c_2 \log_e(A/A_{50})$$
(8-6)

where

- F is the annual fraction,
- c_l is the intercept on the $\log_e(A/A_{50}) = 0$ axis, and may be different from 0.5

c₂ is the slope of the line.

Values of c_1 , c_2 , A_S and Z for liquid and air-heating systems are listed on Table 8-5 for 170 cities in the United States and Canada. Included in the tables also are the latitudes and heating "degree-days" expressed in (°F•hr)/year.

An additional set of columns are given in Table 8-5 for stand-alone domestic hot water systems. The form of the F-equation for systems that heat only domestic water is the same as Equation (8-6), however, A_{50} is determined by

$$A_{50} = \frac{A_{D} D \Delta T \times 10^{-3}}{F_{R}^{\tau \alpha} - F_{R}^{\prime} U_{L}(Z)}$$
(8-7)

where

AD	and Z	are location dependent constants that are listed in the table
D		is the daily hot water demand, gal/day
ΔT		is the difference between the temperature of water in the mains and set temperature of water in the conventional hot water tank; °F

EXAMPLE 8-2

Determine the annual solar fraction for the solar system of Example 8-1, using the relative areas method, first for 200 ft², then for 150 ft², using the values in Table 8-5 for Denver, Colorado.

For convenience, use the worksheet for the relative areas method:

Answer.

 $F = \underline{0.68} \text{ for } A_{c} = 200 \text{ ft}^{2}$

F = 0.58 for $A_{c} = 150$ ft²

From the f-chart method the results were

 $F = 0.74 \text{ for } A_c = 200 \text{ ft}^2$ $F = 0.63 \text{ for } A_c = 150 \text{ ft}^2$

Worksheet

SOLAR SYSTEM DATA RELATIVE AREAS METHOD

Building Owner Mr + Mrs John Sanbody Address 736 Sunshine Ave Denver ph. 482-0000 contractor Solar Construction Co Ph. 482-0001 Type of System (liquid, air, H/DHW, DWH) <u>Air</u>, <u>H/JHW</u> Site and Building Data 1. Location: Nearest City Denver Latitude 39.5 N 2. Building UA 276 Btu/(hr.°F) 80 DHW volume per day gallons/day 3. Collector Data 4. Collector manufacturer <u>Solaron</u> 5. Collector Area, $A_c = 200$ ft² Collector efficiency data from manufacturer's information: 6. 0.69 (a) F_D(τα) O.80 Btu/(hr•ft²•°F) (b) F_DU Correction for fluid temperature basis 7. (a) Case 1: (no correction) (i) $F_R(\tau \alpha)_n = F_R \tau \alpha$ (from line 6) <u>0.69</u> (ii) $F_R U_L = F_R U_L$ (from line 6) <u>0.60</u> Btu/(hr•ft²•°F) (b) Case 2: $\frac{T_{in} + T_{out}}{2}$ (correction needed) $C_{c} = (mc_{p})_{c} = (Vol flow)(density)(time)(time)(time)(time)(time)(time)(time))$ $= - - \frac{gal}{min} \times - \frac{lb}{gal} \times 60 \frac{min}{hr} \times - \frac{Btu}{lb^{\circ}F}$ ____ Btu/(hr•°F)

Correction Factor =
$$\begin{bmatrix} -\frac{1}{1 + \frac{F_R U_L A_C}{2C_C}} \end{bmatrix}$$
 = ______
(i) $F_R(\tau \alpha)_n = F_R \tau \alpha$ (from line 6a) x (correction factor)
= _______ x ____ = _____
(ii) $F_R U_L = F_R U_L$ (from line 6b) x (correction factor)
= _______ x ____ = _____ Btu/(hr*ft^2*F)
(c) Case 2: T_{out} (correction needed)
Correction Factor = $\frac{1}{1 + \frac{F_R U_L A_C}{C_C}}$ = ______
(i) $F_R(\tau \alpha)_n = F_R(\tau \alpha)$ (from line 6a) x (correction factor)
= ______ x ____ = _____
(ii) $F_R U_L$ (from line 6b) x (correction factor)
= ______ x ____ = _____
(ii) $F_R U_L$ (from line 6b) x (correction factor)
= ______ x ____ = _____ Btu/(hr*ft^2*F)
Heat Exchanger Factor $(F_R^{'}/F_R)$
8. For air collectors $F_R^{'}/F_R = 1$
9. For liquid collectors
(a) C_C (from line 7b) = ______ Btu/(hr*F)
(b) $C_S = ____ x 8.34 \times 60 \times 1 = _____ Btu/(hr*F)$
(c) Heat exchanger effectiveness = ______
(d) $x = \frac{C_C}{c_S C_{min}} = (--)(-) = ______$
(e) $y = \frac{A_C F_R U_L}{C_C} = (___)(___) = ______$

 \bigcirc

 \bigcirc

Corrections to Collector Parameters

10. Incident angle modifier (a) $F_R(\overline{\tau \alpha}) = F_R(\tau \alpha)_n \times 0.91$ (for two cover plates) $= \underline{O.69} \times 0.91 = \underline{O.63}$ (b) $F_R(\overline{\tau \alpha}) = F_R(\tau \alpha)_n \times 0.93$ (for one cover plate) $= \underline{\qquad} \times 0.93 = \underline{\qquad}$ 11. (a) $F_R^{\dagger}\overline{\tau \alpha} = \frac{1}{1 \text{ ine 10a or 10b}} \times \frac{1}{1 \text{ ine 8 or 9f}} = \underline{\qquad}$ (b) $F_R^{\dagger}U_L = \frac{O.80}{1 \text{ ine 7a(ii)}} \times \frac{1}{1 \text{ ine 8 or 9f}} = \underline{O.80} \text{ Btu/(hr.°F)}$ arrow 7b(ii)

List c₁, c₂, A_S, A_D, Z from Table 8-5

12.
$$A_s \text{ or } A_D = 0.1638$$
 $Z = 0.15696$ $c_1 = 0.549$ $c_2 = 0.347$

For Solar Heating and DHW Systems:

