Arapahoe Road/I-25 Interchange

Final System Level Feasibility Study

June 2008

Arapahoe Road/I-25 Interchange System Level Feasibility Study

Arapahoe County 10730 East Briarwood Avenue, Suite 100 Centennial, CO 80120

In Association with

City of Greenwood Village

David Evans and Associates, Inc. 1331 17th Street, Suite 900 Denver, C0 80202

June 2008

Table of Contents

1. Intr	oduction1
1.1.	Project Location 1
1.2.	Purpose for Project 2
1.3.	Project History 4
1.4.	Regional Planning Context
1.5.	Submittal Requirements for Interchange Approval Process10
2. Exis	ting Conditions12
2.1.	Study Area12
2.2.	Existing Land Use12
2.3.	Existing Roadway Network13
2.4.	Existing Traffic Volumes16
2.5.	Existing Operational Analysis17
2.6.	Interim Improvements Operational Analysis20
2.7.	Crash History22
2.8.	Engineering Opportunities and Constraints23
2.9.	Local and Property Access24
2.10.	Alternate Transportation Modes24
3. Envi	ronmental Issues27
3.1.	Environmental Overview27
3.2.	Environmental Clearance Streamlining
4. Futu	re Conditions
4.1.	Forecasting Approach
4.2.	Land Use31
4.3.	2030 Roadway Network32
4.4.	2030 No Build Traffic Forecasts32
4.5.	2030 No Build Operational Analysis34
5. Eval	uation of Alternatives
5.1.	Preliminary Interchange Options
5.2.	Preliminary Screening Summary43
6. Deta	ailed Alternative Assessment47
6.1.	Evaluation Criteria47
6.2.	Traffic Operations and Safety Performance47
6.3.	Design and Construction54

6.4.	Environmental Issues	56
6.5.	Right-of-Way Requirements	57
6.6.	Construction Costs	57
6.7.	Summary of Alternatives Evaluation	57
7. Prel	liminary Recommended Improvements	60
7.1.	Description of Recommended Alternative	60
7.2.	Alternate Transportation Modes	61
7.3.	Preliminary Funding Package	63
7.4.	Project Support	64

Appendices

Appendix A. Existing Traffic Count Data Appendix B. Existing Operational Analysis Appendix C. No Build Operational Analysis Appendix D. Alternatives Operational Analysis Appendix E. Preliminary Recommended Alternative Profiles Appendix F. Estimate of Probable Construction Cost

Table of Figures

Figure 1.	Project Location 1	-
Figure 2.	Location of New Households 2005-2030	,
Figure 3.	Location of New Employment 2005-2030	3
Figure 4.	2030 RTP Fiscally Constrained Roadway System Improvements)
Figure 5.	Existing Roadway Network & Intersection Lane Configuration15	;
Figure 6.	Weekday Hourly Traffic Volumes16	;
Figure 7.	Existing Peak Hour Traffic and Level of Service19)
Figure 8.	Interim Interchange Improvements and Peak Hour Level of Service21	
Figure 9.	Existing Interchange Area	;
Figure 10.	2030 Roadway Network	;
Figure 11.	2030 No Build Traffic Forecasts35	;
Figure 12.	. 2030 No Build Peak Hour Level of Service36	;
Figure 13.	. Preliminary Interchange Layouts)
Figure 14.	. Improved Partial Cloverleaf (Mod. Alt. A) 2030 Traffic Forecasts48	3
Figure 15.	. Single Point Urban (Mod. Alt. B) 2030 Traffic Forecasts)
Figure 16.	. Improved Partial Cloverleaf (Mod. Alt. A) 2030 Peak Hour Level of Service51	-
Figure 17.	. Single Point Urban (Mod. Alt. B) 2030 Peak Hour Level of Service52)
Figure 18.	. Preliminary Recommended Interchange Alternative62)

List of Tables

Table 1.	Arapahoe Road/I-25 Historic Traffic Volumes	16
Table 2.	Arapahoe Road/I-25 Existing Peak Hour Level of Service (LOS)	18
Table 3.	Arapahoe Road/I-25 Interim Improvements Peak Hour Level of Service (LOS)	20
Table 4.	Arapahoe/I-25 Interchange Crash Rates	22
Table 5.	Arapahoe/I-25 Interchange Crashes Severity	22
Table 6.	Arapahoe Road/I-25 No Build 2030 Peak Hour Level of Service (LOS)	34
Table 7.	Preliminary Evaluation of Interchange Options	42
Table 8.	Preliminary Evaluation of Modified Interchange Options	46
Table 9.	Traffic Operations and Safety Performance – Evaluation of Alternatives	50
Table 10	. Detailed Evaluation of Alternatives	59

1. Introduction

This report documents the information required for the I-25 and Arapahoe Road Interchange System Feasibility Study, in compliance with the Colorado Department of Transportation (CDOT) Policy Directive 1601 Interchange Approval Process. This document will be used by CDOT to evaluate the interchange improvements request.

1.1. Project Location

A partial cloverleaf interchange currently exists at Arapahoe Road and I-25, in the growing southeast I-25 corridor. Arapahoe Road (SH 88) is located in the southern portion of the Denver Tech Center and serves as a key east-west regional roadway connection. I-25 runs north-south through the study area, extending north through Denver and Fort Collins and south through Colorado Springs. A diamond interchange exists approximately 1 mile north of Arapahoe Road at Orchard Road, and approximately 1 mile south of Arapahoe Road at Dry Creek Road. RTD's Southeast Corridor LRT line extends along the west side of I-25 crossing over Arapahoe Road and the southbound interchange ramps. The project location is illustrated in **Figure 1**.

Figure 1. Project Location

1.2. Purpose for Project

The need for interchange improvements at Arapahoe Road and I-25 has grown substantially since the 1980's. These needs are based on the analysis and findings documented in separate documents prepared as part of the Arapahoe Road Corridor Study, including the *Existing Transportation Conditions Report* (May 2006), the *Land Use and Socioeconomic Data Report* (July 2006), the *Revised Final Travel Forecast Summary* (April 2007), *Revised Final Environmental Overview* (April 2007), *Final Alternatives Development and Analysis Report (June 2007)*, and *Final Corridor Report* (November 2007).

The goals of this project are to:

- Relieve existing and future congestion along Arapahoe Road and at the I-25/Arapahoe Road interchange
- Enhance regional mobility and local accessibility
- Improve the operations and safety of Arapahoe Road, which is operating at over capacity, and I-25, which is compromised by ramp backups on the mainline freeway

1.2.1. Mobility and Congestion

Traffic volumes have increased substantially since the mid 1980's when the last significant improvements were made to the Arapahoe Road corridor and I-25 Interchange. Highly congested conditions have historically existed for five to six hours per day, creating significant queues and delays for travelers using the interchange. Throughout the day, delays along Arapahoe Road within the interchange area have created queues along the Southbound I-25 off-ramp that back up onto I-25, affecting interstate operations and safety.

Although recent signal timing modifications have improved the progression of ramp traffic through the interchange and reduced queues along the Southbound I-25 off-ramp, significant queuing continues along Arapahoe Road at the Boston/Clinton and Yosemite Street intersections for traffic entering the interchange area. Also, the interchange continues to operate at peak capacity with the slightest increase in volume or any traffic incident creating gridlock conditions on Arapahoe Road and the freeway ramps.

Existing traffic volumes at the interchange create operating conditions characterized by restricted movements and backups. Overall level of service for the interchange area intersections are classified as LOS D, E, and F (over 80 seconds of average delay per vehicle) during the AM and PM peak hours, representing potential gridlock conditions. Specific movements that currently exhibit operational problems include the southbound left turn at the Southbound I-25 off-ramp and the PM peak queues at the northbound ramp terminal intersection. The westbound through movement at the Boston/Clinton Street intersection experiences substantial delays from drivers maneuvering into the right lanes to access I-25.

Operation forecasts with 2030 traffic from projected regional growth degrade to a high level of congestion. The Northbound I-25 mainline is projected to operate at LOS F in the AM peak period while the Southbound I-25 mainline is projected to operate at LOS F in the PM peak period. During the AM peak hour, both ramp terminal intersections are projected to operate at LOS F and the Yosemite Street intersection is expected to operate at LOS E. During the PM

peak hour, the Yosemite Street, Northbound I-25 Ramp, and Boston/Clinton Street intersections are all projected to operate at LOS F. Therefore, without roadway improvements, in the year 2030 drivers will experience significantly more congestion surrounding the Arapahoe/I-25 interchange area.

1.2.2. Safety

The Arapahoe/I-25 interchange experiences the highest crash rate among the interchanges in the southeast corridor. During the last three years for which data are available, 128 crashes occurred within the interchange area, representing an economic cost of more than \$1.6 million. Even at the slow speeds within the interchange, over 20 percent of these crashes involved injuries. Most crashes within the interchange area are rear-end collisions resulting from congestion and queues of vehicles at the ramps and signalized intersections. Travel flow is interrupted and becomes dangerous as congestion creates unexpected or sudden stops.

Although recent signal timing modifications have improved the typical peak hour operations,

the current interchange configuration operates at peak capacity and any slight increase in traffic volumes or incident causes vehicles on the Southbound I-25 off-ramp to back up onto the interstate, creating hazardous conditions on I-25, the ramp and Arapahoe Road.

Poor operations at the I-25 interchange and intersections along Arapahoe Road currently cause delays for emergency vehicles, resulting in longer

response time for incidents on Arapahoe Road and I-25. The retrofit design of Arapahoe Road under the I-25 and light rail bridges does not provide any area for vehicle breakdown outside of the travel lanes.

Research conducted by FHWA, the Insurance Institute for Highway Safety, and the National Highway and Traffic Safety Administration has concluded that as LOS worsens (or congestion increases), the total crash rate and the severity rate tends to increase. Based on recent CDOT statewide research (Kononov and others, 2008), it is expected that future growth in traffic and increases in congestion on I-25 will result in an increase of about 67 percent in the fatal/injury crash rate and an increase of approximately 8 percent in the rate of total crashes. Additionally, this research indicates that differences in vehicle speeds, such as a vehicle entering or exiting the mainline traffic stream from or to a ramp, is correlated to increases in crash and severity rates.

Projected 2030 operations at both the freeway off-ramp terminal intersections are LOS F during the AM and/or PM peak hours, resulting in long and unpredictable queues. During peak hour

operations, vehicles attempting to exit I-25 will need to abruptly slow down and come to a complete stop due to queues extending from the signals onto the I-25 freeway mainline. This leads to the risk of increased crash and severity rates in the future on the I-25 mainline.

1.3. Project History

The need for an efficient interchange at I-25 and Arapahoe Road has been identified and studied in previous projects. The following sections give the status of the interchange project in previous and concurrent planning studies.

1.3.1. Initial Construction and Subsequent Improvements

The Arapahoe Road/I-25 Interchange was constructed in conjunction with the initial I-25 "Valley Highway" in the late 1950's. The initial interchange configuration was a simple diamond interchange. As area development occurred through the 1970's, interchange modifications were needed to increase interchange capacity. In the mid 1980's, the cloverleaf loop ramps were constructed in the northwest and southeast quadrants to serve the heavy left-turning movements onto the freeway. Approach lanes on Arapahoe Road to the new loop ramps were constructed by removing the slope paving under the I-25 bridge. The construction of vertical walls beneath the bridge abutments allowed for the loop ramp approach lanes to be constructed between the bridge piers and the abutment walls. This retrofit interchange has now been in operation for over 25 years.

1.3.2. Arapahoe Road Interchange Transportation Analysis for Southeast Corridor Project

This 1999 report of the potential transportation impacts of the Southeast Corridor LRT project in the area of the Arapahoe Road/I-25 Interchange provided technical documentation of the transportation analyses completed for the Southeast Corridor Environmental Impact Statement. This report documented poor levels of service at the majority of intersections within the interchange area. It was noted that the 2020 Regional Transportation Plan proposed improvements to the interchange, but these improvements would not be made as part of the Southeast Corridor LRT project (eventually known as T-REX). It should be noted that the lack of improvements at the Arapahoe/I-25 interchange with the T-REX project was based solely on the limitations of funding, not a lack of need for capacity improvements. Because improvements to this interchange were included in the Regional Transportation Plan, it was believed that the improvements could be achieved in the future as a separate project with Transportation Improvement Program (TIP) funding.

1.3.3. T-REX

Construction occurred at the I-25/Arapahoe Road Interchange during the Transportation Expansion (T-REX) project and, although needs for improvements at the interchange were recognized, no capacity improvements were made to address the operations of the interchange due to funding limitations. In conjunction with the construction of the RTD Southeast Light Rail line, more lanes were added on I-25 and the southbound exit ramp at Arapahoe Road was modified to accommodate the LRT bridge piers, which made the operations of the exit ramp worse by introducing sight distance restrictions. The I-25 bridge was widened and aesthetic

treatments to the bridge façade and landscaping were also completed. A pier for the LRT structure over Arapahoe Road and the southbound ramps was placed in the median dividing the eastbound Arapahoe Road through lanes from the lanes leading to the eastbound to northbound loop ramp. This pier placement was planned to accommodate the future widening of Arapahoe Road with a shift in centerline to the south.

1.3.4. Arapahoe Road Corridor Study

Current and forecasted traffic volumes and increasing traffic congestion along Arapahoe Road between I-25 and Parker Road prompted Arapahoe County to initiate a Corridor Study in 2005 to address regional mobility and local accessibility, and to build consensus on a locally preferred, realistic investment strategy for the timely implementation of recommended transportation improvements within the study area.

An overall improvement plan was developed in conjunction with this study process to address the vision for the Arapahoe Road corridor. This vision statement, developed with input from the Corridor Study's Executive Committee, comprised of local agency elected officials and CDOT, is as follows:

"Over the next 20 years and beyond, Arapahoe Road between I-25 and Parker Road will serve as a highly effective arterial corridor that meets the needs of commuters, employers, residents and the communities it serves. Arapahoe Road will provide a balance of improved regional mobility, local accessibility and enhanced safety, with minimal impact on neighborhoods, corridor business and the environment".

Project objectives to achieve this vision include:

- Collaborating with local jurisdictions and the public to find creative solutions that will consider current transportation plans, comprehensive land use and economic plans.
- Providing roadway and intersection improvements that maintain safe and reliable travel through and within the Arapahoe Road corridor, including improvements on other nearby corridors that could accommodate a portion of regional traffic.
- Expanding mobility opportunities, including transit, bicycle and infrastructure facilities.
- Accommodating or supporting previous transportation and infrastructure improvements.
- Enhancing the corridor image, design character and identity of places within the project corridor.
- Avoiding or minimizing community or environmental impacts resulting from the recommended improvements.

1.4. Regional Planning Context

DRCOG, as the designated Metropolitan Planning Organization (MPO) for the Denver area, is responsible for developing a regional transportation plan that defines the integrated, multimodal, metropolitan transportation system. The Metro Vision Plan represents the preferred regional development and transportation plan, unconstrained by the region's ability to fund improvements. DRCOG also developed the Regional Transportation Plan (RTP), which is

a fiscally-constrained regional transportation plan that includes those transportation facilities identified in Metro Vision that can be provided through the horizon year based on reasonably expected revenues. The current Metro Vision Plan and RTP, which were adopted by the DRCOG in January 2008, are for the horizon year of 2035. However, the forecasts and analyses used for this study are based on the 2030 Regional Transportation Plan because the study began before the release of the current RTP. All of the planning context, land use, and travel forecast information cited in this report are from the 2030 RTP. It is believed the land use and travel forecasts within the new 2035 RTP would not change the recommendations in this report and would only reinforce the need for interchange improvements at I-25 and Arapahoe Road.

1.4.1. Regional Growth Forecasts

DRCOG forecasts a 47% population growth, from 2.64 million in 2005 to 3.88 million in 2030, for the Denver Metropolitan Region. Employment opportunities are expected to increase to 2.36 million by 2030, which is a 51% increase from 2005.

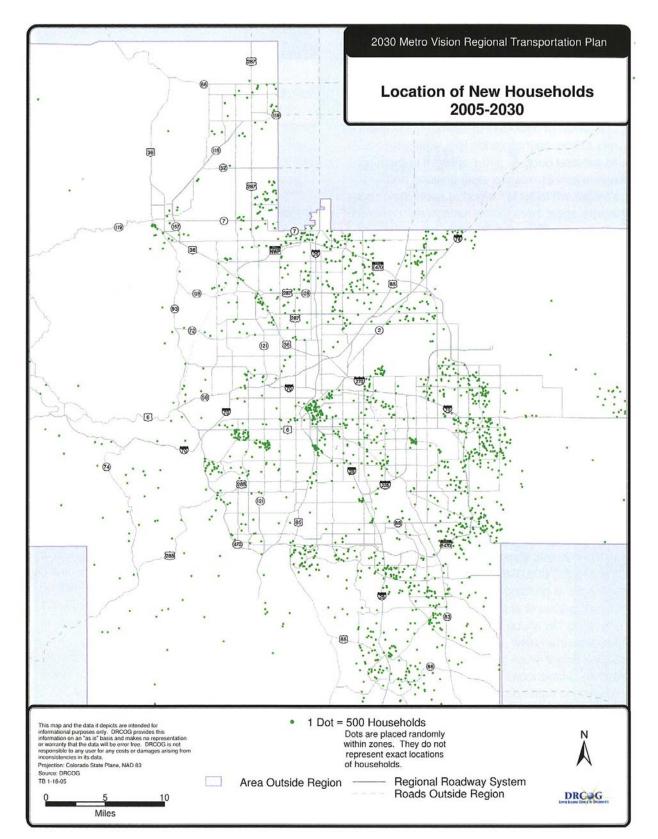
The relative locations of new households and employment between 2005 and 2030 are shown in **Figures 2 and 3**, respectively. New households will be distributed throughout the region. They are expected to form along the edge of the currently developed area as well as at redevelopment sites and urban centers within the City and County of Denver, the freestanding communities, and several inner ring suburbs. New employment sites will be concentrated in several urban centers and corridors oriented along freeways and transit lines. This reflects the historical trend of employers locating near key transit and highway corridors.

Note that the area surrounding the Arapahoe/I-25 interchange contains many new employment sites. These employment forecasts reinforce the need to evaluate and implement improvements to the transportation system to serve the businesses within the study area.

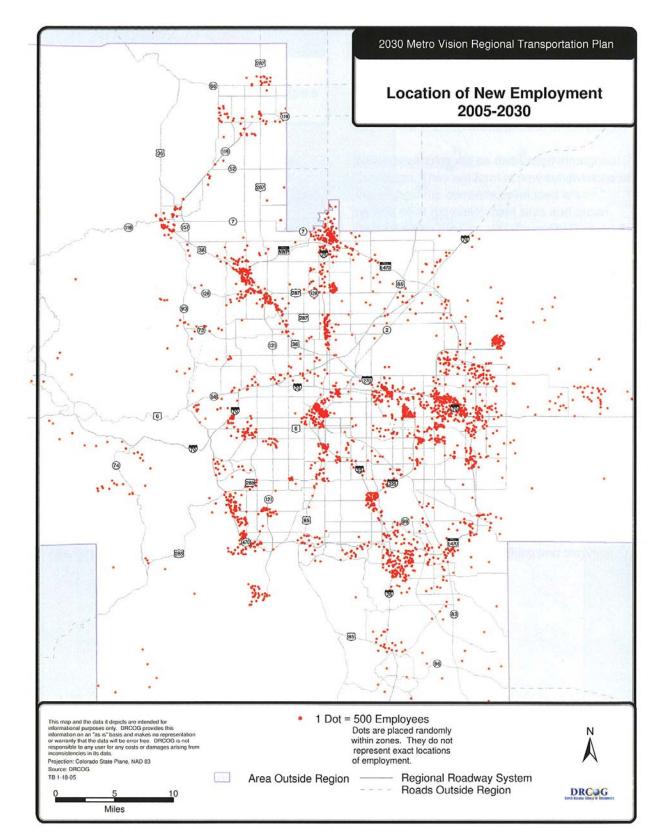
1.4.2. 2030 Regional Transportation Plan

The 2030 Regional Transportation Plan represents the fiscally-constrained transportation plan for the region, based on a prioritization of the elements identified in the 2030 Metro Vision. DRCOG recognizes a commitment to the preferred plan for the region, but considering reasonably expected revenues, all elements of Metro Vision are not affordable.

Figure 4 illustrates the 2030 RTP Fiscally Constrained Roadway System Improvements. The plan includes the following improvements that will directly affect the study area:


- New interchange at Arapahoe Road and Parker Road
- Widening of Arapahoe Road from I-25 to Potomac Street
- Reconstruction of I-25/Arapahoe Road interchange

As part of CDOT Policy Directive 1601, it is necessary for the proposed improvements to be included in the constrained plan. The reconstruction of the Arapahoe/I-25 interchange is included in the current fiscally-constrained plan. The 2030 RTP is currently being updated to the 2035 plan, which does not include as many projects as contained in the 2030 RTP. The draft 2035 RTP does include the I-25/Arapahoe Road interchange improvements.



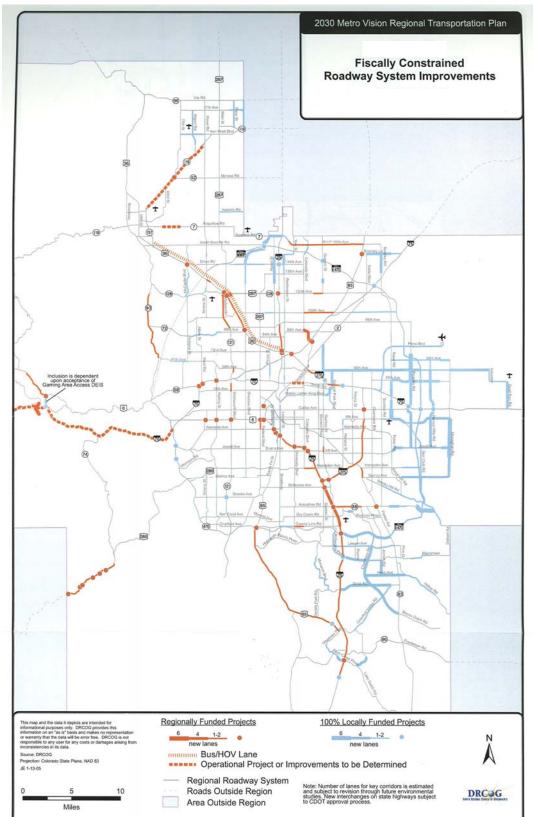


Figure 4. 2030 RTP Fiscally Constrained Roadway System Improvements

1.4.3. Local Plans

The Arapahoe/I-25 interchange reconstruction is consistent with the local communities' longrange plans. The interchange improvements are identified in the transportation plans of Arapahoe County, Greenwood Village, and Centennial. Planned land uses surrounding the interchange include mostly commercial redevelopment. To support the local redevelopment plans, the interchange improvements should be planned to handle increased levels of traffic.

1.5. Submittal Requirements for Interchange Approval Process

The Colorado Department of Transportation (CDOT) Policy Directive 1601B (PD 1601B) requires that all requests for new interchanges and improvements to existing interchanges on major state highways be reviewed and evaluated in a consistent manner through the use of established guidelines. These guidelines provide general direction regarding the content and format of information to be provided to CDOT and the Colorado Transportation Commission for its review during the interchange approval process. The documents that must be provided for the interchange approval include the System Level Feasibility Study, the appropriate environmental documentation of any other impacts and consequences of the interchange, preliminary design, and an Intergovernmental Agreement documenting funding and maintenance responsibilities.

The System Feasibility Study (SFS) is the first study required through the 1601 process. The SFS examines general traffic impacts of the new interchange within the context of existing and planned regional and local transportation facilities. The SFS details any benefits derived from the proposed improvement for the study area roadways and adjacent interchanges.

The environmental documentation is completed after the SFS and generally in conjunction with or after the preliminary design, to analyze the physical, social and environmental impacts associated with the proposed improvements.

The preliminary design of the interchange determines the precise location and extent of traffic impacts to the state transportation system. This design identifies all necessary improvements to the interchange and surrounding road system (state and local) to accommodate anticipated traffic. Preliminary engineering plans at a 20 – 30% design level of detail are provided.

An Intergovernmental Agreement (IGA) will also be necessary for this project. The City of Centennial, Greenwood Village, Arapahoe County and CDOT will need to document any funding and maintenance agreements, and identify any desired construction phasing.

This report presents only the System Feasibility Study for the Arapahoe Road and I-25 Interchange in compliance with CDOT Policy Directive 1601 Interchange Approval Process.

1.5.1. Public Involvement Process

Potential improvements to the Arapahoe/I-25 interchange were discussed within the public involvement process for the Arapahoe Road Corridor Study.

The study held four public meetings, to introduce the project and discuss corridor travel conditions and the need for improvement, to present the range of implementation options, to

present alternatives and preliminary analysis, and discuss the recommended improvements. The Arapahoe/I-25 interchange analysis and improvements were included in the presentation at each public meeting.

In an effort to gain as much community input as possible, the study utilized many methods of advertising and outreach. Each meeting was preceded by a news release, which was sent to local newspapers and television stations as well as local jurisdictions' Public Involvement Officers for inclusion in their community bulletins and newsletters. Also, a newsletter was mailed and e-mailed to businesses and residents in the area surrounding the corridor prior to each public meeting. Input was solicited at the public meetings and community members were also able to submit comments via the project website (www.arapahoecorridor.com) throughout the course of the study.

A Community Resource Panel (CRP) was formed to advise the project team of the concerns of various groups of stakeholders in the area. The CRP was divided into four separate focus groups, including representatives from:

- Homeowners' Associations and Neighborhood Associations
- Emergency Providers
- Bicycle and Trails groups
- Businesses, Metro Districts and Chambers of Commerce

The project team worked with the CRP to identify project needs, review proposed improvement alternatives, discuss likely impacts of improvements and possible mitigation or resolution techniques, and provide input on project implementation and phasing. The Business, Metro Districts and Chambers of Commerce CRP were particularly interested in the improvements planned for the Arapahoe/I-25 interchange area. Comments received at public and CRP meetings were posted on the website along with answers to frequently asked questions.

1.5.2. Agency Coordination

A series of meetings were also held with local agency representatives that comprised the corridor study's Technical Advisory Committee (TAC). The committee met approximately every two months throughout the 18-month study to provide technical input and review of plans and documents. Specific meetings were held with representatives of the City of Centennial and the City of Greenwood Village to discuss possible future redevelopment plans for the area surrounding the I-25 interchange.

2. Existing Conditions

2.1. Study Area

The study area is located along Interstate 25 (I-25) between the Dry Creek Road and Orchard Road interchanges. Arapahoe Road is State Highway 88 (SH 88) within the I-25 interchange area. The Arapahoe Road/I-25 interchange includes six ramp junctions with the current partial cloverleaf configuration. Arterial intersection operations were examined along Arapahoe Road through the interchange area from Yosemite Street to Boston Street/Clinton Street. The study area is located in Arapahoe County and includes the cities of Greenwood Village and Centennial. In addition, system-level transportation forecasts and plans were examined in a larger regional level as they relate to the traffic operations along I-25 and Arapahoe Road.

2.2. Existing Land Use

The Arapahoe Road/I-25 interchange is surrounded with office and commercial development, and includes portions of commercial and office areas in Greenwood Village and the Denver Technological Center. Today, big box retail uses such as Target, Home Depot and Lowe's occupy the majority of land near the I-25 interchange. Other land near the interchange is occupied by smaller scale retail and commercial uses and sections of office-park development. Southwest and northeast of the interchange predominantly single family residential development exists. The interchange provides access to several close major regional destinations, including:

- The Arapahoe at Village Center Light Rail Station is located northeast of the interchange at the intersection of Caley Avenue and Yosemite Street and provides access to downtown Denver and other regional destinations. This new station built with the T-REX project is contributing to the intensification of adjacent office and retail employment, and future higher density residential use in Transit Oriented Development (TOD) near the station location.
- The Southeast Business Corridor, a major employment center for the Denver metropolitan region, surrounds the interchange. The Arapahoe Road interchange is one of five interchanges along I-25 (County Line, Dry Creek, Arapahoe, Orchard, Belleview) that serves as primary access to the employment area.
- Centennial Airport, located about two miles southeast of the interchange, is the second busiest general aviation airport in the United States. Over 2,000 jobs are supported by this airport.
- Coors Amphitheatre, located about one mile northwest of the interchange along Greenwood Plaza Boulevard, is a regional concert venue with a seating capacity of approximately 17,000.
- Over 1,700 hotel rooms are located within a half-mile of the interchange.

2.3. Existing Roadway Network

The existing Arapahoe Road/I-25 interchange is a partial cloverleaf configuration in which the

westbound to southbound and the eastbound to northbound movements through the interchange are accommodated via loop ramps. Below I-25, Arapahoe Road provides only two through lanes in each direction between the bridge piers, plus lanes north and south of the bridge piers to accommodate traffic bound traffic for the loop ramps. Upon approaching I-25, drivers must pay close attention to the specific lane they are traveling since the outside through lane in each direction forces traffic onto the ramps entering I-25.

Through the I-25 interchange, traffic signals are spaced every 600 to 900 feet. Four traffic signals comprise the I-25 interchange complex including Yosemite Street at the west end, the southbound off-ramp intersection, the northbound off-ramp intersection, and the Clinton Street/Boston Street intersection. One-quarter mile is provided from the Clinton Street/Boston Street signalized intersection to the east of the interchange.

The traffic signals through the interchange area and along the Arapahoe corridor are coordinated by time of day via a central computer system. The signal cycle lengths are 120 seconds during the AM and PM peak periods and 100 seconds during the rest of the day, including the noon peak period.

I-25 – This is a major interstate highway facility through the Denver Metropolitan area and Colorado. Near Arapahoe Road, I-25 provides five through lanes in each direction following completion of recent improvements as part of the T-REX transportation expansion project.

Arapahoe Road (SH 88) –Arapahoe Road is a major regional arterial extending east-west through the southeast Denver Metropolitan area from Broadway to Smokey Hill Road east of E-470. It is a state highway (SH 88) between I-25 and Parker Road (SH 83). The roadway consists of three lanes of traffic east and west of I-25, with only two lanes in each direction carried through the interchange.

Havana Street – Located about one mile east of the Arapahoe/I-25 interchange, Havana Street is a six-lane facility extending south and curving into Dry Creek Road. The Dry Creek/I-25 interchange serves as a convenient southern alternate connection to I-25 for the study area.

Peakview Avenue - This is a two-lane east-west facility located north of and within onequarter mile of Arapahoe Road. Its western terminal is at Yosemite Street where it "dead ends"

into commercial development near I-25. From here, the road extends east one mile to Havana Street where it curves south and intersects with Arapahoe Road (as Havana Street) part of Greenwood Village's "Serpentine Road".

Orchard Road – One mile north of Arapahoe Road is the parallel facility of Orchard Road. This roadway has an interchange with I-25 and extends east 2.5 miles to Peoria Street. This is a four-lane arterial roadway just east of I-25 that transitions to a two-lane road east of DTC Boulevard and then to a two-lane residential collector street east of Dayton Street.

Yosemite Street – This is a major north-south four-lane arterial roadway that intersects Arapahoe Road immediately west of I-25. This facility extends south through the Park Meadows retail area and continues south to Lincoln Avenue in Douglas County. North of Arapahoe Road, the roadway crosses over I-25, provides access to the Arapahoe at Village Center Light Rail Station, and becomes DTC Boulevard within the Denver Tech Center. This road interchanges with I-225 nearly three miles north of Arapahoe Road.

Boston/Clinton Street – This north-south roadway, immediately east of I-25, provides access to a variety of facilities within the study area. North of Arapahoe Road, Boston Street has four travel lanes up to Caley Avenue, one-half mile north of Arapahoe Road. This segment provides access to adjacent businesses but also serves as the prime connection to Yosemite Street (via Caley Avenue) as part of Greenwood Village's "Serpentine Road". South of Arapahoe Road, Clinton Street also provides access to nearby businesses in the form of an I-25 Frontage Road. It extends two miles south and terminates at County Line Road (as Inverness Drive West).

Costilla Avenue – About one-quarter mile south of Arapahoe Road is Costilla Avenue, which parallels Arapahoe Road as a collector roadway east of the interchange, beginning at Clinton Street. East of Havana Street the road becomes Briarwood Avenue, which extends one-half mile east to Lima Street. This road is discontinuous between Lima and Peoria Streets, then is reestablished east of Peoria Street and extends as far east as Jordan Road. The roadway cross-section varies from two lanes to four lanes.

Figure 5 depicts the surrounding area roadway network and the existing lane configuration at intersections in the study area.

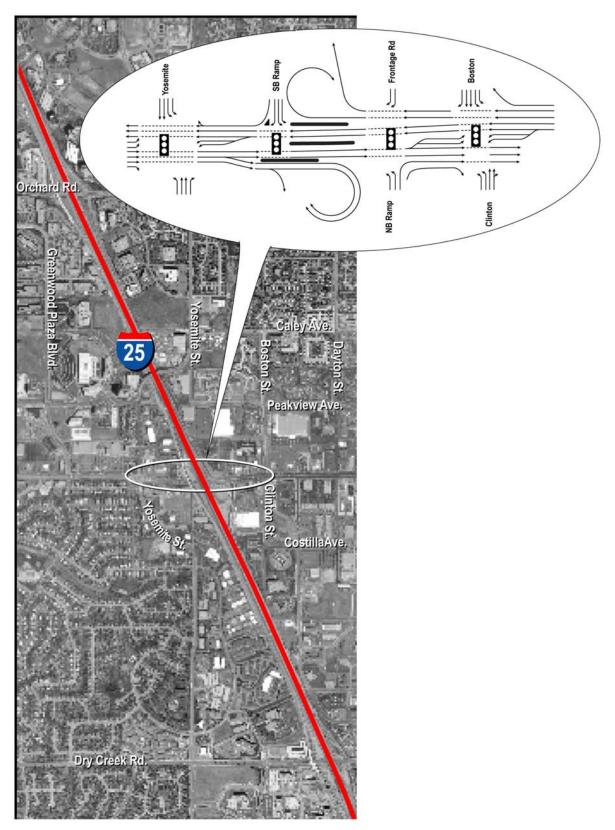


Figure 5. Existing Roadway Network & Intersection Lane Configuration

2.4. Existing Traffic Volumes

Traffic count data within the interchange area were collected for the Arapahoe Road Corridor Study during January 2006. The traffic count data are included in **Appendix A**.

Historic traffic volumes within the interchange area were obtained from Arapahoe County and CDOT. As shown in **Table 1**, there was an effect on the traffic volumes from 2001 to 2002 within the I-25 area from the commencement of the T-REX construction and the volumes on Arapahoe Road east of I-25 decreased over ten percent before rebounding somewhat in 2003. There has been substantial growth in traffic traveling on I-25 and Arapahoe Road through the interchange area in the last two years.

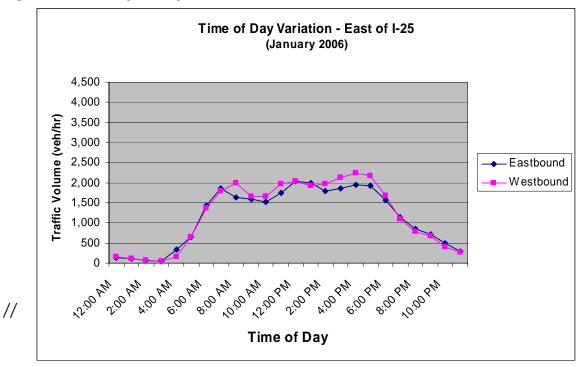

Roadway	Location	2001	2002	2003	2004	2005	2006	2007
I-25	S of Arapahoe Rd	130,600	130,300	130,400	-	-	153,100	172,000
1-25	N of Arapahoe Rd	158,900	158,800	158,800	-	-	179,500	194,600
Arapahoe Road	E of I-25	64,200	55,800	60,000	59,600	56,800	-	69,600

	Table 1.	Arapahoe	Road/I-25	Historic Tra	affic Volumes
--	----------	----------	-----------	--------------	---------------

Source: CDOT Crash Rate Books 2001-2003, CDOT Traffic Data Website, and Arapahoe Road Corridor Study traffic counts

As shown in **Figure 6**, the daily traffic volumes on Arapahoe Road immediately east of the I-25 interchange are distributed almost equally in the eastbound and westbound directions throughout the day. The noon peak period traffic volumes at this location are generally as high as the traffic volumes experienced during the typical AM and PM commuting periods, which creates lunch hour traffic congestion surrounding the retail and eating establishments around the interchange.

Figure 6. Weekday Hourly Traffic Volumes

2.5. Existing Operational Analysis

Operational analysis was completed utilizing methods outlined in the latest Highway Capacity Manual (HCM 2000). Intersection operations were analyzed using Synchro software. Freeway segment and merge/diverge analysis was completed with Highway Capacity Software (HCS+).

Level of Service (LOS) is a measure of the quality of traffic flow and level of congestion on a roadway or intersection, measured on a scale from A to F. For signalized intersections, LOS is defined by the average control delay per vehicle. LOS A indicates very low control delay, averaging less than ten seconds per vehicle. LOS F indicates highly congested conditions with control delay in excess of 80 seconds per vehicle at the intersection. LOS D or better is often viewed as the realistic optimal operation for peak hour level of service in urbanized areas.

For basic freeway sections, level of service is defined by the maximum allowable density. LOS A describes free-flow operations where vehicles are almost completely unimpeded in their ability to maneuver within the traffic stream. LOS F indicates breakdowns in vehicular flow caused by traffic incidents or points of recurring congestion. The ramp merge and diverge level of service analysis is based on the density in the ramp influence area, defined as 1500 feet downstream (or upstream) from the physical merge (or diverge) point. LOS A represents unrestricted operations and LOS F represents unstable operation in which queues are formed on the freeway and ramps and continue to grow as approaching demand flows exceed the discharge capacity of the downstream freeway.

CDOT recently collected new peak hour turning movement volumes within the interchange area for a signal timing and short-term improvements project. These recent traffic volumes were compared with the volumes previously collected for this project and the movements to the Northbound I-25 entrance ramp and from the Southbound I-25 off ramp were substantially higher, while the movements from the Northbound I-25 off ramp were substantially lower. All other movements at the interchange intersections remained generally consistent. The traffic volumes for this project were updated only for the movements to and from the ramps that showed large differences.

The existing lane configurations, balanced peak hour traffic volumes, and current signal timings were used to analyze the LOS at each interchange area intersection, ramp merge/diverge, and freeway segment during the AM and PM peak hours. The freeway and ramp operations are based on the current lane configuration of I-25, which consists of five general purpose travel lanes in each direction with outside auxiliary lanes between interchanges.

The existing peak hour traffic volumes and results of the peak hour analyses are illustrated in **Figure 7** and summarized in **Table 2**. To simplify the illustration, the freeway segment and merge/diverge LOSs shown in the figure are for the peak hour in the peak direction (northbound during the morning peak hour and southbound during the evening peak hour). Output reports for the existing operational analysis are provided in **Appendix B**.

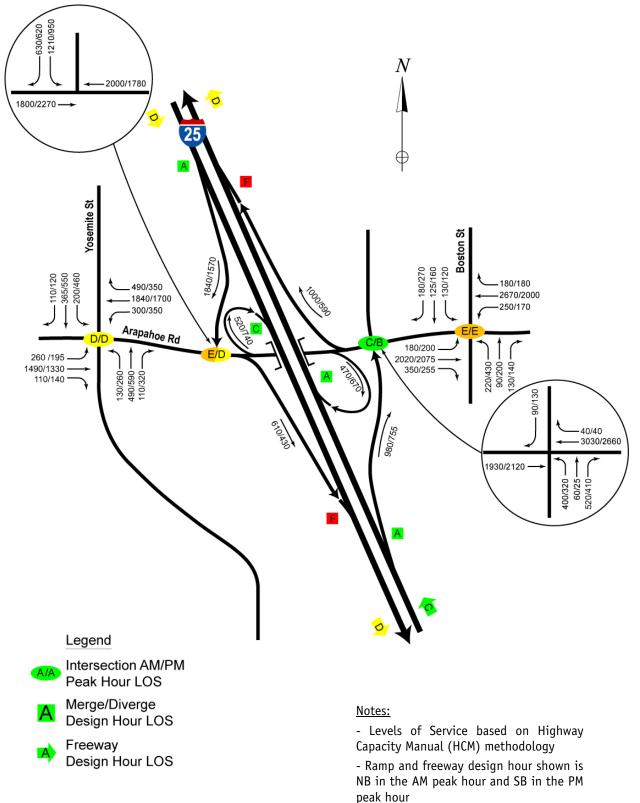
The intersections at Yosemite Street and the Southbound I-25 off ramp were calculated to operate at LOS D or LOS E during the peak hours analyzed based on HCM methodology. Highway Capacity Manual methods are the preferred standard methodology for traffic operations analysis. However, the HCM methodology for signalized intersections does not take into account the interaction of closely-spaced intersections, such as within this interchange

area. It should be noted that while the level of service for the Southbound I-25 exit ramp and Arapahoe Road intersection is shown to be LOS E and LOS D during the morning and evening peak hours, the queues along the Southbound I-25 off ramp occasionally back up from the signalized intersection onto the freeway mainline, a distance of approximately 1000 feet. These queues are due to the capacity constraints for through traffic along Arapahoe Road. The traffic queues at the downstream intersections on Arapahoe Road (at Yosemite Street or at Boston/Clinton Street), back up through the ramp intersections during some signal cycles during the peak hours, even with the recent signal timing improvements.