13.
$$A_{50} = \frac{A_{S}(UA)_{L}}{F_{R}^{T\alpha} - F_{R}U_{L}(Z)}$$
 where $(UA)_{L} = \frac{\text{Design Heating Load}}{\text{Design Temp. Diff.}}$
 $A_{50} = \frac{(0.1658)}{(0.63)} - \frac{(414)}{(0.63)} = \frac{138}{12} \text{ ft}^{2}$
14. $A_{c}/A_{50} = \frac{200/138}{200/138} = \frac{1.4.5}{15}$
15. $\log_{e}(A_{c}/A_{50}) = \frac{0.37}{15}$
16. $F = c_{1} + c_{2} \log_{e}(A/A_{50})$
 $= \frac{0.549}{12} + \frac{(0.341)(0.31)}{(0.32)} = \frac{0.68}{15}$
17. $A_{c}/A_{50} = 150/138 = 1.09$
18. $\log_{e}(A_{c}/A_{50}) = 0.0834$
19. $F = \frac{0.549}{12} + \frac{(0.341)(0.083)}{0.0834} = 0.58$

Table 8-5

Constants for Relative Areas Method

						SYSTEM			AIR SY	STEM		400	MESTIC HOT		LY
CITY	ST	LAT. (DEG.)	D-H (FHR/YR)	A _s (<u>°F•ft</u> B	Z ² •Hr tu-)	с ₁	C ₂	A _s (^{°F∙ft} 8	Z ² •Hr tu)	C1	C ₂	A _D ft ² ·D °F kgal(Z <u>PF•ft²•Hr</u>) Btu	c1	C ₂
<pre>Innette Dethel Det</pre>	MO MO MO MN	$\begin{array}{c} 55.0\\ 60.5\\ 61.3\\ 33.2\\ 34.4\\ 36.3\\ 32.1\\ 32.4\\ 33.5\\ 34.4\\ 33.5\\ 35.4\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 32.4\\ 34.5\\ 34.1\\ 32.4\\ 34.5\\ 34.1\\ 32.4\\ 34.5\\ 32.1\\ 34.5\\ 32.4\\ 34.5\\ 32.5\\ 34.5\\ 32.4\\ 34.5\\ 32.4\\ 34.5\\ 32.5\\ 30.3\\ 32.4\\ 40.4\\ 41.6\\ 41.6\\ 41.6\\ 41.6\\ 41.6\\ 41.6\\ 41.6\\ 41.6\\ 41.6\\ 41.6\\ 41.6\\ 41.6\\ 42.3\\ 32.1\\ 32.1\\ 32.4\\ 32.1\\ 33.6\\ 32.5\\ 33.2\\ 42.1\\ 42.2\\ 32.1\\ 33.6\\ 43.6\\ 33.2\\ 42.1\\ 42.2\\ 32.1\\ 33.6\\ 43.6\\ 41.6\\ 41.6\\ 41.6\\ 41.6\\ 42.3\\ 32.1\\ 32.1\\ 42.5\\ 33.6\\ 32.5\\ 42.5\\ 32.5\\ 42.5\\ 32.5\\ 42.5\\ 32.5\\ 42.5\\ 32.5\\ 42.5\\ 32.5\\ 42.5\\ 32.5\\ 42.5\\ 32.5\\ 42.5\\ 32.5\\ 42.5\\ 32.5\\ 42.5\\ 32.5\\ 42.5\\ 32.5\\ 42.5\\ 32.5\\ 42.5\\ 32.5\\ 42.5\\ 42.5\\ 32.5\\ 42.5\\ 42.5\\ 32.5\\ 42.5\\$	172607 316702 342696 260371 68248 80060 77255 129119 37249 43199 24141 60047 46265 56878 43657 40647 46056 68225 36161 73911 55967 71207 122960 144377 15534 12948 12948 12948 12948 12948 12948 12948 12948 125941 31843 1533 5137 37866 37510 17233 74262 67201 53756 46844 0 0 163776 161033 139417 169513 15774 147047 146345 147047 147047 146345 15774 147047 147047 146345 157825 152809 135215 132285 152825 152809 135215	. 309 . 485 . 638 . 638 . 483 . 161 . 195 . 192 . 149 . 063 . 070 . 046 . 137 . 130 . 077 . 054 . 060 . 065 . 133 . 053 . 082 . 101 . 066 . 196 . 175 . 196 . 286 . 206 . 196 . 196 . 286 . 196 . 286 . 066 . 196 . 196 . 196 . 196 . 286 . 066 . 196 . 196 . 196 . 196 . 286 . 004 . 014 . 000 . 004 . 014 . 000 . 004 . 014 . 000 . 006 . 162 . 141 . 122 . 108 . 000 . 014 . 000 . 312 . 325 . 162 . 141 . 122 . 108 . 000 . 312 . 325 . 176 . 242 . 263 . 314 . 316 . 315 . 319 . 325 . 176 . 227 . 266 . 227 . 266 . 227 . 266 . 227 . 266 . 325 . 176 . 325 . 176 . 242 . 206 . 227 . 266 . 325 . 176 . 325 . 176 . 325 . 176 . 242 . 206 . 227 . 266 . 325 . 176 . 325 . 176 . 325 . 176 . 325 . 176 . 242 . 206 . 227 . 266 . 325 . 176 . 325 . 176 . 325 . 176 . 325 . 176 . 325 . 176 . 325 . 176 . 242 . 206 . 227 . 266 . 325 . 176 . 329 . 341 . 303 . 239 . 246 . 325 . 361 . 385 . 245 . 257 . 253 . 175 . 397 . 398 . 349 . 139 . 259 . 294	. 390 . 365 . 412 . 413 . 256 . 263 . 268 . 172 . 163 . 159 . 176 . 269 . 243 . 140 . 197 . 201 . 173 . 255 . 211 . 227 . 254 . 183 . 201 . 173 . 227 . 254 . 183 . 201 . 173 . 255 . 217 . 269 . 243 . 140 . 197 . 201 . 173 . 255 . 211 . 201 . 173 . 255 . 217 . 269 . 243 . 140 . 230 . 184 . 286 . 307 . 284 . 200 . 230 . 192 . 217 . 269 . 201 . 183 . 201 . 