Ponduny / Intersection	Control / Engility Type	L	.05
Roadway / Intersection	Control / Facility Type	AM Peak Hour	PM Peak Hour
Yosemite St/Arapahoe Rd	Signalized Intersection	D	D
SB I-25 Exit Ramp/Arapahoe Rd	Signalized Intersection	E	D
NB I-25 Exit Ramp/Arapahoe Rd	Signalized Intersection	C	В
Boston St/Clinton St/Arapahoe Rd	Signalized Intersection	E	E
SB I-25, North of Arapahoe Rd	Freeway Segment	C	D
SB I-25, South of Arapahoe Rd	Freeway Segment	В	D
NB I-25, South of Arapahoe Rd	Freeway Segment	C	В
NB I-25, North of Arapahoe Rd	Freeway Segment	D	С
SB I-25 Exit Ramp	Ramp Diverge	A	А
SB I-25 Loop Ramp	Ramp Merge	В	С
SB I-25 Entrance Ramp	Ramp Merge	В	F
NB I-25 Exit Ramp	Ramp Diverge	A	А
NB I-25 Loop Ramp	Ramp Merge	A	А
NB I-25 Entrance Ramp	Ramp Merge	F	С

 Table 2. Arapahoe Road/I-25 Existing Peak Hour Level of Service (LOS)

Source: Highway Capacity Manual analysis by David Evans and Associates, Inc.


The Northbound I-25 off-ramp terminal intersection operates at LOS C during the AM peak hour and LOS B during the PM peak hour. The Arapahoe Road and Boston Street/Clinton Street intersection operates at LOS E during the AM and PM peak hours. Due to the large amount of traffic bound for the Northbound and Southbound I-25 on ramps, much of the traffic traveling through these intersections is in the two right westbound lanes on Arapahoe. The outside lane is added at the Boston Street/Clinton Street intersection and the right lane on Arapahoe Road often backs up through the Dayton Street signal, located approximately a quarter mile east of Boston Street/Clinton Street.

The recent T-REX improvements have reduced congestion on the I-25 freeway. The freeway segments and merge/diverges operate at LOS D or better during the peak hours, except the diamond entrance ramp merges, which operate at LOS F due to heavy freeway volumes.

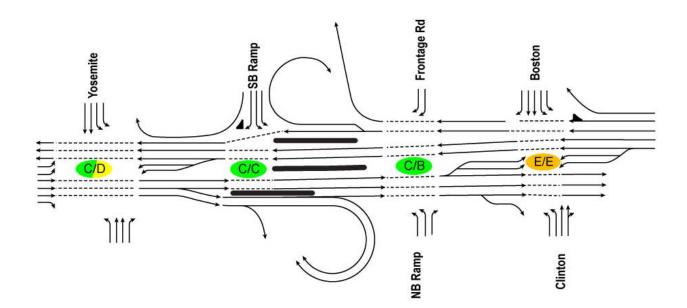
All four I-25 on ramps are controlled with ramp meters during the AM and PM peak hours. Although queues do not consistently back up to Arapahoe Road, the queues do fully utilize the ramps for storage.

Figure 7. Existing Peak Hour Traffic and Level of Service

2.6. Interim Improvements Operational Analysis

An interim operational improvements project is being planned for the Arapahoe Road/I-25 interchange, currently in the final design process by CDOT. The improvements are being funded through "TREX contingency funds". The improvements within the interchange area will include:

- An additional eastbound and westbound through lane on Arapahoe Road through the ramp intersections on the outside of the existing bridge piers and barriers that will tie into the outside lanes approaching the Yosemite Street and Boston/Clinton Street intersections
- A westbound right turn lane under the bridge from the new through lane outside the bridge piers and barrier to the Southbound I-25 loop ramp (This right turn lane will begin just west of the existing lanes leading to the Northbound I-25 entrance ramp)
- A free-flow southbound right turn lane from the Southbound I-25 exit ramp that will drop as a westbound right turn lane at Yosemite Street
- Modifications to the barrier median on the east leg of the Southbound I-25 exit ramp intersection to provide more room for truck traffic turning left from the exit ramp onto eastbound Arapahoe Road
- Additional advanced signage with overhead sign structures on Arapahoe Road east and west of the interchange


The lane configurations of the interchange intersections with the interim improvements are illustrated in **Figure 8**. The proposed interim improvements were analyzed with the balanced peak hour traffic volumes and optimized signal timings. The results of the peak hour analyses are summarized in **Table 3**. These results show that the interim improvements will provide a benefit to the interchange traffic operations in the short term, particularly at the Southbound I-25 exit ramp and Yosemite Street intersections.

Boodway / Intercontion	Control / Eacility Type	LOS		
Roadway / Intersection	ntersection Control / Facility Type AM Peak Ho		PM Peak Hour	
Yosemite St/Arapahoe Rd	Signalized Intersection	C	D	
SB I-25 Exit Ramp/Arapahoe Rd	Signalized Intersection	C	С	
NB I-25 Exit Ramp/Arapahoe Rd	Signalized Intersection	С	В	
Boston St/Clinton St/Arapahoe Rd	Signalized Intersection	E	E	

Table 3. Arapahoe Road/I-25 Interim Improvements Peak Hour Level of Service (LOS)

Source: Highway Capacity Manual analysis by David Evans and Associates, Inc.

2.7. Crash History

Crash data along Arapahoe Road were obtained from CDOT for 2001-2003 (the latest data available at the beginning of this study). Rates and summaries were calculated for the I-25 interchange. The crash rates are summarized in **Table 4**.

Table 4. Arapahoe/I-25 Interchange Crash Rates

	PDO	Injury	Fatal	Total
Arapahoe/I-25 Interchange Crash Rates	0.85	0.17	0.00	1.02

Source: CDOT Detailed Crash Summary Reports

Note: Property Damage Only (PDO) and Injury rates reported per Million Vehicle Miles Traveled (MVMT) and Fatal rate reported per 100 Million Vehicle Miles Traveled (100 MVMT)

The severity of crashes is summarized in **Table 5**. Due to the slow speeds experienced through the interchange with recurring traffic congestion, the percentage of crashes involving injuries within the interchange area (20%) is lower than the percentage of injury crashes at typical three and four-legged intersections within Colorado (27-31%).

Table 5. Arapahoe/I-25 Interchange Crashes Severity

	Crash Severity							
	Property Only	Damage (PDO)	Inj	ury	Fat	al		
	Number	Percent	Number	Percent	Number	Percent	Total	
Arapahoe/I-25 Interchange Crashes	101	79%	27	21%	0	0%	128	

Source: CDOT Detailed Crash Summary Reports

Most crashes (46 percent) were rear end crashes, which is consistent with the number of signalized intersections in the area and the recurring congestion. About 25 percent of the crashes were broadside crashes and about 20 percent of the crashes were side swipe same direction. There were no crashes in the interchange area involving pedestrians and bicyclists during the years studied.

2.8. Engineering Opportunities and Constraints

The current Arapahoe/I-25 interchange does not have adequate capacity to accommodate traffic volumes today or into the future. Arapahoe Road currently contains three lanes approaching the interchange in each direction, but only two lanes are carried eastbound and westbound through the interchange, which severely limits the capacity of the interchange.

The location of the light rail bridge recently constructed with the Transportation Expansion (T-REX) project along the west side of I-25 highly constrains the options for the interchange,

particularly the Southbound I-25 exit and entrance ramps and the potential modification of the Arapahoe Road horizontal alignment. A pier for the LRT structure over Arapahoe Road was placed in the median dividing the eastbound Arapahoe Road through lanes from the lanes leading to the eastbound to northbound loop ramp. This pier placement was planned to accommodate future widening of Arapahoe Road with a shift in centerline to the south. However, the existing I-25 bridge

over Arapahoe Road, widened for additional lanes on I-25 with the T-REX project, cannot accommodate widening Arapahoe Road.

An abutment for the LRT structure straddles the Southbound I-25 exit ramp at Arapahoe Road.

This straddle bent has reduced the sight distance for vehicles exiting the freeway and approaching the signal at Arapahoe Road, which has hindered the ramp operations. The bent also greatly limits the options for improving the Southbound I-25 off-ramp layout without reconstructing the LRT bridge.

2.9. Local and Property Access

The existing roadways within the interchange area are shown in **Figure 9**. West of I-25, right turn only intersections exist along both the north and south sides of Arapahoe Road between I-25 and Yosemite Street. The South Yosemite Court right turn only intersection on the north side serves commercial development (primarily fast-food restaurants) in the northwest quadrant of the interchange. South Yosemite Court extends north in a curvilinear alignment from Arapahoe Road to South Yosemite Circle, which intersects with South Yosemite Street at a signalized intersection, and further to an unsignalized intersection with South Yosemite Street.

The South Xanthia Court right turn only intersection along the south side of Arapahoe Road west of I-25 extends south to an unsignalized intersection with South Yosemite Street. The roadway serves the commercial development (primarily sit-down restaurants and auto service centers) in the southwest quadrant of the interchange. Further south along South Yosemite Street, additional access is provided to the southwest quadrant commercial development, including two private driveways to the Southgate Shopping Center, and South Yosemite Court which serves office development near I-25.

East of I-25, only one access exists between I-25 and the South Boston Street/Clinton Street intersection. This access is located along the north side of Arapahoe Road opposite the Northbound I-25 off-ramp. Northbound off-ramp traffic can travel straight north to this access road, but southbound traffic is restricted to right turn only movements. No left turns are permitted from eastbound Arapahoe Road into this access road. The road extends north in a curvilinear alignment to East Southtech Drive, and provides access to hotels and big box development in the northeast quadrant of the interchange.

2.10. Alternate Transportation Modes

2.10.1. Transit

The existing transit services in the vicinity of the Arapahoe/I-25 interchange were detailed in the *Existing Transportation Conditions Report* (May 2006) prepared in conjunction with the Arapahoe Road Corridor Study. Nearby transit services and facilities are focused on the Arapahoe at Village Center park-n-Ride, located north of the interchange at Caley Avenue and Yosemite Street, and the Arapahoe LRT Station. The station platform is on the west side of I-25 and is served by a pedestrian bridge over the interstate leading to the park-n-Ride on the east side.

Arapahoe Crosstown (Route 66) is the east-west local bus route that serves destinations along Arapahoe Road. It runs from the LRT/Littleton Downtown Station (along the Southwest LRT Corridor) east along Arapahoe Road to Parker Road, and south on school days to the Pinery park-n-Ride. In the vicinity of the I-25/Arapahoe interchange, the route uses Yosemite Street north of Arapahoe Road to transfer passengers at the Arapahoe LRT Station, then Caley Avenue to Boston Street to continue east on Arapahoe Road. Therefore, the buses turn at the Yosemite Street and Boston/Clinton Street intersections and do not travel through the ramp intersections within the interchange area.

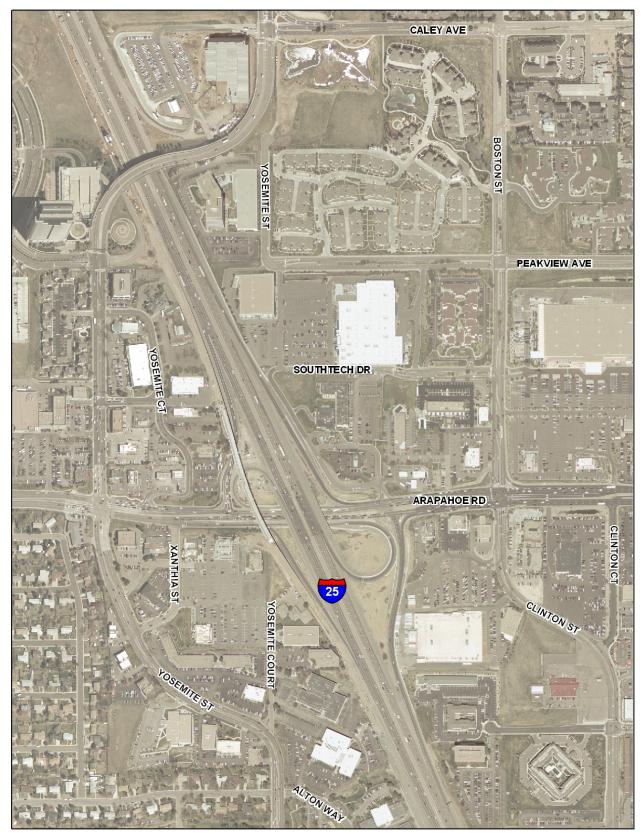
Other routes in the interchange vicinity include Route 465 – South Yosemite, Route 727 – DTC Boulevard, Route 169 L – Buckley/Tower/DIA, and the Arapahoe call-n-Ride (Route 1409).

These routes use Yosemite Street, Clinton Street, Boston Street and Caley Avenue in the vicinity of the I-25/Arapahoe interchange.

None of the existing transit routes serving the area travel directly through the Arapahoe/I-25 interchange, but rather travel around the interchange to efficiently access the Arapahoe LRT Station and Arapahoe at Village Center park-n-Ride.

2.10.2. Pedestrians and Bicyclists

Pedestrian and bicycle conditions in the vicinity of the Arapahoe/I-25 interchange were summarized in the Arapahoe Road Corridor Study *Existing Transportation Conditions Report* (May 2006). Also, in conjunction with that study, Community Resource Panel meetings with area bicycle advocates were held to gain information on existing bicyclist activities and concerns.


Although sidewalks exist along Arapahoe Road through the interchange, little pedestrian activity has been observed. Pedestrians must negotiate through the high traffic volume area and cross the free-flowing traffic movements of the loop ramps in the northwest and southeast quadrants of the interchange. In order to facilitate the peak hour signal timing through the interchange area, the pedestrian timing to cross Arapahoe Road at the Northbound I-25 off-ramp was recently removed. Due to the existing barrier to separate Eastbound Arapahoe traffic bound for I-25, there is also no pedestrian crosswalk across Arapahoe Road at the Southbound I-25 off-ramp.

Separate bike lanes or widening of general purpose lanes do not exist along Arapahoe Road through the confined, retrofit interchange area. In discussion with area bicycle advocates, bicyclists currently choose to avoid the Arapahoe Road corridor and the Arapahoe/I-25 interchange and instead use Yosemite Street and the Yosemite Street overpass of I-25 to negotiate around the interchange area.

Figure 9. Existing Interchange Area

3. Environmental Issues

3.1. Environmental Overview

An environmental overview was conducted as part of the Arapahoe Road Corridor Study to identify the potential environmental issues that may influence the type, locations or design of the alternatives forwarded for further evaluation in this study and in future environmental evaluation processes under the National Environmental Policy Act (NEPA).

In the environmental overview report, each resource is described in terms of existing conditions, the potential impacts from a range of possible alternatives and the potential mitigation or Best Management Practices that could reduce or eliminate impacts. The major findings of the analysis within the Arapahoe/I-25 interchange area are discussed below.

Air Quality: Motor vehicles are a major source of air pollutants in the interchange area, particularly those pollutants that have been problematic for the larger Denver metropolitan area. Pollutant hot-spots can exist around a congested intersection. There are local changes that could be used individually or collectively to reduce local pollutant emissions, such as signal timing or the number of driving lanes. For the range of speeds within the Arapahoe/I-25 interchange area, any changes that will reduce vehicle idling time or increase average vehicle speeds will reduce pollutant emissions from mobile sources.

Improvements to the Arapahoe/I-25 interchange were included in the DRCOG 2030 Regional Transportation Plan (RTP), which was subject to air quality conformity analysis. During the future NEPA process for this project, carbon monoxide hot-spot analysis will be conducted as required.

Hazardous Materials: Several potential hazardous material sites were identified within the general area of the interchange area. Most of these sites are outside of the impact area of the interchange configuration options. The sites include automotive service stations, storage units, and commercial facilities.

Contributors of potential contamination within the general interchange area include:

- 9138 E. Arapahoe Road (east of interchange) Gasoline station with open liquid petroleum gas tank.
- 9301 E. Arapahoe Road (east of interchange) Automobile dealership and service with an UST and a closed LUST (November 1991).
- 9171 E. Arapahoe Road (east of interchange) Gasoline station with seven USTs and one active LUST (1990).
- 6767 S. Clinton Street (southeast of interchange) Commercial facility with no violations.
- 9250 E. Costilla Avenue (southeast of interchange) Industrial/commercial facility with backup diesel generator.
- 9600 E. Costilla Avenue (southeast of interchange) Storage units with potential for methamphetamine lab activity. No such activity reported.

- 6802 S. Yosemite Street (southwest quadrant of interchange) Gasoline station with three open gasoline Underground Storage Tanks (USTs) and one closed Leaking Underground Storage Tank (LUST) (March 2001).
- 6900 S. Yosemite Street (southwest quadrant of interchange) Commercial facility with no violations.
- 6770 S. Yosemite Street (southwest quadrant of interchange) Automotive station with vehicle maintenance bays. Unknown material handling and disposal practices. Potential materials include: fuel, motor oils, hydraulic fluids, degreasers, paints, and solvents. No reported soil and groundwater contamination.

There are two leaking underground storage tank (LUST) sites within 100 feet of right-of-way in the interchange study area. One of these sites is still active and one site has been closed and clean-up has been completed. The active LUST site is located along Arapahoe Road east of the interchange and west of Boston Street (9171 East Arapahoe Road).

Historic and Archaeological Resources: Historic and archeological resources are tangible remains of past human activity and include sites, buildings, structures, districts, features and artifacts at least 45 years old. To warrant consideration of impacts in a federally-assisted or sponsored transportation project, historic and archeological resources must be listed on, or meet the eligibility criteria established for, the National Register of Historic Places (NRHP). A file search, literature review, aerial photo review, and reconnaissance "windshield" survey revealed no previously recorded significant historic or prehistoric resources within the Arapahoe/I-25 interchange area.

Environmental Justice: U.S. Census data (year 2000) was evaluated to better understand the potential impacts of a future project to minority and/or low-income populations and as a basis for outreach methods to those populations during a future NEPA process. The Census block south of Peakview Avenue and north of Dry Creek Road, between I-25 and Havana Street has minority populations higher than the county they are located within (Arapahoe or Douglas County) and a higher percentage of individuals living in poverty compared to the county percentage.

During the future NEPA process for this project, data on low-income and minority populations will be updated and the extent to which any populations may be affected will be identified. The interchange improvements will be designed to avoid impacts to these populations to the extent feasible. If impacts to these populations cannot be avoided, mitigation measures will be identified to reduce impacts and coordination with affected groups will be conducted to identify the best means for reducing such impacts.

Section 4(f)/6(f) Resources: No potential Section 4(f)/6(f) resources were identified within the study area near or adjacent to the interchange roadways that could be improved as part of this project.

Biological Resources: Existing data on wildlife, wetlands and special status species that are known to occur or may potentially occur within the interchange area were collected from a variety of data sources including Arapahoe County, the USFWS county list of federally listed species, and the Colorado Division of Wildlife (CDOW) list of state listed species and species of

concern. A visual survey of wildlife and special status species habitat and potential wetland areas was also conducted.

A small area of wetland vegetation was identified in the southeast quadrant of the interchange between the existing Target and hotel sites west of the Clinton Street and Costilla Avenue intersection. The majority of the Arapahoe Road corridor is occupied with noxious weeds, including diffuse knapweed and leafy spurge.

Any necessary wildlife surveys may be conducted during the environmental documentation for the project in accordance with CDOW survey protocol. A weed management plan is warranted to prevent the spread of noxious weeds within the study area.

Water Resources: The Study Area is located within the Cherry Creek Watershed. This watershed is nearly fully developed in the northern reaches and transitions southward to a more sparse development including farmsteads, open land and large lot residential areas. Cherry Creek is a right bank tributary to the South Platte River and is located within Denver, Arapahoe, Douglas and El Paso Counties. Cherry Creek Reservoir is located northwest of the interchange area and is a major water feature within the watershed. The reservoir is the main attraction for Cherry Creek State Park and is used extensively for boating and fishing. It provides a habitat for a diverse variety of animal species and vegetation. All of the drainages along Arapahoe Road east of the interchange are within the Cherry Creek Basin and all are tributary to Cherry Creek Reservoir. The area is controlled by the Cherry Creek Basin Water Quality Authority (CCBWQA). The CCBWQA has requirements for projects such as transportation improvements to improve the water quality within the basin. Phosphorus loads are a primary concern; storm runoff transports most of the phosphorus within the watershed. Stormwater issues include stormwater runoff control on construction sites and post-construction stormwater management.

The Arapahoe/I-25 interchange is in the Urban Drainage District which administers the floodplain modifications for Federal Emergency Management Agency (FEMA) designated floodplains. The Arapahoe County Stormwater Authority and local city floodplain administrators conduct the initial review for proposed floodplain impacts and determine if Urban Drainage and FEMA coordination is necessary. Any improvement of a drainage structure that lies within a FEMA administered floodplain will probably require this coordination.

Noise: Traffic volumes are likely to increase in the future within the Arapahoe/I-25 interchange area even without the proposed project, and this would likely increase the traffic noise to neighboring properties. The current land uses adjacent to the interchange area are generally Category B (homes, hotels, parks, etc.) and Category C (commercial). Category B is the most noise sensitive and there are several Category B properties within 500 feet of the proposed interchange construction area. There are approximately 45 homes west of the Arapahoe Road/Yosemite Street intersection and about 20 homes located near the Yosemite Street/Alton Way intersection. There are three hotels in the southwest quadrant of the interchange and one hotel in the northeast quadrant of the interchange.

Any changes to study area roads that would increase traffic volumes or move the roads closer to any current receivers would also likely increase the traffic noise at the receivers. Whether any of these changes would cause a traffic noise impact according to CDOT criteria would need to be assessed through a more thorough noise analysis during the future NEPA process for this project.

Geology and Paleontological Resources: The Arapahoe/I-25 interchange area contains the Louviers Alluvium geologic unit. The paleontological sensitivity of this geologic unit was evaluated using the Potential Fossil Yield Classification system and identified as a Class 2 unit. Class 2 units are sedimentary geologic units that are not likely to contain vertebrate fossils or scientifically significant invertebrate (or plant) fossils. Ground-disturbing activities are not likely to require mitigation.

3.2. Environmental Clearance Streamlining

The Arapahoe Road Corridor Study was conducted following FHWA/FTA guidance regarding the integration of transportation planning and the NEPA process, which encourages the use of planning studies to provide information for incorporation into NEPA documents. The goal of this early integrated planning effort is to streamline subsequent alternatives analysis during the NEPA clearance work for individual projects, such as the Arapahoe/I-25 interchange improvements.

Although the Arapahoe Road Corridor Study is a planning study and does not yet include NEPA clearance, the following steps were taken to streamline the future NEPA process:

- Developing a vision statement and objectives that readily translate to a project Purpose and Need,
- Conducting evaluation and documentation of a broad range of alternatives and the screening process to narrow preferred alternatives,
- Identifying logical termini for the study corridor, and identifying segments with independent utility for potential future NEPA clearances within fiscally constrained budgets,
- Including public and agency input during the study process,
- Conducting an environmental overview of resources potentially affected by the range of options, and
- Requesting concurrence by the Executive Committee at key decision points that mesh with those of the NEPA process:
 - Vision statement and objectives,
 - Range of alternatives,
 - Major screening criteria, and
 - Identification of a recommended option.

These steps were documented in various formats (meeting notes, public meeting materials, project memos and reports) that may be included as background reference as the transportation planning process transitions into NEPA clearance projects.

4. Future Conditions

4.1. Forecasting Approach

Traffic forecasts for the interchange were developed with the Arapahoe Road Corridor Study. The 2030 Denver Regional Council of Governments' (DRCOG's) regional travel demand forecasting model, Version 94, was used as a basis for developing year 2030 forecasts for the corridor study. This version of the regional model incorporates DRCOG's recent improvements to several aspects of the modeling process, including the forecasting of traffic on tollways. The travel forecast methodology and results are documented in the *Arapahoe Road Corridor Study Revised Final Travel Forecasts Summary* (April 2007).

The regional model includes the fiscally-constrained 2030 Regional Transportation Plan (RTP) as its basis. The planned interchange at Arapahoe Road/Parker Road is included in the 2030 RTP and it has been included in the baseline Arapahoe Road corridor modeling. The other major improvement to the Arapahoe Road corridor roadway network included in the 2030 RTP is widening to eight lanes between I-25 and Potomac Street. This widening was not included in the baseline modeling, since it represents an alternative analyzed in the corridor study.

The DRCOG Traffic Analysis Zone (TAZ) zonal structure was imposed over the study area, defining the 112 TAZs within the boundaries of the Arapahoe Road land use study area.

Due to the complexity of real-world driver behavior and individual roadway characteristics, travel demand forecasting models cannot be expected to result in precise representations of traffic volumes on each roadway. A common technique used to improve the reliability of travel demand forecasts is referred to as post-processing adjustment. This technique uses comparisons of the base year (2005) model's predicted traffic volumes versus actual traffic counts (which are documented in the *Arapahoe Road Corridor Study Existing Transportation Conditions Report*). These comparisons provide estimations of the error associated with the model's representation of travel conditions. The model-produced forecasts are then adjusted to account for the errors found in the model to provide more reliable forecasts. This post-processing adjustment process, as prescribed in the Transportation Research Board's publication *NCHRP 255*, was applied to the Arapahoe Road Corridor traffic forecasts.

4.2. Land Use

The I-25 interchange area has developed and will continue to develop in a high density land use pattern because of the regional access offered by I-25. The relatively recent construction of the Southeast Corridor Light Rail will contribute to further higher density development and redevelopment, with the potential for a significant amount of high density residential and commercial mixed use development influenced by light rail transit. Current development plans for the area include:

• The Greenwood Village Center is a 2 million square foot development planned north of the interchange that will include 1,600 new homes, over 350 hotel rooms, shopping, entertainment and open space, serving as a downtown core of the city.

- A 1.1 million square foot redevelopment project called Streets at Southglenn will convert the Southglenn Mall, located about 3.5 miles west of the interchange along Arapahoe Road, into an urban neighborhood with new homes and retail expansion.
- Centennial is planning a mixed use community called the Centennial City Center. This will be located along Arapahoe Road about three miles east of the interchange in a main street configuration with 200,000 square feet of retail and 600 new homes.

4.3. 2030 Roadway Network

The roadway network from the Arapahoe Road Corridor Study 2030 No Build model included the following roadway network improvements within the study area over existing conditions:

• New interchange at Arapahoe Road and Parker Road

The DRCOG 2030 model network includes the widening of Arapahoe Road from I-25 to Potomac Street. This improvement was removed to create the 2030 No Build model roadway network for the Arapahoe Road Corridor Study and this I-25 Interchange System Level Feasibility Study. The 2030 general roadway network within the study area used for the traffic forecasts is shown in **Figure 10**. The 2030 No Build analysis also included the interim lane configuration improvements, as described in Section 2.6 of this report, which are planned for construction within the interchange area within the next couple of years.

4.4. 2030 No Build Traffic Forecasts

No Build 2030 traffic forecasts from the modeling and adjustment process are shown in **Figure 11**. Significant traffic growth is expected on the roadways surrounding the Arapahoe/I-25 interchange, even without the widening of Arapahoe Road to eight lanes from I-25 to Potomac Street. The following is a summary of forecasted traffic volume growth on the corridor and surrounding roadway system:

- **I-25**: I-25 volumes are forecast to increase by more than 50 percent by 2030, to reach levels of approximately 270,000 to 290,000 in the vicinity of Arapahoe Road.
- Arapahoe Road: West of the interchange, traffic volumes on Arapahoe Road are expected to increase almost 40 percent over existing levels while traffic volumes are expected in increase about 20 percent east of the interchange.
- **Boston Street/Clinton Street**: Traffic projections on Boston Street/Clinton Street are expected to increase about 10 percent north of Arapahoe Road and increase approximately 20 percent over existing levels south of Arapahoe Road.
- **Yosemite Street:** Traffic volumes on Yosemite Street are expected to increase approximately 50 percent north of Arapahoe Road and about 60 percent south of Arapahoe Road.

Figure 10. 2030 Roadway Network

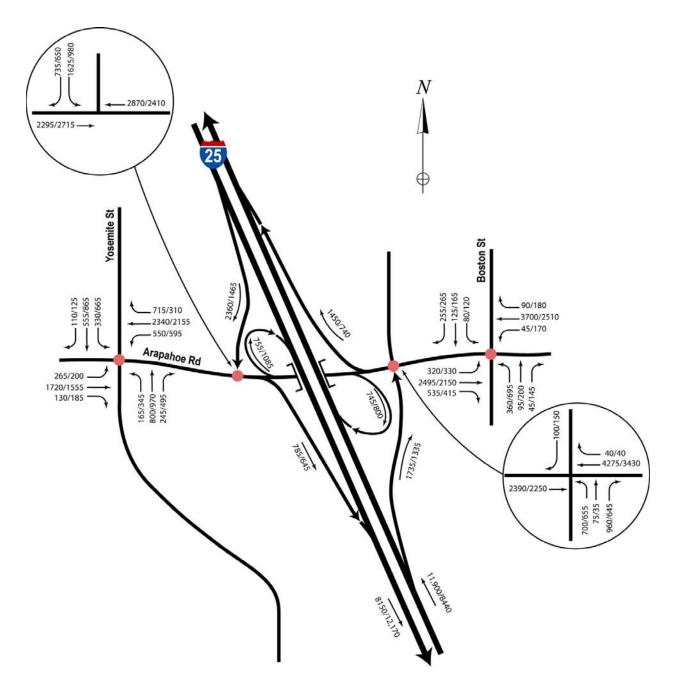
4.5. 2030 No Build Operational Analysis

To conduct traffic operational analysis of 2030 conditions, turning movement forecasts were developed using a combination of data from existing traffic counts, forecasted daily traffic, and forecasted peak hour traffic. Intersection, freeway segment, and ramp merge/diverge levels of service analyses were performed using the 2030 No Build traffic projections and roadway network. **Figure 11** shows the AM and PM peak hour traffic forecasts and **Figure 12** illustrates the Levels of Service (LOS) calculated for the Arapahoe/I-25 interchange area. Analysis worksheets are included in **Appendix C**.

The analysis shows that, even with the interim interchange improvements, three of the four signalized intersections along Arapahoe Road are expected to operate at LOS F during the AM and/or PM peak hours by 2030. The Southbound I-25 off-ramp intersection is expected to operate at LOS E during the AM peak hour. Taking the interactions of the closely-spaced intersections into consideration, the average queue on the southbound exit ramp is expected to reach 900 feet and the maximum queue would extend into the I-25 mainline lanes during the AM peak hour, creating a potentially dangerous situation for freeway and ramp traffic.

The I-25 freeway also degrades significantly from LOS C and LOS D under existing conditions to LOS F in 2030 between the Orchard Road and Dry Creek Road interchanges during peak hours in the peak direction (northbound during the morning peak hour and southbound during the evening peak hour). This high level of freeway congestion would result in failing ramp merge/diverge operations at the Arapahoe Road interchange. With these operational failures on the freeway, the queues from the ramp metering would back up to Arapahoe Road and impact the traffic traveling through the interchange area with only two lanes provided through the interchange ramp intersections.

Pondway / Interception	Control / Facility Type	LOS		
Roadway / Intersection	control / Facility Type	AM Peak Hour	PM Peak Hour	
Yosemite St/Arapahoe Rd	Signalized Intersection	F	F	
SB I-25 Exit Ramp/Arapahoe Rd	Signalized Intersection	E	С	
NB I-25 Exit Ramp/Arapahoe Rd	Signalized Intersection	F	D	
Boston St/Clinton St/Arapahoe Rd	Signalized Intersection	F	F	
SB I-25, North of Arapahoe Rd	Freeway Segment	D	F	
SB I-25, South of Arapahoe Rd	Freeway Segment	D	F	
NB I-25, South of Arapahoe Rd	Freeway Segment	F	D	
NB I-25, North of Arapahoe Rd	Freeway Segment	F	D	
SB I-25 Exit Ramp	Ramp Diverge	В	F	
SB I-25 Loop Ramp	Ramp Merge	C	F	
SB I-25 Entrance Ramp	Ramp Merge	F	F	
NB I-25 Exit Ramp	Ramp Diverge	F	А	
NB I-25 Loop Ramp	Ramp Merge	F	А	
NB I-25 Entrance Ramp	Ramp Merge	F	F	


Table 6.	Arapahoe Road	/I-25 No Build	2030 Peak Hour	Level of Service ((LOS)
----------	---------------	----------------	----------------	--------------------	-------

Source: Highway Capacity Manual analysis by David Evans and Associates, Inc.

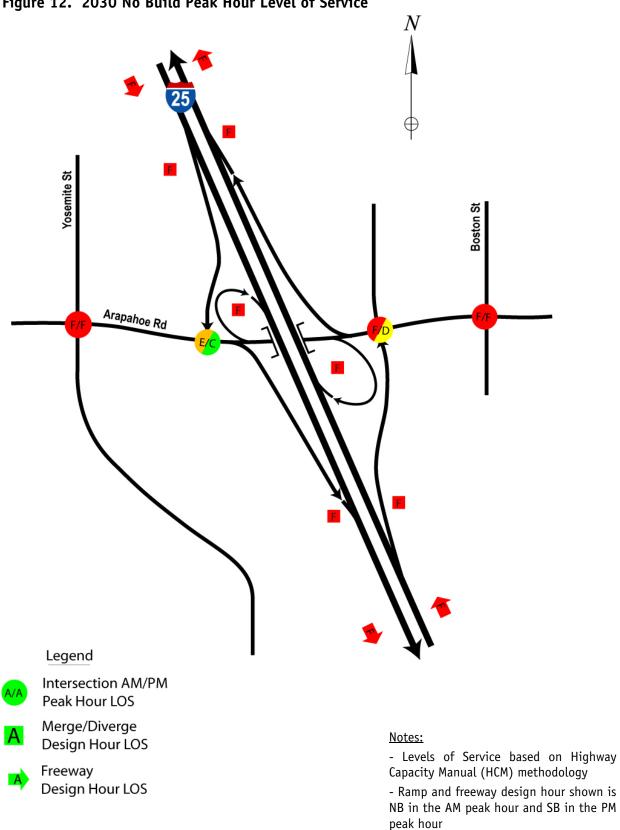


Figure 12. 2030 No Build Peak Hour Level of Service

5. Evaluation of Alternatives

In 2005, Arapahoe County, CDOT, Greenwood Village, and Centennial sponsored the Arapahoe Road Corridor Study, which included the evaluation of initial configuration options for the Arapahoe/I-25 interchange. The corridor study included an extensive task force and public meeting process. The study Technical Advisory Committee (TAC) and Executive Committee (EC) were comprised of engineers, planners, and stakeholder agency representatives that reviewed and guided the study process. The corridor study evaluation effort led to the selection of the interchange alternatives examined in this System Level Feasibility Study report.

5.1. Preliminary Interchange Options

The Arapahoe Road Corridor Study considered a range of options for improvements to the Arapahoe/I-25 interchange. The initial options considered, shown in **Figure 13**, include improvements to the existing cloverleaf type interchange, concepts with improved ramp intersection operations, and three level interchange concepts.

Alternative A - Improved Partial Cloverleaf: Conceptual design options were considered for improving the existing partial cloverleaf interchange design geometry. The concept includes increasing the loop ramp radius for the loop within the NW quadrant. The partial cloverleaf interchange would also include additional east/west travel lanes on Arapahoe Road for a total of six lanes traveling through the interchange.

Alternative B - Single Point Urban: The single point urban interchange option would replace the existing partial cloverleaf interchange and its two signalized ramp intersections with a single three-phase signalized intersection on Arapahoe Road. Due to the substantial width of the intersection, a long, deep clear span structure is required, and relatively long clearance intervals are required at the ramps signalized intersection. The tight ramp configuration would result in excess right-of-way from the current two cloverleaf ramps.

Alternative C - Tight Urban Diamond: The tight urban diamond interchange configuration includes two closely-spaced signalized intersections to serve ramp terminal and Arapahoe Road traffic movements. Due to the proximity of the signalized ramp intersections, signal operations of the two intersections would be operated as one signal with four-phase overlap phasing. Much of the Arapahoe Road left turn storage may be provided outside the signalized intersections, with signal timing developed to minimize the number of vehicles stored between the ramp intersections. This alternative also includes additional east/west travel lanes on Arapahoe Road for a total of six lanes traveling through the interchange.

Alternative D - Directional Ramps: This option consists of directional ramps to/from north I-25 with diamond configuration ramps to/from south I-25. This alternative includes additional east/west travel lanes on Arapahoe Road for a total of six lanes traveling through the interchange. This interchange option would have significant impacts to I-25 lane alignments due to the widening that would be required for shoulder areas for the grade change-related barriers of the flyover/tunnel ramps. (I-25 widening would be all to the east due to the proximity of the light rail bridge to the west.) Tunneling for a curved ramp underpass would be complicated and require storm drainage accommodations. A short weave area would result

for southbound I-25 to eastbound Arapahoe Road traffic prior to the Boston Street/Clinton Street intersection.

Alternative E - Tunnel: With this option, the eastbound to northbound and westbound to southbound ramp movements would be accommodated as tunnels under the interchange. All eastbound and westbound traffic bound for I-25 would be separated from Arapahoe Road west of Yosemite Street and east of Boston Street/Clinton Street, respectively, with local access to the southwest and northeast quadrants crossing over the on ramps. The existing four through lanes on Arapahoe Road would remain without additional widening through the interchange.

Similar to the directional ramp option, the merge of the westbound to southbound ramp would require additional shoulder area along the southbound on ramp, consequently requiring a shift in the alignment of I-25. The curved tunnel ramps would require complicated construction and drainage accommodations.

Alternative F - Diverging Diamond: A diverging diamond interchange is a form of diamond interchange in which the two directions of traffic on the intersecting arterial roadway cross to the opposite side on both sides of the bridge at the freeway. Simple two-phase traffic signal control of the ramp intersections could improve overall interchange and corridor traffic operations. However, driver expectancy issues may increase the number of crashes within the interchange area. The speed limit on Arapahoe Road would also need to be substantially reduced through the interchange to be consistent with the low design speed of the curving intersection approaches. This alternative includes additional east/west travel lanes on Arapahoe Road for a total of six lanes traveling through the interchange.

Alternative G - Three Level Diamond: The three level diamond option would include an underpass for east/west Arapahoe Road through traffic under the existing level of Arapahoe Road. The underpass would provide two lanes in each direction for through travel on Arapahoe Road. Ramp intersection movements would occur on the existing level of Arapahoe Road, and I-25 would remain the top level of the interchange. Turn accommodations for ramp traffic bound for the adjacent Yosemite Street and Boston Street/Clinton Street would be made to eliminate weaving traffic movements along Arapahoe Road. The underpass would require complicated construction and drainage accommodations.

Alternative H - Yosemite to Costilla Connection: With this option, the existing interchange configuration and number of lanes remain, but a new underpass of I-25 south of Arapahoe Road would be constructed to connect Yosemite Street and Costilla Avenue. This would provide an alternate route for east/west through traffic to bypass the interchange area along Arapahoe Road. The new five-lane section of Costilla Avenue would begin at a T-intersection with Yosemite Street west of I-25, cross under the freeway south of the Target property, and connect at the existing Costilla Avenue and Clinton Street intersection. The existing section of Costilla Avenue east of Clinton Street would also be improved to meet the existing five-lane section at Fulton Street.