201	$\begin{array}{c} .510\\ .508\\ .503\\ .529\\ .528\\ .528\\ .528\\ .528\\ .528\\ .535\\ .528\\ .536\\ .534\\ .536\\ .536\\ .536\\ .537\\ .538\\ .536\\ .537\\ .526\\ .538\\ .536\\ .537\\ .526\\ .538\\ .536\\ .537\\ .526\\ .538\\ .536\\ .537\\ .526\\ .538\\ .536\\ .537\\ .526\\ .522\\$.257 .255 .255 .231 .283 .284 .282 .312 .309 .314 .303 .257 .262 .307 .305 .308 .312 .259 .307 .305 .310 .270 .310 .310 .310 .310 .310 .310 .310 .31	289 .453 .595 .450 .152 .184 .181 .140 .059 .066 .043 .129 .123 .072 .051 .057 .061 .125 .050 .077 .095 .062 .184 .165 .185 .246 .154 .269 .246 .154 .269 .246 .054 .062 .054 .062 .077 .061 .155 .269 .246 .154 .269 .246 .054 .062 .054 .055 .062 .054 .055 .062 .054 .055 .062 .054 .055 .062 .054 .055 .0062 .054 .057 .062 .054 .057 .062 .054 .057 .062 .054 .057 .062 .054 .057 .062 .054 .057 .057 .057 .057 .057 .057 .057 .057	. 316 .289 .330 .211 .217 .221 .141 .133 .130 .141 .220 .142 .206 .146 .159 .142 .206 .146 .165 .165 .165 .165 .165 .165 .165 .147 .232 .248 .199 .164 .177 .232 .248 .199 .143 .120 .206 .146 .165 .165 .147 .232 .248 .146 .165 .147 .232 .248 .146 .165 .147 .232 .248 .180 .200 .253 .247 .250 .253 .248 .225 .249 .255 .229 .225 .220 .225 .220 .225 .220 .225 .220 .225 .220 .225 .225	$\begin{array}{c} .514\\ .511\\ .502\\ .548\\ .547\\ .545\\ .547\\ .545\\ .547\\ .545\\ .553\\ .551\\ .553\\ .551\\ .554\\ .554\\ .554\\ .554\\ .554\\ .554\\ .554\\ .554\\ .554\\ .556\\ .554\\ .556\\$. 284 . 284 . 284 . 284 . 283 . 319 . 322 . 320 . 335 . 328 . 322 . 286 . 288 . 325 . 330 . 334 . 336 . 286 . 336 . 286 . 336 . 286 . 336 . 286 . 336 . 286 . 336 . 340 . 294 . 334 . 347 . 331 . 345 . 328 . 337 . 336 . 340 . 294 . 334 . 347 . 337 . 345 . 328 . 337 . 345 . 328 . 337 . 345 . 328 . 337 . 345 . 328 . 337 . 345 . 329 . 334 . 347 . 359 . 341 . 359 . 368 . 331 . 346 . 327 . 308 . 296 . 315 . 307 . 308 . 290 . 307 . 315 . 315 . 307 . 316 . 317 . 316 . 310 . 327 . 307 . 316 . 317 . 316 . 310 . 327 . 307 . 316 . 317 . 318 . 317 . 318 . 318 . 291 . 286 . 291 . 317 . 318 . 291 . 286 . 291 . 317 . 318 . 291 . 312 . 317 . 312 . 317 . 318 . 291 . 317 . 312 . 317 . 312 . 317 . 318 . 291 . 317 . 312 . 317 . 312 . 317 . 318 . 291 . 317 . 312 . 317 . 318 . 291 . 317 . 312 . 317 . 318 . 291 . 317 . 312 . 317 . 312 . 317 . 312 . 317 . 322 . 317 . 322 . 317 . 322 . 317 . 322 . 317 . 322 . 317 . 322 . 316	5.007 4.409 4.288 4.818 3.370 3.421 2.423 2.396 2.429 3.066 2.957 2.052 2.834 2.906 2.957 2.052 2.834 2.906 2.614 3.028 3.139 3.232 3.336 2.600 3.295 2.639 2.661 2.876 2.547 3.653 3.829 2.921 3.057 3.292 2.921 3.057 3.295 2.661 2.876 2.547 3.653 3.829 2.921 3.057 3.292 2.993 2.915 3.045 2.873 3.3189 3.265 3.470 2.617 3.567 3.189 3.265 3.470 2.617 3.567 3.189 3.265 3.470 2.617 3.567 3.956 3.458 3.189 3.265 3.470 2.617 3.567 3.189 3.265 3.470 2.617 3.567 3.189 3.265 3.470 2.617 3.567 3.189 3.265 3.470 2.617 3.567 3.189 3.265 3.470 2.617 3.567 3.189 3.265 3.470 2.617 3.567 3.189 3.265 3.470 2.617 3.567 3.189 3.265 3.470 2.617 3.567 3.956 3.458 3.730 3.591 3.651 3.596 3.407 3.596 3.407 3.596 3.407 3.596 3.407 3.596 3.407 3.596 3.407 3.596 3.407 3.596 3.407 3.595 3.505	. 392 .417 .407 .418 .211 .217 .219 .177 .134 .141 .132 .204 .188 .121 .182 .183 .165 .197 .200 .221 .226 .180 .221 .226 .180 .221 .226 .180 .221 .226 .180 .221 .226 .180 .221 .226 .180 .221 .226 .180 .221 .226 .180 .221 .226 .184 .171 .193 .266 .184 .171 .185 .149 .145 .122 .126 .211 .226 .211 .226 .227 .229 .260 .271 .225 .227 .229 .260 .271 .225 .227 .229 .260 .271 .225 .227 .229 .260 .271 .225 .227 .229 .260 .271 .263 .227 .225 .227 .225 .226 .227 .225 .226 .227 .225 .226 .227 .225 .226 .227 .227 .225 .226 .227 .227 .227 .227 .227 .227 .227	.500 .535 .538 .539 .545 .543 .543 .557 .559 .545 .559 .550 .554 .559 .550 .554 .543 .543 .559 .550 .554 .559 .550 .554 .543 .543 .543 .543 .543 .543 .543	

()

						SYSTEM			AIR S				MESTIC HOT		
CITY	ST	LAT. (OEG.)	O-H (FHR/YR)	A _s (<u>°F-ft</u> B	Z ² •Hr tu)	C1	с ₂	A _s (<u>°F•ft</u>	Z : ² •Hr Itu)	C1	C ₂	A _D ft ² ·D °F kgal{	Z <u>°F•ft²•Hr</u>) Btu	с ₁	с ₂
Great Falls Summit Ashville Cape Hattaras Charlotte Greensboro Grnvle-Sptnbrg Raleigh Baleigh-Durham Bismarck Fargo Lincoln North Omaha Atlantic City Trenton Albuquerque Ely Las Vegas Reno Albany Binghampton Ithaca New York Rochester Schenectady Syracuse Cleveland Columbus Oayton Put-In-Oay Oklahoma City Stillwater Tulsa Astoria Corvallis Medford Portland Phitsburgh State College Newport Charleston Rapid City Charleston Rapid City Charleston Rapid City Charleston Rapid City Charleston Rapid City Charleston Brownsville Oak Ridge Abilene Amarillo Big Spring Brownsville Corpus Christi Oallas El Paso Fort Worth Houston Midland Port Arthur San Antonio Salt Lake City Mt. Weather Norfolk Richmond Prusser Pullman Richland Seattle Spokane Green Bay Madison Milwaukee Parkersburg Lander Laramie Edmonton Lethbridge Vancouver Churchill Winnipeg Moncton St. Johns Kapuskasing Ottawa Toronto Montreal	MTCCCCCCCCDDEEJJMVVVVYYYYYYHHHHHKKKKRRAAAAAAAAAAAAAAAAAAAAAAA	$\begin{array}{c} 47.3\\ 48.2\\ 35.5\\ 35.2\\ 35.1\\ 34.5\\ 35.5\\ 35.5\\ 46.5\\ 40.5\\ 40.2\\ 39.3\\ 40.1\\ 39.2\\ 41.3\\ 42.1\\ 42.5\\ 43.1\\ 42.5\\ 43.5\\ 40.5\\ 40.5\\ 39.2\\ 42.1\\ 42.5\\ 43.1\\ 42.5\\ 43.5\\ 40.5\\ 39.5\\ 36.1\\ 44.3\\ 42.5\\ 43.5\\ 40.5\\ 36.1\\ 44.3\\ 45.5\\ 36.1\\ 44.3\\ 45.5\\ 36.1\\ 44.3\\ 25.5\\ 53.5\\ 55.5\\ 53.5\\ 55.6\\ 40.5\\ 37.5\\ 27.5\\ 53.5\\ 55.6\\ 40.5\\ 37.5\\ 29.6\\ 39.5\\ 37.5\\ 29.6\\ 46.2\\ 39.5\\ 31.5\\ 55.5\\ 46.2\\ 47.3\\ 44.3\\ 45.3\\$	186001 255070 101681 65545 77225 918011 75907 843353 217056 222497 140806 158687 112629 185590 65015 144521 165311 174835 169246 115462 161249 163610 160264 147697 135840 160264 147697 135877 142030 88676 87143 88315 127078 16497 115840 115011 116755 126665 147169 139294 48772 176279 84117 77443 88315 127078 16497 118319 115001 116755 126665 147169 139294 48772 176279 84117 77443 88703 94658 62182 15600 22318 54952 64798 57720 34412 62182 15600 12318 54952 64798 57720 34412 62182 15600 12318 54952 64798 57720 34412 62182 15600 12318 54952 64798 16034 100355 123674 115407 143591 136034 134578 15770 144230 143591 136034 143591 136034 160385 62182 15600 22318 54952 64798 16770 241677 241630 277777 209638 163841 196871	268 .393 .177 .117 .159 .162 .161 .173 .256 .263 .218 .243 .137 .197 .102 .158 .328 .371 .409 .326 .348 .371 .326 .328 .371 .326 .328 .371 .409 .326 .328 .371 .409 .326 .328 .367 .326 .294 .326 .294 .376 .159 .180 .222 .242 .242 .255 .269 .247 .352 .258 .112 .233 .195 .188 .223 .120 .143 .121 .046 .097 .119 .092 .115 .099 .246 .211 .097 .119 .092 .115 .099 .246 .257 .258 .112 .233 .120 .132 .269 .247 .352 .258 .112 .233 .120 .132 .269 .247 .352 .258 .112 .233 .120 .132 .233 .120 .132 .233 .120 .132 .257 .126 .235 .268 .112 .235 .268 .112 .235 .268 .112 .235 .268 .122 .247 .352 .258 .112 .233 .120 .132 .233 .120 .132 .233 .120 .132 .243 .352 .258 .112 .233 .120 .132 .257 .266 .235 .266 .235 .267 .257 .258 .122 .233 .120 .132 .233 .120 .132 .233 .120 .132 .235 .258 .122 .235 .258 .122 .235 .258 .122 .235 .258 .122 .235 .258 .122 .235 .258 .122 .235 .258 .122 .235 .258 .122 .235 .258 .122 .235 .258 .122 .235 .258 .122 .257 .258 .257 .256 .257 .256 .261 .257 .256 .257 .256 .257 .256 .257 .257 .256 .257 .257 .257 .256 .257 .257 .258 .257 .257 .256 .257 .257 .258 .257 .258 .257 .258 .257 .258 .257 .258 .257 .258 .257 .257 .258 .257 .258 .257 .257 .258 .257 .258 .257 .257 .258 .257 .257 .256 .257 .258 .257 .257 .257 .256 .257 .257 .257 .257 .256 .257 .257 .257 .256 .257 .257 .257 .257 .257 .256 .257 .257 .257 .256 .257 .257 .257 .257 .257 .257 .257 .257	259 349 223 208 229 252 237 231 241 260 319 257 261 276 167 191 163 387 382 385 371 372 348 369 206 237 378 372 348 369 206 237 255 207 255 207 255 207 265 378 378 369 206 237 276 265 207 277 265 207 277 265 207 277 265 207 277 265 207 277 265 207 277 265 207 277 265 207 277 225 200 277 225 200 277 225 200 277 225 200 277 225 200 277 225 200 277 225 200 277 225 200 277 225 200 277 225 200 277 225 200 277 225 200 277 225 200 277 225 227 225 207 225 209 225 221 225 209 225 221 225 209 225 221 225 227 227	.524 .513 .527 .531 .532 .527 .531 .532 .527 .528 .525 .528 .527 .528 .527 .528 .527 .528 .527 .528 .527 .528 .527 .518 .521 .518 .521 .518 .521 .519 .516 .515 .529 .509 .509 .509 .509 .509 .509 .509 .50	283 2255 289 298 293 289 289 289 289 280 280 281 264 285 287 282 285 285 285 285 285 285 285 285 285	.251 .367 .166 .111 .150 .179 .153 .152 .164 .391 .242 .206 .229 .125 .186 .096 .149 .351 .385 .306 .329 .386 .346 .329 .386 .346 .307 .277 .354 .151 .170 .186 .208 .228 .228 .228 .223 .232 .243 .105 .218 .185 .177 .218 .185 .177 .218 .185 .177 .218 .185 .177 .218 .185 .105 .218 .185 .177 .211 .113 .124 .208 .228 .225 .222 .223 .232 .243 .105 .218 .185 .177 .211 .113 .144 .043 .057 .124 .105 .218 .105 .218 .105 .218 .105 .218 .105 .218 .105 .218 .105 .218 .105 .218 .105 .221 .112 .086 .109 .251 .235 .231 .242 .253 .232 .243 .105 .218 .105 .218 .105 .218 .105 .218 .105 .218 .105 .218 .105 .221 .112 .086 .109 .251 .235 .237 .231 .242 .105 .218 .105 .218 .105 .218 .105 .218 .105 .228 .231 .242 .245 .253 .232 .243 .105 .218 .235 .237 .231 .242 .105 .231 .245 .255 .257 .257 .255 .257 .255 .257 .255 .257 .255 .257 .255 .255	211 282 196 167 190 207 195 184 198 211 257 212 199 213 227 136 156 133 154 255 286 319 304 275 317 304 275 307 286 252 303 169 194 204 291 302 264 324 291 302 264 291 302 203 239 181 163 177 172 286 207 213 229 229 232 248 269 252 233 239 181 277 277 278 264 277 277 278 277 278 277 278 277 278 277 278 277 278 277 278 277 277	$\begin{array}{c} .536\\ .521\\ .539\\ .543\\ .550\\ .544\\ .545\\ .545\\ .545\\ .545\\ .545\\ .545\\ .545\\ .546\\ .550\\ .541\\ .546\\ .550\\ .546\\ .550\\ .546\\ .552\\ .530\\ .526\\ .530\\ .526\\ .530\\ .552\\ .546\\ .551\\ .532\\ .546\\ .548\\ .512\\ .526\\ .548\\ .512\\ .546\\ .548\\ .512\\ .546\\ .546\\ .546\\ .546\\ .546\\ .546\\ .547\\ .546\\ .556\\ .546\\$	 313 287 322 325 327 321 334 326 314 300 323 324 326 327 321 328 320 324 229 282 292 282 292 282 292 282 291 297 298 290 304 289 320 317 305 337 321 320 317 305 337 341 331 320 317 305 337 341 331 326 322 331 327 336 324 321 337 336 324 327 336 326 337 341 337 336 324 327 336 326 337 341 337 336 324 327 336 327 336 328 337 337 331 337 336 324 327 336 326 337 331 337 336 327 336 328 337 337 336 326 337 337	3.202 4.009 3.203 2.863 3.178 3.393 3.243 3.306 3.388 3.149 3.657 3.228 3.231 3.449 3.562 2.536 2.377 2.511 3.829 3.987 4.281 4.503 3.853 4.646 4.126 4.059 3.903 3.987 4.281 3.829 3.987 4.281 3.853 4.646 4.126 4.059 3.903 3.580 3.946 2.885 3.173 3.200 4.422 4.033 3.500 4.422 4.033 3.500 4.422 4.033 3.500 4.645 3.700 2.885 3.741 3.243 2.917 3.474 3.626 3.709 2.867 2.611 2.899 3.182 3.147 3.243 2.927 3.260 2.753 3.444 3.626 3.709 2.867 2.651 2.927 3.244 3.626 3.709 2.867 2.927 3.243 2.927 3.244 3.626 3.709 2.867 3.626 3.709 2.867 3.626 3.709 2.867 3.626 3.709 2.867 3.626 3.709 2.867 3.626 3.709 2.867 3.626 3.709 2.867 3.626 3.709 2.867 3.626 3.709 2.867 3.626 3.709 2.867 3.626 3.744 3.626 3.709 2.867 3.626 3.744 3.626 3.709 2.867 3.626 3.744 3.626 3.709 2.867 3.644 4.484 5.414 4.484 5.414 4.484 5.414 4.484 5.414 4.484 5.414 4.484 5.414 4.368 3.747 3.747 3.745 3.746 4.484 5.414 4.368 3.747 3.747 3.745 3.746 3.747 3.747 3.746 3.747 3.746 3.747 3.746 3.747 3.746 3.747 3.747 3.747 3.747 3.747 3.747 3.747 3.747 3.747 3.747 3.746 3.747 3.747 3.747 3.747 3	.252 .348 .221 .183 .205 .209 .216 .220 .209 .216 .221 .260 .300 .242 .237 .242 .253 .164 .206 .144 .192 .292 .309 .322 .310 .292 .344 .211 .284 .292 .301 .292 .344 .301 .284 .292 .301 .292 .344 .301 .284 .297 .214 .333 .301 .284 .255 .226 .304 .275 .195 .225 .226 .211 .333 .301 .284 .190 .207 .214 .333 .301 .284 .195 .225 .226 .211 .333 .301 .255 .226 .211 .333 .301 .284 .195 .225 .226 .211 .333 .301 .255 .226 .211 .333 .301 .255 .226 .211 .333 .301 .255 .226 .211 .333 .301 .255 .226 .211 .333 .301 .255 .226 .211 .333 .301 .255 .226 .211 .333 .301 .255 .226 .211 .333 .301 .255 .226 .214 .333 .301 .255 .226 .211 .239 .248 .176 .179 .168 .177 .168 .177 .266 .227 .234 .237 .225 .234 .237 .266 .211 .239 .248 .176 .179 .168 .177 .266 .211 .237 .225 .224 .237 .225 .225 .248 .176 .179 .168 .177 .266 .227 .234 .237 .266 .211 .239 .248 .176 .179 .168 .177 .266 .225 .234 .237 .266 .237 .237 .266 .233 .275 .234 .237 .266 .237 .237 .266 .237 .237 .266 .237 .237 .237 .266 .237 .237 .237 .266 .237 .237 .266 .237 .237 .255 .225 .234 .237 .255 .225 .234 .237 .256 .234 .237 .255 .226 .234 .237 .255 .234 .237 .256 .234 .237 .255 .226 .234 .237 .255 .226 .234 .237 .255 .234 .237 .255 .234 .237 .255 .234 .237 .255 .234 .237 .255 .234 .237 .255 .234 .237 .255 .234 .237 .255 .234 .237 .255 .234 .237 .255 .234 .237 .255 .234 .237 .255 .234 .237 .255 .234 .237 .255 .234 .237 .255 .234 .237 .255 .234 .235 .235 .235 .234 .235 .235 .240 .333 .331 .356 .354	537 524 547 546 551 547 546 546 5538 533 540 5539 5547 5547 5547 557 546 557 5540 557 5541 5525 5525 5525 5526 5530 5526 5526 5526 5526 5527 5526 5527 5526 5527 5526 5527 5526 5527 5526 5527 5526 5527 5526 5527 5526 5527 5526 5527 5526 5527 5526 5527 5526 5527 5527 5526 5527 5527 5526 5527 5527 5527 5526 5527 5527 5527 5527 5527 5527 5527 5527 5527 5527 5528 5529 5525 5529 5525 5529 5527 5537 5527 5527 5527 5537 5527 5537 5537 5537 5537 5537 5537 5530 5530 5526 5526 5526 5530 5526 55	. 326 . 299 . 340 . 354 . 346 . 334 . 341 . 327 . 317 . 317 . 317 . 317 . 317 . 317 . 317 . 317 . 325 . 329 . 360 . 345 . 348 . 318 . 311 . 303 . 349 . 320 . 320 . 320 . 320 . 321 . 350 . 328 . 326 . 356 . 356 . 352 . 356 . 357 . 316 . 317 . 316 . 357 . 316 . 317 . 316 . 317 . 316 . 357 . 316 . 317 . 316 . 357 . 316 . 317 . 316 . 317 . 328 . 316 . 317 . 317 . 316 . 317 . 317 . 316 . 317 . 316 . 317 . 317 . 316 . 317 . 316 . 317 . 317 . 316 . 317 . 317 . 316 . 317 . 317 . 316 . 317 . 317 . 317 . 316 . 317 . 316 . 317 . 316 . 317 . 316 . 317 . 316 . 317 . 317 . 316 . 317 . 317