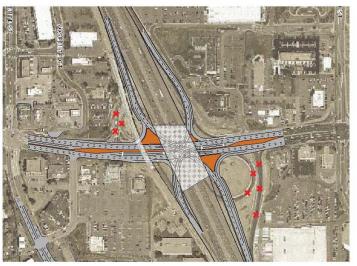
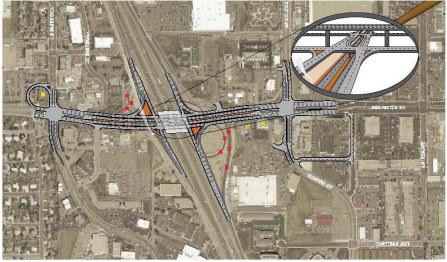


Figure 13. Preliminary Interchange Layouts

Alt. A - Improved Partial Cloverleaf

Alt. B - Single Point Urban Interchange


Alt. C - Tight Urban Diamond Interchange

Alt. E - Tunnel Interchange

Alt. F - Diverging Diamond Interchange

Alt. G - Three Level Diamond Interchange

Alt. D - Directional Ramps Interchange

Alt. H - Costilla Connection

5.1.1. Preliminary Evaluation

The seven initial alternatives were evaluated against a wide range of applicable evaluation criteria. These criteria were categorized as:

- Traffic Operations/Level of Service (LOS)
- Safety/Crash Potential
- Access to Adjacent Land Uses
- Constructability/Phasing
- Right-of-Way Requirements
- Existing Business Impacts
- Construction/Implementation Cost

Table 7 provides a summary of the evaluation of preliminary alternatives. This evaluation matrix provides a comparative analysis of the alternatives related to the evaluation criteria.

5.1.2. Traffic Operations/Level of Service

These criteria consider the number of traffic signals within the interchange area (including the signalized intersections at Yosemite Street and Boston Street) and the direct connection for heavy turning movements to/from I-25. It also considers weaving movements or complex operations required to accommodate local movements within the interchange area. The evaluation indicates that the Improved Partial Cloverleaf (Alternative A) and Yosemite and Costilla Connection (Alternative H) would best comply with the project goals related to this criteria. The Single Point Urban interchange would remove a signal from Arapahoe, but limits the capacity of the movements accessing I-25. The Tight Urban Diamond interchange would continue to require Arapahoe Road traffic to travel through four closely-spaced signalized intersections and would limit the capacity of the left turns accessing I-25. The Directional Ramps, Tunnel, Diverging Diamond, and Three Level Diamond alternatives would provide high capacity for certain movements through the interchange, but all would create complicated weaving movements and/or unusual maneuvers that would degrade overall interchange operations.

5.1.3. Safety/Crash Potential

The number of conflict points in the interchange area, potential queuing and weaving conflicts along Arapahoe Road and interstate ramps, and driver expectancy are considered in this evaluation. The Single Point Urban (Alternative B) alternative indicates the best compliance with project safety goals due to one less intersection on Arapahoe Road. The Improved Partial Cloverleaf (Alternative A) also has moderate compliance with the safety goals since increased capacity would reduce the number of congestion-related crashes. The Tight Urban Diamond (Alternative C) would introduce increased left turn conflicts and queuing at the two ramp intersections since left turns would occur at the ramp intersections and the queues would need to be stored on the approaches to the interchange, outside the area between the ramp intersections. Although the Yosemite and Costilla Connection would reduce volumes through

the interchange, the additional intersection on Yosemite introduces additional conflict points. The Directional Ramps, Tunnel, Diverging Diamond and Three Level Diamond alternatives have driver expectancy safety concerns due to the unusual configurations and short distances for lane changes and turning movements between the four interchange area intersections.

5.1.4. Access to Adjacent Land Uses

Access limitations and restrictions resulting from the interchange configuration are considered in this evaluation. Each of the interchange configuration alternatives will impact access to adjacent development areas to some degree. The Yosemite and Costilla Connection (Alternative H) would provide additional access opportunities across I-25 south of the interchange. The Improved Partial Cloverleaf (Alternative A) and Tunnel (Alternative E) configurations provide the potential for signalized access to the southwest quadrant across from the Southbound I-25 off-ramp.

5.1.5. Constructability/Phasing

This criterion considers the accommodation of traffic through the interchange during construction. Each of the interchange configuration alternatives would have some detour and construction impacts to traffic traveling through the area. The Yosemite and Costilla Connection (Alternative H) would have no impact to traffic through the interchange. The greatest impacts would result from alternatives that would be difficult to build in phases and/or would require the realignment of I-25, including the Single Point Urban (Alternative B), Directional Ramps (Alternative D), Tunnel (Alternative E), and Three Level Diamond (Alternative G) alternatives.

5.1.6. Right-of-Way Requirements

Impacts are based on the number of parcels affected. The most right-of-way within the interchange area would be required with the Directional Ramps and Tunnel alternatives and the least amount of right-of-way is required with the Single Point Urban (Alternative B) configuration. The Yosemite and Costilla Connection (Alternative H) would require substantial right-of-way along the new roadway alignment. The Improved Partial Cloverleaf, Tight Urban Diamond, and Diverging Diamond alternatives would require minimal, if any, additional right-of-way outside of the existing interchange footprint.

5.1.7. Existing Business Impacts

Impact to existing businesses within the study area is considered the key differentiating environmental characteristic for this level of screening. Other, more specific, environmental criteria are considered in the next level of alternative assessment.

Impacts are based on the number of existing businesses displaced. No impacts to existing buildings are anticipated with the Improved Partial Cloverleaf (Alternative A), Single Point Urban (Alternative B), Tight Urban Diamond (Alternative C), and Diverging Diamond (Alternative F) configurations. The Yosemite and Costilla Connection (Alternative H) would require major impacts to at least two buildings south of the interchange area.

Evaluation Criteria	No Build	Alt. A Improved Partial Cloverleaf	Alt. B Single Point Urban	Alt. C Tight Urban Diamond	Alt. D Directional Ramps	Alt. E Tunnel	Alt. F Diverging Diamond	Alt. G Three Level Diamond	Alt. H Yosemite and Costilla Connection
Traffic Operations / LOS	No improvements to existing congestion or queuing.	Four intersections on Arapahoe Rd; No left turns at ramp terminals. Direct connection for EB to NB and WB to SB left turns.	Three intersections on Arapahoe Rd; Limits capacity of EB to NB and WB to SB left turns.	Four intersections on Arapahoe Rd; Limits capacity of EB to NB and WB to SB left turns.	Four intersections on Arapahoe Rd; High capacity for heavy movements to/from north I-25; Weaving movements for SB to EB ramp traffic to Boston St.	Four intersections on Arapahoe Rd; High capacity for movements to I-25; Complicated movements Yosemite & Boston intersections.	Four intersections on Arapahoe Rd; Two-phase ramp terminal operations; Unusual weaving operations along Arapahoe Rd at ramp terminals.	Two intersections for thru traffic on Arapahoe Rd; Weaving at Yosemite & Boston intersections; Complex turning and local movements at Yosemite & Boston intersections.	Four intersections on Arapahoe Rd; New signalized intersection on Yosemite north of Alton Way; About 3,000 vpd removed from Araphoe Rd thru interchange.
Safety / Crash Potential	No changes in crash potential.	Arapahoe Rd traffic continues to stop at four intersections; Limits queuing from I-25 on- ramps to outside lanes of Arapahoe.	Single intersection limits conflicting movements; Decreased storage length for I-25 on-ramp queues.	Arapahoe Rd traffic continues to stop at four intersections with increased left turn conflicts.	Arapahoe Rd traffic continues to stop at four intersections; Decreased turn conflicts at ramp terminal intersections: Decreased storage length for SB I-25 on-ramp queues.	Arapahoe Rd traffic continues to stop at four intersections; Decreased conflicts at ramp intersections: Removes Arapahoe queuing from I- 25 on-ramps; Weaving issues east & west of interchange.	Critical driver expectancy safety concern with unusual travel lane configuration thru interchange; Short weaving section along Arapahoe Rd between ramp intersections.	Arapahoe Rd thru traffic grade-separated, limiting conflicting movements; Driver expectancy safety concern with movements required at Yosemite & Boston intersections.	Arapahoe Rd traffic continues to stop at four intersections; Decreased volumes on Arapahoe thru interchange decreases conflicts; Increased conflicts on Yosemite and Costilla Ave.
Access to Adjacent Land Uses	Continuing congestion degrades existing access conditions.	Closes right-in/right-out access to NW quadrant; Potential for added signalized access to SW quadrant across from SB off-ramp (only with CDOT approval).	Closes right-in/right-out access to NW quadrant and signalized access to NE quadrant.	Closes right-in/right-out access to NW quadrant and signalized access to NE quadrant.	Closes right-in/right-out access to NW quadrant; Replaces signalized access to NE quadrant with unsignalized right- in/right-out access.	Closes right-in/right-out access to SW quadrant; Potential for added signalized access to SW quadrant across from SB off-ramp (only with CDOT approval).	Closes right-in/right-out access to NW quadrant; Replaces signalized access to NE quadrant with unsignalized right- in/right-out access.	Closes right-in/right-out access to NW quadrant; Replaces signalized access to NE quadrant with unsignalized right- in/right-out access; Complex movements to provide access at Yosemite & Boston.	Provides additional access opportunities south of interchange with additional traffic on Costilla connection.
Constructability / Phasing	No construction impacts.	Could be built in phases with minimal impacts to existing Arapahoe alignment during construction.	Difficult to build in phases; Requires detours of Arapahoe and multiple construction phases on I-25.	Difficult to build in phases.	Constructability issues with third level bridges and tunnels; Requires realignment of I-25	Constructability issues with tunnel.	Difficult to build in phases.	Constructability issues with lower level for Arapahoe thru traffic; Difficult to build in phases.	Could be built in phases; No impact to Arapahoe interchange during construction.
Right-of-Way Requirements	No ROW impacts.	Minimal ROW required if loop ramps remain within existing interchange footprint.	Least ROW required than other build alternatives.	Minimal, if any, ROW required.	ROW required in all four quadrants for flyover ramps.	ROW required in SW and NE quadrants for tunnel approaches.	Minimal, if any, ROW required.	ROW required along Arapahoe thru interchange and at Yosemite & Boston intersections for roadways for local circulation.	Substantial ROW required along new roadway alignment.
Existing Business Impacts	None.	No impacts if loop ramps remain within existing interchange footprint.	None anticipated.	None anticipated.	Potential building impacts in SW, NE, and SE quadrants for flyover ramps.	Potential for substantial building impacts in SW and NE quadrants for tunnel approaches.	None anticipated.	Potential building impacts in SW and SE quadrants with widening required along Arapahoe Rd.	Major impacts to two buildings with substantial impacts to parking for adjacent properties.
Construction / Implementation Cost	No construction costs.	\$50-60 million	\$70-80 million	\$50-60 million	\$120-170 million	\$120-170 million	\$40-50 million	\$100-140 million	\$35-45 million

Table 7. Preliminary Evaluation of Interchange Options

5.1.8. Construction/Implementation Cost

An initial estimate of the range of construction costs was developed. More detailed cost estimates are provided for the detailed alternatives later in this report. The initial estimates indicate that the Directional Ramps, Tunnel, and Three Level Diamond alternatives would be the most expensive. The Improved Partial Cloverleaf (Alternative A), Tight Urban Diamond (Alternative C), Diverging Diamond (Alternative F), and Yosemite and Costilla Connection (Alternative H) alternatives would be the least expensive interchange configurations.

5.2. Preliminary Screening Summary

5.2.1. Alternatives Screened Out

Based on the results of the preliminary alternatives evaluation, the following alternatives are not forwarded for further detailed evaluation. Primary reasons that these alternatives have been screened from further consideration are highlighted below.

- Alternative C Tight Urban Diamond: The diamond interchange ramp intersections with Arapahoe Road would not provide sufficient capacity to accommodate future traffic volumes. The eastbound to northbound and westbound to southbound left turn movements would exceed the capacity of double left turn lanes and queues would extend through the interchange. Limited storage length would be provided between the two ramp intersections. Traffic signal progression along Arapahoe Road would be compromised with the additional left turn phases at the ramp signals. Due to the nature of the construction within existing travel areas, there would be some difficulty with building the interchange ramps and intersections in phases.
- Alternative D Directional Ramps: The locations of the eastbound to northbound and southbound to eastbound ramp merges/diverges along Arapahoe Road would result in complex weaving maneuvers that would be difficult to sign with traffic interactions at the Boston/Clinton and Yosemite Street intersections. The northbound to westbound and westbound to southbound left turns would require the ramp terminals to remain signalized. The westbound to southbound left turn movement would exceed the capacity of double left turn lanes and queues would extend through the northbound ramp intersection. All traffic headed for Southbound I-25 would travel on one diamond ramp, rather than the diamond ramp and loop ramp with the existing type of configuration, which results in decreased storage length for queues from the ramp meter or the I-25 merge.

The flyover and tunnel ramps would require complicated construction and realignment of the freeway. Due to the nature of the construction within existing travel lanes, it would be difficult to build in phases. New right-of-way would be required in all four quadrants of the interchange with potential business building impacts in the southwest, northeast, and southeast quadrants.

• Alternative E - Tunnel: The locations of the I-25 entrance ramp diverges along eastbound and westbound Arapahoe Road would result in complex lane changing maneuvers east and west of the Boston/Clinton and Yosemite Street intersections. The

I-25 exit ramp terminals would remain signalized. The tunnels under Arapahoe Road would require complicated construction. New right-of-way would be required in the southwest and northeast quadrants of the interchange for the approaches to the tunnels with the potential for business building impacts.

- Alternative F Diverging Diamond: The unconventional layout with realigned lanes for drivers to travel on the left side of the roadway creates critical safety concerns related to driver expectancy. The unusual weaving operations surrounding the ramp terminal intersections are inconsistent with a long-term solution for the relatively high non-peak speeds of Arapahoe Road. All traffic headed for Northbound or Southbound I-25 would travel on single diamond ramps, rather than the diamond ramps and loop ramps with the existing type of configuration, which results in decreased storage length for queues from the ramp meters or the I-25 merge. Due to the nature of the construction within existing travel lanes, it would be difficult to build in phases.
- Alternative G Three Level Diamond: The decision point between Arapahoe Road through movements and freeway ramp access movements would be difficult to sign with the short distance and traffic interactions at the Boston/Clinton and Yosemite Street intersections. Providing local access within the interchange area would be complicated with the grade-separation of Arapahoe Road movements. All traffic headed for Northbound or Southbound I-25 would travel on single diamond ramps, rather than the diamond ramps and loop ramps with the existing type of configuration, which results in decreased storage length for queues from the ramp meters or the I-25 merge. New right-of-way would be required along Arapahoe Road. The tunnels under Arapahoe Road would require complicated construction and the nature of the construction within existing travel lanes would make it difficult to build in phases.
- Alternative H Yosemite and Costilla Connection: The travel modeling indicates that the alternate route between Yosemite Street and Clinton Street along Costilla Avenue would decrease traffic traveling along Arapahoe Road through the interchange by 3,000 vehicles per day with most volume reduction expected during the peak hours. Although a benefit to traffic operations at the ramp terminal intersections, the travel forecasts show that the connection would not divert sufficient traffic to eliminate the need for additional capacity improvements within the immediate interchange area. The connection would be best combined with another build alternative to provide the reduction of traffic volumes through the interchange as well as a potential alternate route during the interchange reconstruction.

5.2.2. Alternatives for Further Consideration

Based on the results of the preliminary alternatives evaluation, the Improved Partial Cloverleaf (Alternative A) and Single Point Urban (Alternative B) alternatives are forwarded for more detailed evaluation. The Improved Partial Cloverleaf and Single Point Urban interchange configurations provide the best traffic operations and safety benefits and perform better than the other alternatives in almost all of the preliminary evaluation criteria.

Due to the additional capacity, access, and construction phasing benefits identified for the Yosemite and Costilla Connection in the preliminary evaluation, both alternatives moving

forward into the detailed alternative assessment were modified to include a new underpass of I-25 south of Arapahoe Road connecting Yosemite Street and Costilla Avenue as a means for east/west through traffic to bypass the interchange area. **Table 8** illustrates the comparison of the preliminary alternatives with the evaluation of the modified alternatives, Improved Partial Cloverleaf with Costilla Connection (Modified Alternative A) and Single Point Urban Interchange with Costilla Connection (Modified Alternative B), related to the preliminary evaluation criteria.

The modification to add the Costilla Connection makes the two alternatives even more superior to the other configurations considered in the preliminary evaluation. The reduction in traffic volumes through the interchange resulting from the underpass increases the traffic operations and safety benefits of the improvements. The new roadway connection would provide additional access opportunities across I-25 south of the interchange. The construction of the Costilla Connection would not impact traffic through the interchange. However, phasing the construction of the underpass first would provide a valuable alternate route for traffic during the interchange reconstruction of either the Improved Partial Cloverleaf or Single Point Urban configurations.

Adding the Costilla Connection to the alternatives does add substantial right-of-way, existing business impacts, and costs since it is a new roadway alignment through a developed area. However, the Improved Partial Cloverleaf and Single Point Urban interchange configurations required minimal, if any, right-of-way and existing business impacts, so the modified alternatives still perform better overall than the larger-scale alternatives (Directional Ramps, Tunnel, and Three Level Diamond). The traffic operations, safety, access, and construction phasing benefits of the modified alternatives outweigh the additional right-of-way impacts and construction costs.

The Costilla underpass connection is also an element of the recommended alternative in the Arapahoe Road Corridor Study.

Arapahoe Road/I-25 Interchange

Table 8. Pr	Preliminary Evaluation of Modified	valuation of	Modified	н	interchange Options						
Evaluation Criteria	No Build	Alt. A Improved Partial Cloverleaf	Alt. B Single Point Urban	Alt. C Tight Urban Diamond	Alt. D Directional Ramps	Alt. E Tunnel	Alt. F Diverging Diamond	Alt. G Three Level Diamond	Alt. H Yosemite and Costilla Connection	Mod. Alt. A Improved Partial Cloverleaf with Costilla	Mod. Alt. B Single Point Urban with Costilla Connection
Traffic Operations / LOS	•			•			•			\bigcirc	
Safety / Crash Potential		\bigcirc					•			0	•
Access to Adjacent Land Uses									\bigcirc	\bigcirc	\bigcirc
Constructability / Phasing	\bigcirc		•		•			•	\bigcirc	•	
Right-of-Way Requirements	\bigcirc		\bigcirc	lacksquare	•		\bigcirc		•		
Existing Business Impacts	\bigcirc	\bigcirc	\bigcirc	\bigcirc	•		\bigcirc	•	•		
Construction / Implementation Cost	No construction costs	\$50-60 million	\$70-80 million	\$50-60 million	\$120-170 million	\$120-170 million	\$40-50 million	\$100-140 million	\$35-45 million	\$85-105 million	\$105-125 million
Legend: High	High compliance with project goals	:h project goals		Modera	Moderate Compliance with project goals	with project	goals	Limited	Limited Compliance with project goals	ith project goa	S
•	Little comp.	Little compliance with project goals	ject goals) Low level of (compliance v	Low level of compliance with project goals	oals			

DAVID EVANS

46

6. Detailed Alternative Assessment

Based on the preliminary screening of alternatives, the following alternatives are forwarded for more detailed evaluation.