REFERENCES

- Klein, S. A., Beckman, W.A., and Duffie, J. A., "Design Procedure for Solar Heating Systems," Solar Energy, Vol. 18, pp. 113-127, 1976.
- ASHRAE Handbook of Fundamentals, American Society of Heating, Refrigeration, and Air Conditioning Engineers, Inc., 345 East 47th Street, New York, N.Y. 10017, 1972.
- 3. ASHRAE Systems Handbook, Chapter 43, American Society of Heating Refrigeration, and Air Conditioning Engineers, Inc., 345 East 47th Street, New York, N.Y. 10017, 1976.
- Climate Atlas of the United States, U.S. Department of Commerce, NOAA, National Climatic Center, Federal Building, Asheville, N.C. 28801.
- Load Calculation for Residential Winter and Summer Air Conditioning, Manual J, National Environmental Systems Contractors Association, 1501 Wilson Blvd., Arlington, Va. 22209.
- 6. Heat Loss Calculation Guide, No. H-21, The Hydronics Institute, 35 Russo Place, Berkeley Heights, N.J. 07922.
- ASHRAE Applications of Solar Energy for Heating and Cooling of Buildings, American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc., 345 East 47th Street, New York, N.Y. 10017, 1977.
- 8. Klein, S. A., Beckman, W. A., and Duffie, J. A., "A Design Procedure for Solar Air Heating Systems," Proceedings of American Section ISES Meeting, Winnipeg, Canada, Vol. 4, August, 1976.
- 9. "f-chart Computer Program," Solar Engineering Laboratory, University of Wisconsin, Madison, Wisconsin.
- Solar Heating and Cooling of Residential Buildings, Training Manuals, Sizing Installation and Operation of System, Design of Systems, Solar Energy Applications Laboratory, Colorado State University, Fort Collins, 1977.
- Barley, C. D. and Winn, C. B., "The Relative Areas Method for Optimal Collector Sizing of Solar Systems," Solar Energy Applications Laboratory, Colorado State University, Fort Collins, Colorado, 1978.

Worksheet A Sheet 1 of 2 AIR SYSTEMS

SOLAR SYSTEM DATA

Build	ing O	wner	
Addres	S S		Ph
Contra	actor		Ph
Туре о	of Sy	stem (liquid or air, H/DHW	
Site a	and E	Building Data	
	1.	Location: Nearest City	Latitude
	2.	Building UA	Btu/(hr•°F)
:	3.	DHW volume per day	gallons/day
	4.	Collector manufacturer	
	5.	Collector area	ft²
	6.	Collector tilt	degrees
	7.	Tilt = latitude +	degrees
	8.	Collector orientation degrees	from south
	9.	Collector shading	% in December
1	0.	Collector efficiency data	
		(a) F _R (τα) _n	
		(b) F _R U	Btu/(hr•ft²•°F)
		(c) Fluid temperature basis (circle one)	
		Case 1 T _i	
		Case 2 $\frac{T_i + T_{out}}{2}$	
		Case 3 ^T out	