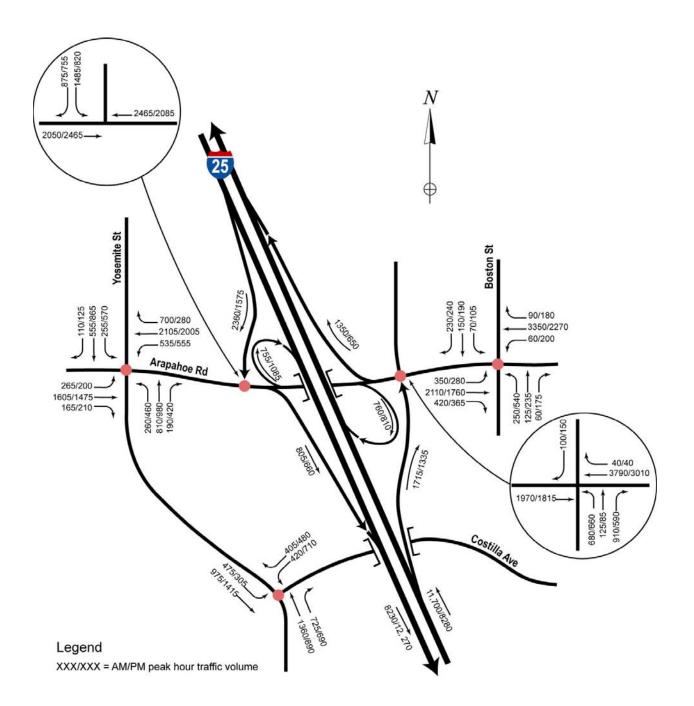
- Modified Alternative A Improved Partial Cloverleaf with Costilla Connection
- Modified Alternative B Single Point Urban Interchange with Costilla Connection

6.1. Evaluation Criteria

Criteria were defined in the following areas for evaluation of the detailed interchange alternatives:

- Traffic Operations and Safety Performance –Intersection Levels of Service (LOS), delay, and potential queue lengths for critical movements were quantified for each alternative. Crash potential as a result of conflict points and queuing was also considered.
- Design and Construction Geometric considerations, constructability issues, and potential construction phasing were considered in this evaluation.
- Environmental Issues These criteria considered community/business impacts, hazardous materials impacts, water resources, noise impacts, as well as air quality impacts.
- Right-of-Way Requirements Quantification of the required acres of right-of-way for each alternative was calculated.
- Construction Costs Costs for construction, contingencies, construction engineering, and construction management are included in this analysis. This analysis excluded the cost for right-of-way acquisition.

6.2. Traffic Operations and Safety Performance


Traffic operations were analyzed for the No Build and two interchange alternatives based on travel forecasts developed for each configuration. **Figures 14 and 15** show the peak hour traffic forecasts for the two build alternatives.

These traffic volumes were developed from the Arapahoe Road Corridor Study traffic forecasts and are based on the DRCOG 2030 model with the addition of the recommended alternative for the Arapahoe Road Corridor Study, which includes the Costilla Avenue connection and improvements to Arapahoe Road, Broncos Parkway, and Easter Avenue, as well as the parallel routes adjacent to Arapahoe Road (Peakview Avenue and Briarwood Avenue).

Relative to the No Build projections, the Arapahoe/I-25 interchange and Arapahoe Road corridor improvements show an additional 2,000 vehicles per day on I-25 north of Arapahoe Road and a decrease of approximately 5,000 vehicles per day on I-25 south of Arapahoe Road. These changes will have little impact on the future congested operations along I-25.

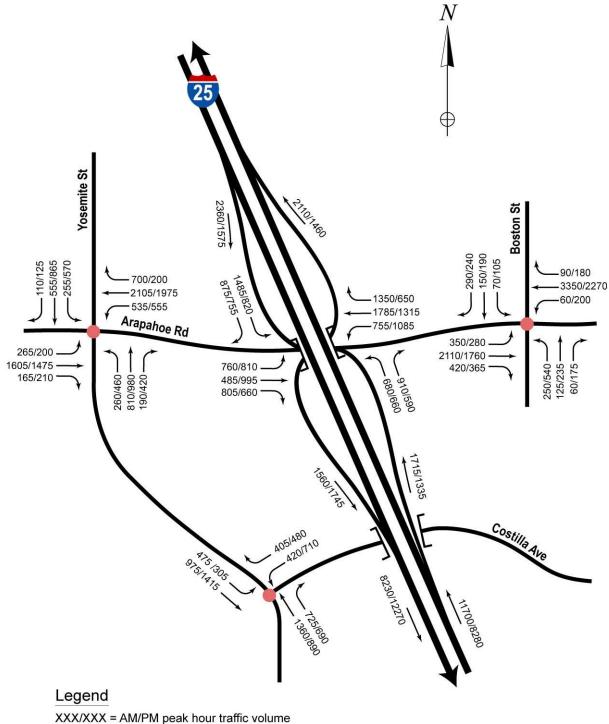
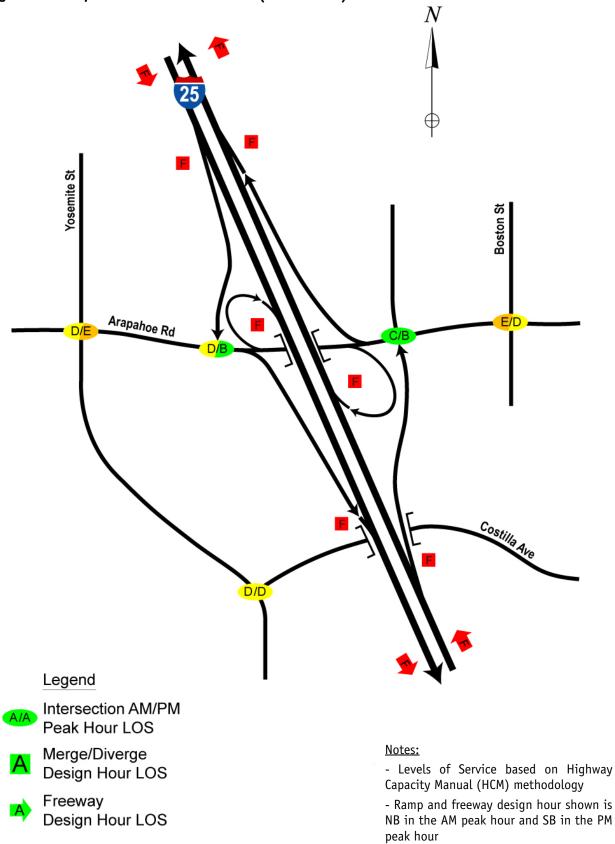


Figure 14. Improved Partial Cloverleaf (Mod. Alt. A) 2030 Traffic Forecasts

Figure 15. Single Point Urban (Mod. Alt. B) 2030 Traffic Forecasts

As noted with the preliminary alternatives screening, traffic volumes generally decreased on Arapahoe Road through the interchange with the addition of the Costilla Avenue connection. Traffic volumes on Arapahoe Road decreased almost five percent during the peak hours between Yosemite Street and Boston Street/Clinton Street. Daily volume projections on Yosemite Street were also reduced slightly, although the turning movements to the south leg of the Arapahoe Road and Yosemite Street intersection increased during the peak hours with traffic utilizing the Costilla Avenue connection.


Three key operational parameters distinguish the detailed alternatives: intersection level of services, queue lengths on the freeway ramps and between intersections along Arapahoe Road, and crash potential due to number of conflict points and queuing. The respective measures used to demonstrate the performance level for each parameter are the level of service for each of the intersections along Arapahoe Road, the 95th-percentile queue lengths for the approaches at the ramp terminal intersections, and crash potential measured by the number of conflict points at the ramp terminal intersections and locations of long queues. This information is summarized in **Table 9**. Capacity analysis output is included in **Appendix D**.

	Level of Service	Average Queue Length	Cras	n Potential
Alternative	AM/PM Peak Hour	AM/PM Peak Hour	Number of Conflict	Intersection Approaches
	At Arapahoe Intersections	(feet)	Points at Ramps	with Long Queues ⁽¹⁾
	Yosemite: F/F	SB Ramp Intersection	SB Ramp Signal: 5	NB Exit Ramp
	SB Ramp: E/C	SB: 900/400	NB Ramp Signal: 5	SB Exit Ramp
	NB Ramp: F/D	EB: 150/750	Total: 10	NB Entrance Ramp
No Build	Boston/Clinton: F/F	WB: 975/525		SB Entrance Ramp
NO BUILU		NB Ramp Intersection		EB Arapahoe at SB Ramp
		NB: 625/350		WB Arapahoe at Boston
		EB: 475/400		WB Arapahoe at Yosemite
		WB: 1375/450		
	Yosemite: D/E	SB Ramp Intersection	SB Ramp Signal: 5	NB Entrance Ramp
Improved	SB Ramp: D/B	SB: 425/325	NB Ramp Signal: 5	SB Entrance Ramp
Partial	NB Ramp: C/B	EB: 175/75	Total: 10	WB Arapahoe at SB Ramp
Cloverleaf	Boston/Clinton: E/D	WB: 975/225		WB Arapahoe at Yosemite
with Costilla		NB Ramp Intersection		WB Arapahoe at Boston
Connection		NB: 575/325		
(Mod. Alt. A)		EB: 425/250		
		WB: 200/175		
Single Point	Yosemite: D/E	Ramp Intersection	Ramp Signal: 16	SB Exit Ramp
Urban with	SB & NB Ramp: D/C	NB: 225/250	Total: 16	NB Entrance Ramp
Costilla	Boston/Clinton: E/D	SB: 775/350		SB Entrance Ramp
Connection		EB: 400/300		WB Arapahoe at Yosemite
(Mod. Alt. B)		WB: 625/375		WB Arapahoe at Boston

Table 9.	Traffic 0	Derations and	Safety	Performance –	Evaluation	of Alternatives
	manne o	perations and	Juicty	1 chronnance	Evaluation	of Allematives

⁽¹⁾ Long queues defined as 95th-percentile queue over 700 feet during AM and/or PM peak hour(s)

Figure 16. Improved Partial Cloverleaf (Mod. Alt. A) 2030 Peak Hour Level of Service

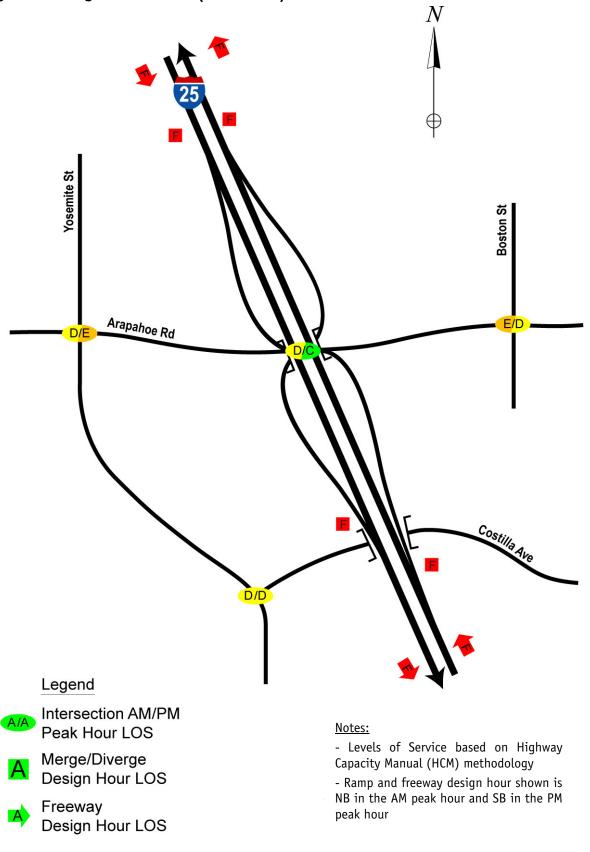


Figure 17. Single Point Urban (Mod. Alt. B) 2030 Peak Hour Level of Service

No Build:

With the increase in traffic volumes expected by 2030, the No Build scenario results in a substantial increase in delay within the interchange area, resulting in more queuing of ramp traffic onto I-25. The No Build operational analysis is described in Section 4.5 of this report. Three of the four interchange area intersections operates at LOS F during the AM and/or PM peak hour. The queues from the entrance ramps to I-25 and through the intersections along Arapahoe Road cause gridlock through the interchange, creating the potential for increased safety problems related to congestion along both Arapahoe Road and I-25. The average queue on the southbound exit ramp is expected to reach 900 feet and the maximum queue would regularly extend into the I-25 mainline lanes during the AM peak hour.

Modified Alt. A – Improved Partial Cloverleaf Interchange with Costilla Connection:

With this alternative, traffic operations along Arapahoe Road improve from LOS F to LOS D at most intersections along Arapahoe Road during the AM and PM peak hours, due to the additional arterial lanes through the interchange. The Arapahoe Road and Boston/Clinton Street intersection operates at LOS E during the AM peak hour and the overall intersection delay is reduced by almost 65 percent from the No Build alternative. Average delay at the Yosemite Street intersection is reduced over 30 percent during the PM peak hour.

Although the Southbound I-25 off ramp essentially remains in the current configuration due to the LRT bridge constraints, the additional southbound left turn lane (for a total of three left turn lanes) and the five-lane cross-section on Arapahoe Road improves the conditions for turning traffic from the ramp. Queues on the Southbound I-25 off-ramp are reduced to an average queue of 425 feet and a maximum queue of 450 feet during the AM peak hour.

Each ramp signal contains five conflict points, which is less than a typical T-intersection since the left turn movements are accommodated with the loop ramps and do not have to cross opposing traffic. The number of conflict points within the interchange area is the same as the No Build scenario.

During the PM peak hour, the queues for traffic entering I-25 extend to Arapahoe Road due to the ramp metering and congestion on I-25. However, because of the loop ramp layout, the ramp back ups are limited to the outside lane along Arapahoe Road and, due to the additional lane through the interchange, through traffic on Arapahoe Road is not blocked. Therefore, the degradation of freeway merging operations has limited impact on traffic traveling on Arapahoe Road through the interchange.

Modified Alt. B - Single Point Urban Interchange with Costilla Connection:

With this alternative, a signalized intersection is eliminated along Arapahoe Road, which increases intersection spacing. Intersection operations are LOS D or better during the AM and PM peak hours, except at Yosemite Street, which operates at LOS E during the PM peak hour, and at Boston/Clinton Street, which operates at LOS E during the AM peak hour. The overall intersection delay at Boston/Clinton Street is reduced by almost 70 percent during the AM peak hour from the No Build alternative. Average delay at the Yosemite Street intersection is reduced almost 35 percent during the PM peak hour.

Queues on the Southbound I-25 off-ramp approaching Arapahoe Road are reduced to an average of 625 feet and a maximum queue of 800 feet during the AM peak hour. A longer cycle length may be required to clear movements through the ramps signal due to the size of

the intersection. This longer cycle length may create longer queuing along the off-ramps and Arapahoe Road, as well as complicate signal progression with the Yosemite Street and Boston/Clinton Street intersections.

Although both ramps are accommodated at one signalized intersection on Arapahoe Road, the higher number of turning movements (including the left turns for the entrance ramps) results in more overall conflict points within the interchange area than the No Build or Improved Partial Cloverleaf with Costilla Connection alternatives. This increases the potential for collisions of two (or more) vehicles.

With this configuration, all traffic headed for I-25 would travel on one diamond ramp, rather than the diamond ramp and loop ramp with the existing type of configuration, which results in decreased storage length for queues from the ramp meters or the I-25 merges. Because of the ramp metering and congestion on I-25 expected during the AM and PM peak hour, the queues on the I-25 entrance ramps extend through the Arapahoe Road signal. Traffic attempting to turn left onto the freeway ramps backs up into the inside through lanes on Arapahoe Road while traffic attempting to turn right onto the ramps backs up into the outside lanes. Therefore, I-25 congestion and ramp metering creates virtual gridlock within the interchange area. Without ramp metering, entrance ramp queues are reduced and the related congestion is avoided. If future traffic volumes cause these types of operational issues with ramp metering, the metering may be limited in use or removed. However, for many years prior to that traffic volume condition, the ramp metering would improve highway operations and safety. Therefore, the management of the ramp metering system at this location would be critical for the operation of this interchange alternative.

6.3. Design and Construction

Conceptual designs were developed for the two build interchange alternatives. Each of the alternatives was designed within the constraints of the existing light rail bridge piers.

Modified Alt. A – Improved Partial Cloverleaf Interchange with Costilla Connection:

This alternative requires reconstruction of the I-25 bridge over Arapahoe Road to accommodate three through lanes on Arapahoe Road, which will result in construction-related impacts to I-25 and Arapahoe Road traffic. Horizontally this interchange layout is identical to the existing interchange with the majority of the work being done to accommodate the widening along Arapahoe Road, a deeper structure depth, and consequently profile grade line changes to both Arapahoe Road and mainline I-25.

The existing interchange was constructed under the T-REX project with variances to limit reconstruction and right-of-way acquisitions. At least two of the six ramps were constructed with variances. The Southbound I-25 loop ramp was constructed with less than a 25-mph minimum radius and the Southbound I-25 entrance ramp was constructed with less than a 50-mph vertical design speed at the gore with mainline I-25. The location of the LRT alignment west of the freeway also reduced the ramp meter lane drop taper from the T-REX project standard of 50:1 to 30:1 at this same location.

Similar issues are created with the design for this alternative, such as reduced design speed at the ramp terminals with Arapahoe Road, reduced horizontal design speed of the Southbound I-25 loop ramp, and the need to raise the grade for Northbound and Southbound I-25 above four

percent for a short distance to accommodate increased structure depths and changes to the Arapahoe Road profile grade line.

The following summarizes design considerations and concerns for this alternative based on the conceptual design (less than ten percent design effort):

- Design will require over 2,000 feet of reconstruction of I-25;
- Design will require design variances for the horizontal design of the loop ramps (less than 25-mph) and vertical design of I-25 (greater than four percent vertical grade);
- Arapahoe Road will need to be raised approximately three feet to accommodate the ramp profiles; and
- Conceptual design is based on an assumed structure depth of five feet and two inches.

The cloverleaf loop ramps in the northwest and southeast quadrants will allow for detention of storm drainage flows within the interchange, simplifying the conveyance of stormwater runoff through the project area. Assuming that two to six feet of depth could be accommodated within the loop ramp areas, a total of 16 acre-feet of detention could be recognized. For an interchange of this configuration and size, 15-20 acre-feet is a feasible range for detention (10-year discharge). In addition to the detention, however, an additional one to five acre-feet of water quality storage is probable for the anticipated contributing runoff area for the interchange. Some or all of this additional area may be accommodated in linear ditches adjacent to mainline I-25 or provided by mechanical treatment systems.

Modified Alt. B - Single Point Urban Interchange with Costilla Connection:

This alternative requires a long, single span bridge structure to accommodate the left turns to and from the ramps at the Arapahoe Road intersection, which would require exceptionally deep structural girders. This bridge design will require lowering Arapahoe Road and raising I-25 to provide adequate vertical clearance, which would result in more complex construction phasing and substantial impacts to I-25 and Arapahoe Road traffic during construction. Lowering Arapahoe Road creates particularly severe phasing issues at existing intersections and access points. Temporary roadways and multiple stages of traffic detours would be required to maintain traffic on both Arapahoe Road and I-25 during bridge construction. Construction of the west side ramps would need to avoid impacts to the existing light rail bridge, which would require creative design solutions. This is particularly critical adjacent to the LRT retaining walls and ballast walls west of I-25.

The following summarizes design considerations and concerns for this alternative based on the conceptual design (less than ten percent design effort):

- Design will require over 4,000 feet of reconstruction of I-25;
- Horizontal or vertical design may require variances; and
- Conceptual design is based on an assumed structure depth of eight feet and four inches.

Like the Improved Partial Cloverleaf with Costilla Connection alternative, available area for detention and water quality storage volume will primarily be handled within or immediately adjacent to the interchange improvements. The primary storage area will be in the southeast

quadrant of the interchange where the existing northbound exit ramp and entrance loop ramp will be removed. This area equates to approximately the same volume as the Improved Partial Cloverleaf with Costilla Connection alternative and will provide adequate storage for detention, but may need additional water quality volume in the form of linear ditches and mechanical cleansers.

6.4. Environmental Issues

The impacts to the human and natural environments with the study area that would result from implementation of each of the final alternatives were evaluated. This evaluation was based on the information provided with the project environmental overview, described in Chapter 3 of this report.

No Build:

The No Build condition would have some negative impact to air quality within the study area due to increasing congestion. No other new environmental impacts are applicable if the project is not constructed.

Modified Alt. A – Improved Partial Cloverleaf Interchange with Costilla Connection:

This interchange alternative would close the right-in/right-out access to the northwest quadrant, located on the north side of Arapahoe Road between the Southbound I-25 ramp and Yosemite Street intersections. Access to the properties would continue to be provided off Yosemite Street. The Costilla Connection south of Arapahoe Road would require major impacts to at least two buildings, an office building west of I-25 and a hotel east of I-25. More specific parking and construction impacts may be assessed during the project environmental documentation.

This interchange alternative would have minor impacts to wetlands within the project area, potentially only in the southeast quadrant of the interchange in the area of construction for the Costilla Avenue connection.

The interchange project would have a minor, yet positive, impact on the air quality of the Southeastern Denver Metropolitan region based on the anticipated decreases in intersection delay and congestion along Arapahoe Road. During the subsequent NEPA process for this project a carbon monoxide hot spot analysis will be conducted, as required.

Recognized environmental conditions related to hazardous materials include potential impacts related to automotive service stations, storage units, and commercial facilities in the southwest quadrant of the interchange, east of the interchange along Arapahoe Road, and along Costilla Avenue east of I-25. Further evaluation of the potential hazardous material sites may be warranted prior to final design of the project. During the subsequent NEPA process for this project a Phase 1 Environmental Site Assessment (ESA) of hazardous materials will be conducted.

Modified Alt. B - Single Point Urban Interchange with Costilla Connection:

This alternative would close the right-in/right-out access to the northwest quadrant and the signalized access to the northeast quadrant of the interchange. Access to the properties in the northwest quadrant would continue to be provided off Yosemite Street and property access for the northeast quadrant would continue to be provided off Boston Street. Similar to the

Improved Partial Cloverleaf with Costilla Connection alternative, the Costilla Connection south of Arapahoe Road would require major impacts to at least two buildings, an office building west of I-25 and a hotel east of I-25. More specific parking and construction impacts may be assessed during the project environmental documentation.

This interchange alternative would have similar impacts to wetlands, air quality, and hazardous materials resources as the Improved Partial Cloverleaf with Costilla Connection alternative.

6.5. Right-of-Way Requirements

The acres of right-of-way required for each build alternative shown below were calculated based on the conceptual design layout of the interchange. The right-of-way for both of the alternatives includes approximately 5.0 acres for the Yosemite to Costilla Connection.

- Improved Partial Cloverleaf with Costilla Connection (Mod. Alt. A): approx. 6.1 acres
- Single Point Urban with Costilla Connection (Mod. Alt. B): approx. 6.8 acres

The larger area of right-of-way needed for the Single Point Urban with Costilla Connection alternative is mostly within the northeast quadrant of the interchange, where the Northbound I-25 entrance ramp curves around and encroaches upon the existing access road and parking areas. With the Improved Partial Cloverleaf with Costilla Connection alternative, this area is not impacted.

These right-of-way estimates do not include total takes of parcels, which may be required for either alternative depending on the final details of access location, parking impacts, and right-of-way negotiations. Both interchange alternatives may also require additional business relocations depending on the final Arapahoe Road alignment. Two commercial buildings (an office and a hotel) would be directly impacted by the Costilla/Yosemite connection.

6.6. Construction Costs

The ranges of construction costs shown below were identified for the two build alternatives based on an initial opinion of probable construction cost, including contingencies, construction engineering, and construction management. The figures for both of the alternatives include \$35-45 million for the Yosemite to Costilla Connection. These cost estimates shown were developed in September 2006 and are the cost data provided to DRCOG for development of the Draft 2035 Plan to identify Federal funding for the interchange improvements. These initial estimates do not include right-of-way (see Section 6.5 for right-of-way area requirements).

- Improved Partial Cloverleaf with Costilla Connection (Mod. Alt. A): \$85 105 million
- Single Point Urban with Costilla Connection (Mod. Alt. B): \$105 125 million

6.7. Summary of Alternatives Evaluation

A summary matrix of the detailed alternatives evaluation is provided in **Table 10**. The final screening identified concerns associated with the Single Point Urban with Costilla Connection alternative related to the potential for gridlock congestion and queuing on Arapahoe Road

from the ramp metering system and future congestion along the I-25 mainline. There are much larger construction impacts for I-25 related to the long, single span bridge structure as well as concerns with compromising the existing light rail infrastructure in the southwest quadrant of the interchange. The Single Point Urban configuration also requires the closure of the signalized access to the northeast quadrant of the interchange.

The No Build alternative would not provide the capacity necessary to meet the forecasted travel demand at the interchange, resulting in increased traffic congestion, safety concerns, and air quality impacts.

Based on the results of the alternatives evaluation, Modified Alternative 1 - Improved Partial Cloverleaf with Costilla Connection is recommended for further evaluation in the subsequent NEPA process for the interchange improvements. This interchange configuration will provide the necessary transportation facilities and services to adequately accommodate travel demand through and beyond the 2030 planning horizon with minimal impacts to surrounding properties. Most improvements within the immediate interchange area would be generally located within the existing interchange footprint with widening impacts along Arapahoe Road and construction along I-25 for the bridge reconstruction. The majority of project environmental and property impacts would be located along the Costilla/Yosemite alignment.

This analysis concludes that the Improved Partial Cloverleaf with Costilla Connection configuration with improvements along Arapahoe Road will provide the greatest benefit with limited impacts. However, further design analysis may identify limiting design variances and more benefits for shifting I-25. Therefore, these types of design details should continue to be explored during the environmental documentation for the interchange.

Table 10. Detailed Evaluation of Alternatives

Evaluation Criteria	No Build	Mod. Alt. A Improved Partial Cloverleaf with Costilla Connection	Mod. Alt. B Single Point Urban with Costilla Connection					
Traffic Operations	See Tables 7 and 8 for details regarding Traffic Operations and Safety Performance							
			\bigcirc					
Design and Construction	Not applicable	 Standard single span bridge 2000' of I-25 reconstruction Construction simplified while maintaining traffic 	 Non-standard, deep bridge girders required 4000' of I-25 reconstruction Difficult to construct while maintaining traffic on I-25 Compromises existing LRT infrastructure 					
Right-of-Way Requirements	Not applicable	Interchange = 1.1 acres Costilla connection = 5.0 acres	Interchange = 1.8 acres Costilla connection = 5.0 acres					
		Total = approx. 6.1 acres	Total = approx. 6.8 acres					
Environmental Issues	 As congestion increases, business access will be negatively impacted As congestion increases, air pollution will increase No other environmental impacts 	 Closes right-in/right-out access to NW quadrant Positive impact to air quality as traffic operations improved substantially Minor impacts to wetlands Potential hazardous material impacts 	 Closes right-in/right-out access to NW quadrant and signalized access to NE quadrant Positive impact to air quality as traffic operations improved substantially Minor impacts to wetlands Potential hazardous material impacts 					
Construction Costs	None	\$85 - 105 million	\$105 - 125 million					
Summary			G					

Legend:

High compliance with project goals

Moderate compliance with project goals

Limited compliance with project goals

Low level of compliance with project goals

Lit

Little compliance with project goals

7. Preliminary Recommended Improvements

7.1. Description of Recommended Alternative

Based on the results of the evaluation of alternatives, Modified Alternative A - Improved Partial Cloverleaf with Costilla connection is recommended. This interchange configuration, shown in **Figure 18**, will provide the necessary transportation facilities and services to adequately accommodate travel demand through and beyond the 2030 planning horizon for this study. Components of the conceptual design for the interchange, including local access, major intersection design along Arapahoe Road, and movements to/from I-25, are discussed in this section of the report. Roadway profiles developed for the conceptual design of the Recommended Alternative are included in **Appendix E**.

7.1.1. I-25 Mainline

I-25 will be designed to meet the requirements of the typical section, which includes five twelve-foot through lanes in each direction, ten-foot inside and outside shoulders, a two-foot wide concrete median barrier and twelve-foot acceleration/deceleration lanes, where required. Because the improvements are generally located within the existing interchange footprint, the existing interchange ramp merges and diverges along I-25 will remain in the current locations along I-25 and the existing lane add/drop configurations will not be modified.

7.1.2. I-25 Ramps

The interchange ramps will be designed to accommodate the 2030 traffic volume projections discussed earlier in this report. The entrance ramps will provide one lane access to I-25, narrowing from two lanes at the ramp meter locations. The ramps will include a four-foot left shoulder, a fifteen-foot wide lane, and a minimum six-foot right shoulder. The exit ramps will consist of two lanes, diverging I-25 as a drop lane and an option lane approaching the ramp gore.

7.1.3. Arapahoe Road

Arapahoe Road will be designed to meet the requirements of CDOT and local agency standard specifications. The typical section will match the existing Arapahoe Road section east and west of the interchange, carrying three twelve-foot lanes through the interchange area.

During the Arapahoe Road Corridor Study agency coordination process, the possibility of enhanced local access to the southwest quadrant of the interchange via a roadway constructed directly across from the Southbound I-25 exit ramp was discussed with the local agencies with the Improved Partial Cloverleaf interchange configuration. The local agencies were told that the signal operations, allowable movements, and safety concerns for such an access would need to be studied in detail with traffic projections considering the trip generation of the potential redevelopment within the southwest quadrant area prior to any access approvals. The operation of a south leg at the Southbound I-25 ramp intersection would need to consider interactions with Eastbound Arapahoe Road traffic bound for the I-25 entrance ramps and the closure of the existing right-in/right-out access into the southwest quadrant east of Yosemite

Street. CDOT currently opposes providing this access across from the Southbound I-25 exit ramp and the access is not shown with the Recommended Alternative in Figure 17.

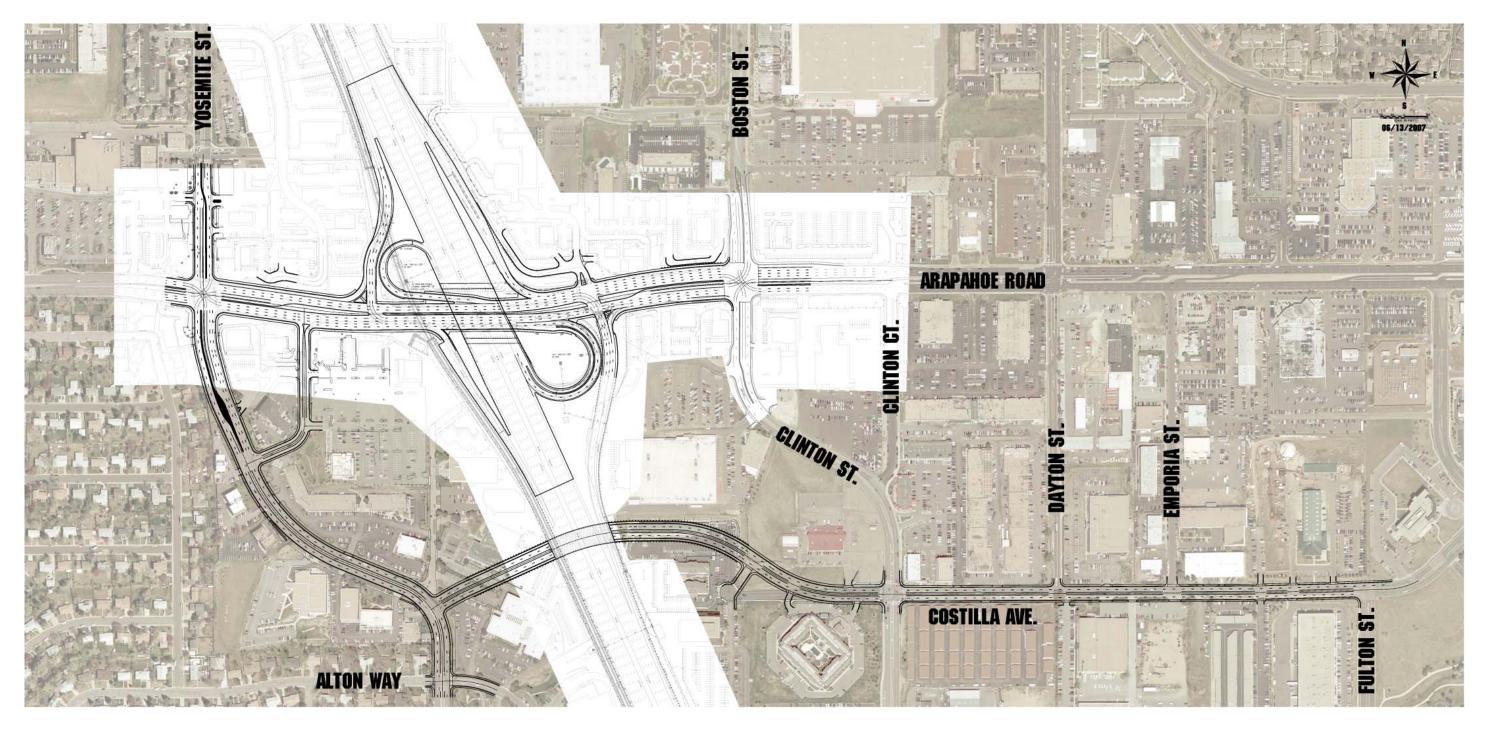
7.1.4. Costilla Avenue Connection

Costilla Avenue from Yosemite Street to Fulton Street will be designed to meet the requirements of the City of Greenwood Village's and Arapahoe County's standard design criteria. The typical section will include eight to ten-foot attached sidewalks, four eleven-foot through travel lanes, three-foot buffers for bikes adjacent to the curb and gutter, and an eleven-foot painted median.

The Yosemite Street/Costilla Avenue intersection, located approximately 300 feet north of the existing Yosemite Street/Alton Way signal, will be designed providing Yosemite Street with the major through movements to avoid queuing impacts at the Yosemite Street/Alton Way intersection. A short length of raised median will be required to accommodate piers for the structures at I-25. The I-25 structures were assumed with two 42-foot spans and structure depths of three feet. A reduced minimum design speed of 35 mph will be required to limit property impacts east of the I-25 underpass.

The north curb line of Costilla Avenue from Clinton Street to Fulton Street will be held through this section with the majority of the widening impacts occurring to the south.

7.2. Alternate Transportation Modes


Alternate mode accommodations to be implemented with the Arapahoe/I-25 interchange improvements will be implemented consistent with the recommended improvements of the Arapahoe Road Corridor Study. These improvements include improved sidewalks along both the north and south sides of Arapahoe Road from Yosemite Street, through the interchange, to the Boston/Clinton Street intersection. Sidewalks will also be constructed along both sides of Costilla Avenue from Yosemite Street to Fulton Street.

Bicycle accommodations will be focused on the new Costilla Avenue crossing of I-25. Bicycle advocates input during the Arapahoe Road Corridor Study indicated a desire to utilize roadways parallel to rather than along Arapahoe Road itself. Widened outside travel lanes as described above will ultimately connect with bicycle improvements along Briarwood Avenue resulting in a parallel bike route from Yosemite to Jordan Road.

Expanded fixed route local transit services recommended in conjunction with the Arapahoe Road Corridor Study will utilize the Yosemite to Costilla connection under I-25 to serve locations south of the interchange, avoiding the interchange itself as existing routes do today via the Yosemite Street overpass.

Figure 18. Preliminary Recommended Interchange Alternative

7.3. Preliminary Funding Package

7.3.1. Preliminary Cost of Recommended Improvement

The costs for the Arapahoe/I-25 interchange improvements, based on the limited conceptual design completed to date, are estimated to be:

Construction cost estimate: \$53.7 million

Design cost estimate: \$8.1 million

Utilities cost estimate: \$1.5 million

NEPA Documentation: \$1.0 million (funded through current TIP)

Construction Management: \$11.3 million

Total: \$75.6 million (not including right of way)

All costs are based on 2006 dollars and do not include maintenance or financing costs. An estimate of probable cost for the recommended improvement is included in **Appendix F**.

Right of way costs for the project will be comprised of three components: full parcel takes (including buildings and businesses), partial parcel takes which may diminish the total value of the property, and partial takes which will not diminish the value of the property. Due to the complexity of determining property and building values, right of way costs are difficult to estimate. At this time, the right of way costs are conceptually estimated to be in the range of \$15 to 30 million.

7.3.2. Proposed Funding Plan

The reconstruction of the Arapahoe/I-25 interchange has long been viewed by the surrounding local governments and the Denver Regional Council of Governments (DRCOG) as an integral part of the Regional Transportation Plan (see Section 1.5). The 2030 RTP was recently updated to the 2035 plan, which does not include as many projects as contained in the 2030 RTP due to fiscal constraints. This project was part of the 2030 fiscally constrained plan and is included in the new 2035 fiscally-constrained RTP. Therefore, the proposed interchange improvements are eligible for funding in the competitive process of the Transportation Improvement Program (TIP) for allocation of funds under the metropolitan allocation of the Surface Transportation Program (STP-Metro). The DRCOG 2035 fiscally-constrained plan includes \$83 million for this project, which is a combination of local and federal/state funding.

Due to the inherent regional benefits of the project, Arapahoe County will continue to pursue the TIP process for funding a portion of the cost of this project. This feasibility study and other coordination required to initiate the project are being completed as part of the Arapahoe Road Corridor Study. Arapahoe County has obtained current TIP funding for the environmental clearance coordination and documentation for the Arapahoe/I-25 interchange reconstruction (\$1 million). The County will pursue additional TIP funding for portions of the design, right of way acquisition, construction, and construction management efforts. Earmarked funding will also be pursued after the Arapahoe Road/Parker Road interchange is fully funded.

Maintenance costs and agreements on maintenance issues within the interchange area will be negotiated between CDOT and the surrounding communities with a separate Intergovernmental Agreement.

7.4. Project Support

Support for long-term improvements at the Arapahoe/I-25 Interchange has been received from each of the agencies represented as part of the Arapahoe Road Corridor Study. A letter of support from CDOT Region 6 Transportation Director Randy Jensen (dated October 25, 2007) notes that "...CDOT supports evaluating the needs at I-25/Arapahoe Road Interchange as the next priority project along the Corridor...". The City of Greenwood Village adopted a Resolution on October 15, 2007 in support of the Corridor Study recommendations, including the Arapahoe/I-25 interchange improvements.

Formal endorsements and letters of support are also soon expected from the City of Centennial, the City of Aurora, and Arapahoe County.