Worksheet A Sheet 2 of 2 AIR SYSTEMS

11.	Collector Fluid:	
	(a) Composition:	
	(b) Flow rate G	 ft³/min
Storage Da	ata	
12.	Storage medium	
13.	Unit volume	 ft ³ /ft ²
14.	Total volume (item 5 x 13)	 ft ³
Auxiliary	Furnace/Boiler	
	Туре	
	Manufacturer	 s
	Rated Capacity	 Btu/hr
	Auxiliary energy source	
Auxiliary	DHW Unit	
	Size	 gal
	Auxiliary energy source	
	Hot water set temperature	 °F

 \bigcirc

Project

HEATING AND/OR DOMESTIC HOT WATER LOAD,L

	1	2		3	4	5	6	7
Month	Monthly Degree Days DD °F•days	Monthly Space Htg Load Q _s . Btu/Mo.	No. of Days/ Mo. N	Vol. of DHW Used/Mo. Gal./Mo.	Temp. Water Main Sup. T _m °F	DHW Temp. Rise T _{HW} -T _m °F	Monthly DHW Load Q _W Btu/Mo.	Total Heating Load L Btu/Mo.
Jan.			31					
Feb.			28					
March			31					
April			30					
May			31					5 g
June			30					
July			31					
Aug.			31					-
Sept.			30					
Oct.			31		10			(#)
lov.			30					
Dec.			31					
						Total		

= 0 Btu/h (Given data or calculate

as in Module 3)

 $DTD = 70 - T_0$ = 70 ~ ____ =

Where: $T_0 = 99\%$ winter design temperature. (From ASHRAE Fundamentals, or Table 3-2)

70°F = indoor design temperature

 $UA = \frac{Q_d}{DTD} =$

T_{HW} = -

1. From Table 3-2 or Figures 3-2 through 3-13 2. $Q_s = (24)(UA)(Degree Day)$

3. (Vol/day)x(no. days/mo.) = (gal./day)x(no. days/mo.)4. From Table 8-3 for selected cities. 6. $Q_w = (vol. of water) \times 8.34 \times 1 \times (T_{HW}^{-T}m)$.

7.
$$L = Q_{s} + Q_{w}$$

TOTAL MONTHLY SOLAR RADIATION AVAILABLE, S

Project	
Location	
Collector Tilt	
Nearest Data Site	

	1	2	3
Month	Monthly Avg. Daily Rad. on Tilt Surf. T Btu/(Day•ft ²)	No. of Days in month N	Tot. Monthly Radiation on Tilt Surf. S Btu/(Mo•ft ²)
Jan.		31	
Feb.		28	
March		31	й — так
April		30	
May		31	
June		30	
July		31	
Aug.		31	
Sept.		30	
Oct.		31	
Nov.		30	
Dec.		31	

[1] From Table 5-5 for Colorado cities

[3] Column [1] x Column [2]

Worksheet D AIR SYSTEMS

COLLEC	CTOR COMBI	NED PERFORMANC	E CHARACTERISTICS, $F_{R}(\tau \alpha)$, $F_{R}U_{L}$
			PROJECT
Collector	Efficienc	y Data from Wo	rksheet A (lines 10(a), (b))
1.	Intercept	;, F _R (τα) _n	
2.	Slope, F _R	U	=
Reference	Temperatu	re Basis: 1.	t_{in} , 2. $\frac{t_{in} + t_{out}}{2}$, 3. t_{out}
3.	Collector	· area, A _c	= ft ²
4.	Collector	volumetric fl	ow rate (Worksheet A, 11(d))
			ft³/min
Correction	n to t _{in} b	basis	
5.	Case 1:	(no correction) $F_R(\tau \alpha)_n =$
			F _R U _L =
6.	Case 2:	F _R (τα) _n = F _R τ	$\alpha \times \left[\frac{1}{1 + \frac{F_R U_L A_c}{2 C_a}} \right] = $
		F _R U _L = F _R U _L	$\times \left[\frac{1}{1 + \frac{F_R U_L A_c}{2 C_c}} \right] = \frac{1}{1 + \frac{F_R U_L A_c}{2 C_c}} = \frac{1}{1 + \frac{F_R U_L A_c}{2 C_c}$
			lumetric)(density)(
		(speci gravi at 70°	<pre>fic ty for air, density = 0.075 lb/ft³ and l atm. specific heat = 0.24 Btu/lb.°F</pre>
7.	Case 3:	$F_{R}(\tau \alpha)_{n} = F_{R}(\tau$	$\left[\frac{1}{1 + \frac{F_R U_L A_c}{C_c}}\right] =$
		$F_R U_L = F_R U_L$	$\times \left[\frac{1}{1 + \frac{F_R U_L A_c}{C}} \right] =$
	Incident	Angle Modifier	$F_{R}(\tau\alpha) = \{ .91, \text{ for two cover plates} \\ F_{R}(\tau\alpha)_{n} = \{ .90, \text{ for one cover plate} \}$
8.	$F_{R}(\overline{\tau\alpha}) =$	X =	

 \bigcirc

 \bigcirc

Worksheet E AIR SYSTEMS

CORRECTION FACTORS, K1, K2

PROJECT_____

Collector Flow Factor, K₁ Air Flow Rate (Worksheet A, line ll(b)) = cfm 1. ft² 2. A_{c} (from Worksheet A, line 5) = $\frac{\text{Air Flow Rate}}{A_{c}} =$ 3. _cfm/ft² $K_1 = (from Figure 8-7) =$ 4. Storage Mass Capacitance Factor ${\rm K}_{\rm Z}$ _____ft³/ft² Unit Volume (Worksheet A, line 13) = 5. $K_2 = (from Figure 8-8) =$ 6.

Worksheet F AIR SYSTEMS

SYSTEM PERFORMANCE PARAMETERS X, Y

PROJECT

LOCATION

	1	2	3	4	5	6	7	8
Month	Tot. Monthly Radiation on Tilt Surf. S Btu/(Mo•ft ²)	Total Heating Load L Btu/Mo.	S/L	Y F ₁ •[3]	Mo. Av. Temp. T_°F	212-T °F	Tot. Hrs in Mo. ∆ time hr.	x
Jan.							744	
Feb.							672	
March							744	
April							720	
May	-						744	
June							720	
July							744	
Aug.							744	
Sept.							720	
Oct.							744	
Nov.							720	
Dec.							744	
1. From Workshe 2. From Workshe	et B, Col. 7			Α _c F _R τα	=		f;	t² √ksht D)
4. $Y = \frac{A_c F_R(\tau \alpha)}{L}$	$\frac{S}{I} = F_1 \cdot \frac{S}{L}$			FRUL			()	Vksht D)
5. From Table 5		K ₁	=			ksht E)		
8. $X = \frac{A_c F_R U_L}{C}$	<u>ref^{-T}a</u>)∆time L × K _l	x K ₂		К2	8		. ()	√ksht E)
= F ₂ °[(6)°	(7)]÷(2)				$= A_c F_R \overline{\tau \alpha}$ $= A_c F_R U_L K_1$			

FRACTION OF TOTAL HEATING LOAD SUPPLIED BY SOLAR ENERGY, FAnnual

PROJECT

	1	2	3	4	5	COLLECTOR AREAft
Month	Tot. Mo. Htg. Load L x 10 ⁶ Btu/mo.	System Parameters X	System Parameters Y	Solar Fraction/ mo. f	Actual Solar en/mo E x 10 ⁵ Btu/mo.	LOCATION
Jan.						
Feb.						
March						
April]		
May						
June						
July						
Aug.						
Sept.						
Oct.						
Nov.				1		
Dec.						

^L tot	=
------------------	---

E_{tot} =

Etot F_{Annual} = tot

- From Worksheet B
 From Worksheet F, Column 8
 From Worksheet F, Column 4
 From "f chart", Figure 8-6
 E = f x L

SOLAR SYSTEM DATA RELATIVE AREAS METHOD

Building Owner	
Address	_Ph
Contractor	Ph
Type of System (liquid, air, H/DHW, DWH)	
Site and Building Data	
 Location: Nearest City Building UA DHW volume per day 	_Btu/(hr•°F)
Collector Data	
 4. Collector manufacturer	information:
(b) F _R U _L	
7. Correction for fluid temperature basis (a) Case 1: (no correction) (i) $F_R(\tau\alpha)_n = F_R\tau\alpha$ (from line 6) (ii) $F_RU_L = F_RU_L$ (from line 6)	
(b) Case 2: $\frac{T_{in} + T_{out}}{2}$ (correction needed) $C_{c} = (\hat{m}c_{p})_{c} = (\frac{Vol flow}{rate})$ (density)	time)(^{specific}) conversion heat
= <u>gal</u> x <u>lb</u> x 60 <u>min</u> hr	<u>Btu</u> <u>Btu</u>
=	Btu/(hr•°F)

0

Correction Factor =
$$\left[\frac{1}{1 + \frac{F_R U_L A_C}{2C_C}}\right]$$
 = ______
(i) $F_R(\tau \alpha)_n = F_R \tau \alpha$ (from line 6a) x (correction factor)
= _______ x ____ = _____
(ii) $F_R U_L = F_R U_L (from line 6b) x (correction factor)
= ______ x ____ = _____ Btu/(hr \cdot ft^2 \cdot \circ F)$
(c) Case 2: $T_{out}(correction needed)$
Correction Factor = $\frac{1}{1 + \frac{F_R U_L A_C}{C_C}}$ = ______
(i) $F_R(\tau \alpha)_n = F_R(\tau \alpha)(from line 6a) x (correction factor)
= ______ x ____ = _____
(ii) $F_R U_L (from line 6b) x (correction factor)$
= ______ x _____ = _____
(iii) $F_R U_L (from line 6b) x (correction factor)$
= ______ x _____ = _____ Btu/(hr \cdot ft^2 \cdot \circ F)$
Heat Exchanger Factor $(F_R'F_R)$
8. For air collectors
(a) $C_C (from line 7b) = ______ Btu/(hr \cdot \circ^F)$
(b) $C_S = _____ x 8.34 x 60 x 1 = ______ Btu/(hr \cdot \circ^F)$
(c) Heat exchanger effectiveness = ______
(d) $x = \frac{C_C}{c_C C_{min}} = (-__)(-_) = ______$
(e) $y = \frac{A_C F_R U_L}{C_C} = (-__)(-_) = ______$

 \bigcirc

 $\langle \bigcirc$

Corrections to Collector Parameters

10. Incident angle modifier

ł

(a) $F_{R}(\overline{\tau\alpha}) = F_{R}(\tau\alpha)_{n} \times 0.91$ (for two cover plates) $= _ x \ 0.91 = _ ...$ (b) $F_{R}(\overline{\tau\alpha}) = F_{R}(\tau\alpha)_{n} \times 0.93$ (for one cover plate) $= _ x \ 0.93 = _ ...$ 11. (a) $F_{R}^{'\overline{\tau\alpha}} = \frac{1 \text{ ine 10a or 10b } \times \frac{1 \text{ ine 8 or 9f}}{1 \text{ ine 8 or 9f}} = _ ...$ (b) $F_{R}^{'U} = \frac{1 \text{ ine 7a(ii)}}{1 \text{ or 7b(ii)}} \times \frac{1 \text{ ine 8 or 9f}}{1 \text{ ine 8 or 9f}} = _ ...$

List c_1 , c_2 , A_S , A_D , Z from Table 8-5

12.
$$A_{S}$$
 or $A_{D} = _$ $Z = _$ $c_{1} = _$ $c_{2} = _$

For Solar Heating and DHW Systems:

13.
$$A_{50} = \frac{A_{S}(UA)_{L}}{F_{R}^{\tau\alpha} - F_{R}U_{L}(Z)}$$
 where $(UA)_{L} = \frac{\text{Design Heating Load}}{\text{Design Temp. Diff.}}$
 $A_{50} = \frac{(--)_{-}(--)_{-}}{(--)_{-}} = ____ft^2$
14. $A_{c}/A_{50} = _____ = ____ft^2$
14. $A_{c}/A_{50} = _____ = ____ft^2$
15. $\log_{e}(A_{c}/A_{50}) = _____ft^2$
16. $F = c_1 + c_2 \log_{e}(A/A_{50})$
 $= ___+ (__)(__) = ____ft^2$
17. $A_{c}/A_{50} = 150/138 = 1.09$
18. $\log_{e}(A_{c}/A_{50}) = 0.0834$
19. $F = __+ (__)(__) = ____ft^2$