Appendix A Existing Traffic Count Data

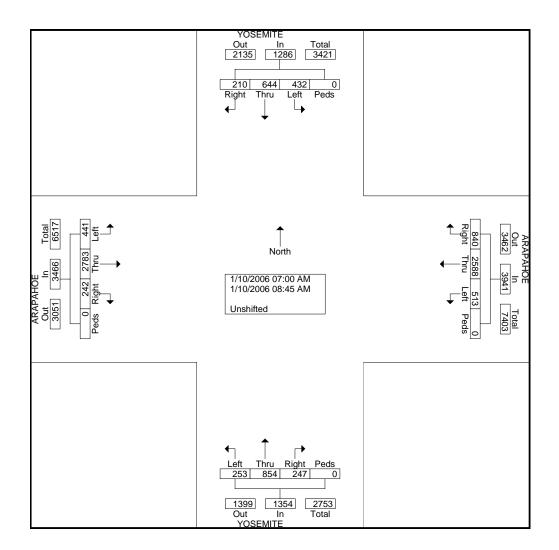
Start	11-Jan-06	
Time	Wed	EB
12:00 AM		142
01:00		112
02:00		71
03:00		42
04:00		325
05:00		657
06:00		1423
07:00		1857
08:00		1645
09:00		1598
10:00		1530
11:00		1737
12:00 PM		2036
01:00		2000
02:00		1802
03:00		1860
04:00		1941
05:00		1920
06:00		1571
07:00		1152
08:00		851
09:00		710
10:00		499
11:00		287
Total		27768
AM Peak		07:00
Vol.		1857
PM Peak		12:00
Vol.		2036
Total		27768
ADT	Not Ca	alculated

Start	11-Jan-06	
Time	Wed	WB
12:00 AM		154
01:00		106
02:00		68
03:00		52
04:00		163
05:00		654
06:00		1365
07:00		1784
08:00		1998
09:00		1654
10:00		1652
11:00		1968
12:00 PM		2037
01:00		1924
02:00		1964
03:00		2132
04:00		2245
05:00		2182
06:00		1674
07:00		1090
08:00		790
09:00		672
10:00		414
11:00		277
Total		29019
AM Peak		08:00
Vol.		1998
PM Peak		16:00
Vol.		2245
Total		29019
	Not (
ADT	INOT	Calculated

Site Code: 1 Station ID: 1 WB TO SB LOOP RAMP

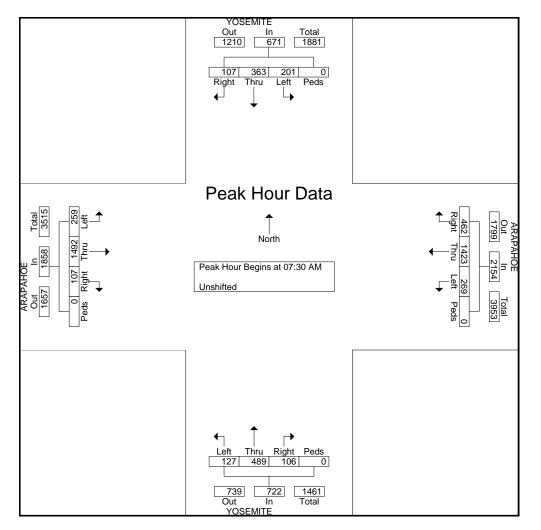
Start	11-Jan-0		
Time	Wed WB		
12:00 AM		50	
01:00		28	
02:00		16	
03:00		28	
04:00		46	
05:00		34	
06:00	2	98	
07:00		14	
08:00		91	
09:00		08	
10:00		74	
11:00		69	
12:00 PM		63	
01:00		12	
02:00		09	
03:00		44	
04:00		92	
05:00		43	
06:00		17	
07:00		18	
08:00		40	
09:00		42	
10:00		80	
11:00		89	
Total	83	05	
AM Peak	08		
Vol.		91	
PM Peak	17		
Vol.		43	
Grand			
Total	83	05	
ADT	Not Calculat	ed	

Site Code: 2 Station ID: 2 EB TO NB LOOP RAMP

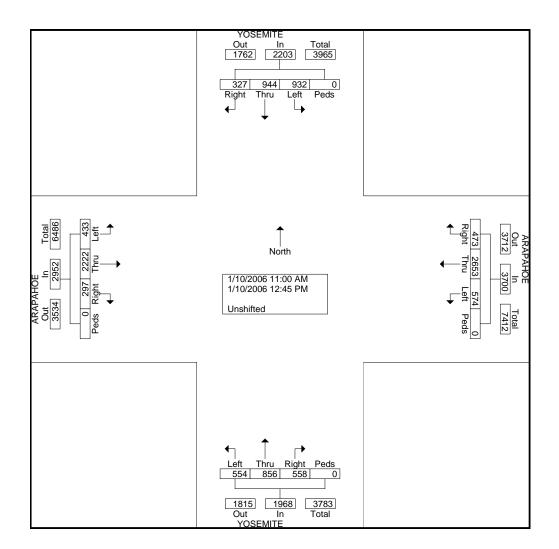

All Traffic Data Services, Inc. 9660 West 44th Ave Wheat Ridge, CO 80033 www.alltrafficdata.net

Start	11-Jan-0	
Time	Wed EB	
12:00 AM	56	
01:00	32	
02:00	24	
03:00	28	
04:00	58	
05:00	206	
06:00	464	
07:00	488	
08:00	513	
09:00	446	
10:00	428	
11:00	586	
12:00 PM	584	
01:00	562	
02:00	600	
03:00	596	
04:00	506	
05:00	524	
06:00	425	
07:00	358	
08:00	276	
09:00	257	
10:00	212	
11:00	94	
Total	8323	
AM Peak	11:00	
Vol.	586	
PM Peak	14:00	
Vol.	600	
Grand	0000	
Total	8323	
ADT	Not Calculated	

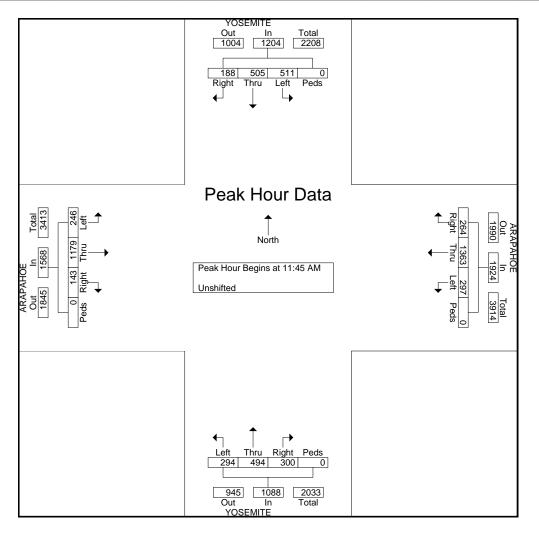
File Name : YOSEMITE&ARAPAHOEAM Site Code : 00000000 Start Date : 1/10/2006 Page No : 1


							Groups	Printed-	Unshifte	ed							
	YC	SEMITE			AR	APAHO	E		YC	SEMITE			AR	APAHO	E		
		South	oound			West	ound			Northb	ound			Eastb	ound		
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	38	41	16	0	41	266	97	0	12	59	16	0	39	325	21	0	971
07:15 AM	60	81	21	0	66	246	93	0	30	109	14	0	54	349	38	0	1161
07:30 AM	40	78	36	0	54	358	98	0	25	132	18	0	62	400	21	0	1322
07:45 AM	65	104	22	0	78	351	138	0	29	144	23	0	83	350	28	0	1415
Total	203	304	95	0	239	1221	426	0	96	444	71	0	238	1424	108	0	4869
08:00 AM	46	89	21	0	72	399	128	0	40	128	28	0	47	388	28	0	1414
08:15 AM	50	92	28	0	65	315	98	0	33	85	37	0	67	354	30	0	1254
08:30 AM	63	75	19	0	66	337	101	0	43	80	31	0	50	323	25	0	1213
08:45 AM	70	84	47	0	71	316	87	0	41	117	80	0	39	294	51	0	1297
Total	229	340	115	0	274	1367	414	0	157	410	176	0	203	1359	134	0	5178
	100		0.1.0		540	0500	0.40		050	054	0.17			0700	0.40		400.47
Grand Total	432	644	210	0	513	2588	840	0	253	854	247	0	441	2783	242	0	10047
Apprch %	33.6	50.1	16.3	0	13	65.7	21.3	0	18.7	63.1	18.2	0	12.7	80.3	(0	
Total %	4.3	6.4	2.1	0	5.1	25.8	8.4	0	2.5	8.5	2.5	0	4.4	27.7	2.4	0	

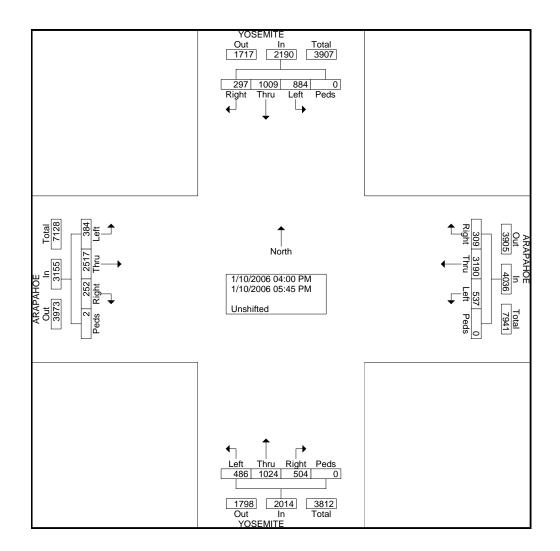
File Name : YOSEMITE&ARAPAHOEAM Site Code : 00000000 Start Date : 1/10/2006 Page No : 2


		YOSE	MITE				ARAP	AHOE				YOSE	MITE				ARAPA	AHOE			
		So	outhbo	und			N	/estbou	und			N	orthbo	und			E	astbou	Ind		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Ar	nalysis	From	07:00 /	AM to ()8:45 AN	1 - Pea	k 1 of	1													
Peak Hour fo	r Entire	e Inters	ection	Begins	s at 07:3	0 AM															
07:30 AM	40	78	36	0	154	54	358	98	0	510	25	132	18	0	175	62	400	21	0	483	1322
07:45 AM	65	104	22	0	191	78	351	138	0	567	29	144	23	0	196	83	350	28	0	461	1415
08:00 AM	46	89	21	0	156	72	399	128	0	599	40	128	28	0	196	47	388	28	0	463	1414
08:15 AM	50	92	28	0	170	65	315	98	0	478	33	85	37	0	155	67	354	30	0	451	1254
Total Volume	201	363	107	0	671	269	1423	462	0	2154	127	489	106	0	722	259	1492	107	0	1858	5405
% App. Total	30	54.1	15.9	0		12.5	66.1	21.4	0		17.6	67.7	14.7	0		13.9	80.3	5.8	0		
PHF	.773	.873	.743	.000	.878	.862	.892	.837	.000	.899	.794	.849	.716	.000	.921	.780	.933	.892	.000	.962	.955

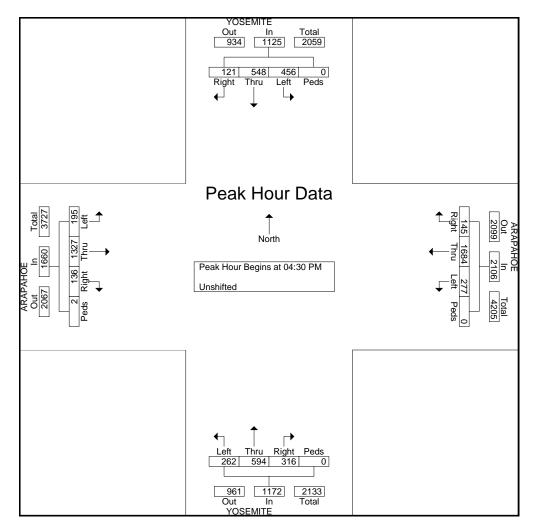
File Name : YOSEMITE&ARAPAHOENOON Site Code : 00000000 Start Date : 1/10/2006 Page No : 1


							Groups	Printed-	Unshifte	ed							
	YC	SEMITE	2		AR	APAHO	E		YC	SEMITE			AR	APAHO	E		
		South	bound			West	bound			Northb	bound			Eastb	ound		
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
11:00 AM	72	70	32	0	65	274	34	0	47	67	37	0	32	242	30	0	1002
11:15 AM	111	114	32	0	64	356	52	0	79	86	75	0	39	265	37	0	1310
11:30 AM	127	130	49	0	70	358	56	0	76	87	75	0	57	277	48	0	1410
11:45 AM	123	142	44	0	86	354	71	0	70	116	85	0	57	275	37	0	1460
Total	433	456	157	0	285	1342	213	0	272	356	272	0	185	1059	152	0	5182
12:00 PM	134	126	46	0	70	334	76	0	72	106	92	0	56	305	36	0	1453
12:15 PM	130	120	47	0	76	346	69	0	68	136	70	0	73	294	28	0	1457
12:30 PM	124	117	51	0	65	329	48	0	84	136	53	0	60	305	42	0	1414
12:45 PM	111	125	26	0	78	302	67	0	58	122	71	0	59	259	39	0	1317
Total	499	488	170	0	289	1311	260	0	282	500	286	0	248	1163	145	0	5641
o			~~-												~~-		
Grand Total	932	944	327	0	574	2653	473	0	554	856	558	0	433	2222	297	0	10823
Apprch %	42.3	42.9	14.8	0	15.5	71.7	12.8	0	28.2	43.5	28.4	0	14.7	75.3	10.1	0	
Total %	8.6	8.7	3	0	5.3	24.5	4.4	0	5.1	7.9	5.2	0	4	20.5	2.7	0	

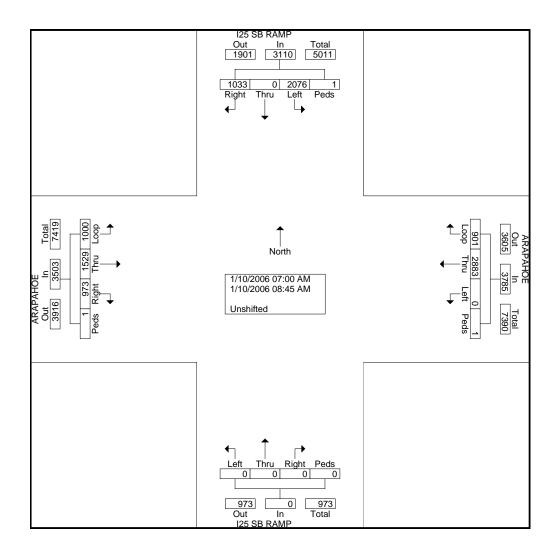
File Name : YOSEMITE&ARAPAHOENOON Site Code : 00000000 Start Date : 1/10/2006 Page No : 2


		YOSE	MITE				ARAPA	HOE				YOSE	MITE				ARAP	AHOE			
		S	outhbo	und			N	/estbou	und			N	orthbo	und			E	astbou	Ind		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	11:00 /	AM to 1	12:45 PN	1 - Pea	k 1 of	1													
Peak Hour fo	r Entire	e Inters	section	Begins	s at 11:4	5 AM															
11:45 AM	123	142	44	0	309	86	354	71	0	511	70	116	85	0	271	57	275	37	0	369	1460
12:00 PM	134	126	46	0	306	70	334	76	0	480	72	106	92	0	270	56	305	36	0	397	1453
12:15 PM	130	120	47	0	297	76	346	69	0	491	68	136	70	0	274	73	294	28	0	395	1457
12:30 PM	124	117	51	0	292	65	329	48	0	442	84	136	53	0	273	60	305	42	0	407	1414
Total Volume	511	505	188	0	1204	297	1363	264	0	1924	294	494	300	0	1088	246	1179	143	0	1568	5784
% App. Total	42.4	41.9	15.6	0		15.4	70.8	13.7	0		27	45.4	27.6	0		15.7	75.2	9.1	0		
PHF	.953	.889	.922	.000	.974	.863	.963	.868	.000	.941	.875	.908	.815	.000	.993	.842	.966	.851	.000	.963	.990

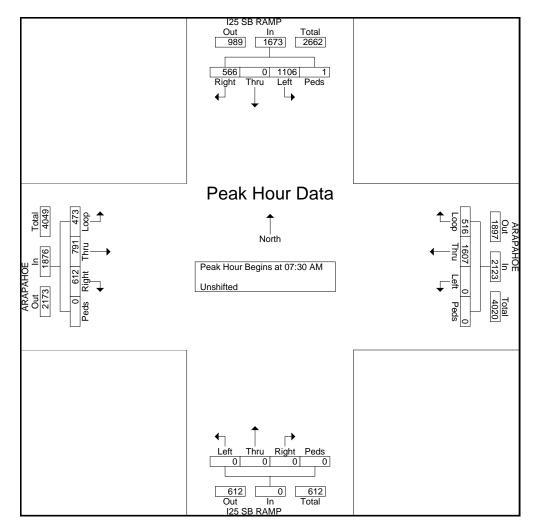
File Name : YOSEMITE&ARAPAHOEPM Site Code : 00000000 Start Date : 1/10/2006 Page No : 1


							Groups	Printed-	Unshifte	ed							
	YC	DSEMITE			AR	APAHO	E		YC	DSEMITE			AR	APAHO	E		
		South	bound			West	ound			Northb	bound			Eastb	ound		
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
04:00 PM	114	70	38	0	55	388	48	0	66	96	56	0	46	279	29	0	1285
04:15 PM	77	121	46	0	80	398	38	0	40	144	55	0	61	299	31	0	1390
04:30 PM	116	114	34	0	67	418	20	0	63	139	78	0	41	280	44	0	1414
04:45 PM	108	134	39	0	92	439	42	0	66	131	75	0	46	336	29	0	1537
Total	415	439	157	0	294	1643	148	0	235	510	264	0	194	1194	133	0	5626
05:00 PM	445	100	20		50	202	20		05	450	00		40	400	22	0	4555
	115	139	22	0	52	393	39	0	65	158	88	0	49	402	33	0	1555
05:15 PM	117	161	26	0	66	434	44	0	68	166	75	0	59	309	30	2	1557
05:30 PM	126	140	39	0	60	382	41	0	68	100	41	0	36	331	34	0	1398
05:45 PM	111	130	53	0	65	338	37	0	50	90	36	0	46	281	22	0	1259
Total	469	570	140	0	243	1547	161	0	251	514	240	0	190	1323	119	2	5769
Grand Total	884	1009	297	0	537	3190	309	0	486	1024	504	0	384	2517	252	2	11395
Apprch %	40.4	46.1	13.6	Ō	13.3	79	7.7	0	24.1	50.8	25	Ō	12.2	79.8	8	0.1	
Total %	7.8	8.9	2.6	0	4.7	28	2.7	0	4.3	9	4.4	0	3.4	22.1	2.2	0	

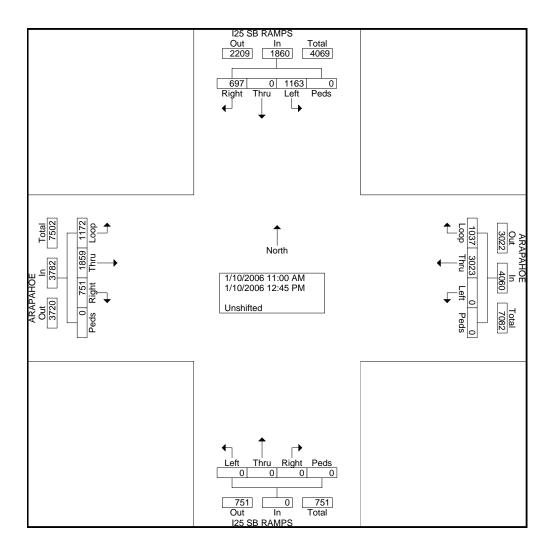
File Name : YOSEMITE&ARAPAHOEPM Site Code : 00000000 Start Date : 1/10/2006 Page No : 2


		YOSE	MITE				ARAPA	HOE				YOSE	MITE				ARAPA	AHOE			
		So	outhbo	und			N	/estbou	und			N	orthbo	und			E	astbou	ind		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Ar	nalysis	From	04:00 l	PM to ()5:45 PN	1 - Pea	ık 1 of	1													
Peak Hour fo	r Entire	e Inters	section	Begins	s at 04:3	0 PM															
04:30 PM	116	114	34	0	264	67	418	20	0	505	63	139	78	0	280	41	280	44	0	365	1414
04:45 PM	108	134	39	0	281	92	439	42	0	573	66	131	75	0	272	46	336	29	0	411	1537
05:00 PM	115	139	22	0	276	52	393	39	0	484	65	158	88	0	311	49	402	33	0	484	1555
05:15 PM	117	161	26	0	304	66	434	44	0	544	68	166	75	0	309	59	309	30	2	400	1557
Total Volume	456	548	121	0	1125	277	1684	145	0	2106	262	594	316	0	1172	195	1327	136	2	1660	6063
% App. Total	40.5	48.7	10.8	0		13.2	80	6.9	0		22.4	50.7	27	0		11.7	79.9	8.2	0.1		
PHF	.974	.851	.776	.000	.925	.753	.959	.824	.000	.919	.963	.895	.898	.000	.942	.826	.825	.773	.250	.857	.974

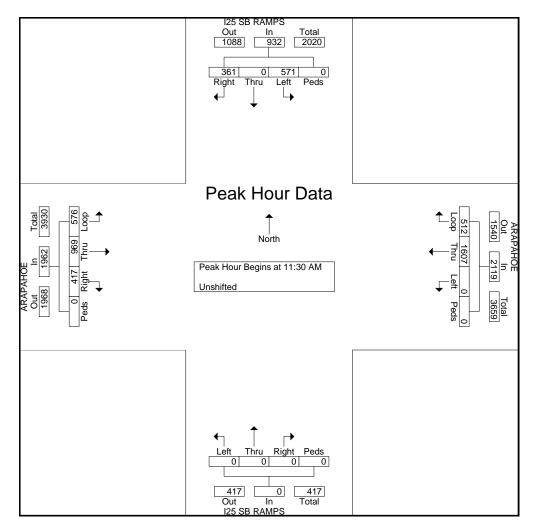
File Name : SBRAMP&ARAPAHOEAM Site Code : 00000000 Start Date : 1/10/2006 Page No : 1


							Groups	Printed-	Unshifte	ed							
	125	SB RAI	MP		AR	APAHO	E		125	SB RAI	MP		AR	APAHO	E		
		South	bound			West	bound			Northb	bound			Eastb	ound		
Start Time	Left	Thru	Right	Peds	Left	Thru	Loop	Peds	Left	Thru	Right	Peds	Loop	Thru	Right	Peds	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	254	0	94	0	0	299	70	0	0	0	0	0	158	153	100	0	1128
07:15 AM	265	0	80	0	0	312	88	1	0	0	0	0	122	188	148	1	1205
07:30 AM	284	0	95	0	0	400	128	0	0	0	0	0	106	192	189	0	1394
07:45 AM	273	0	142	0	0	394	124	0	0	0	0	0	99	187	215	0	1434
Total	1076	0	411	0	0	1405	410	1	0	0	0	0	485	720	652	1	5161
1												1					
08:00 AM	296	0	174	0	0	401	142	0	0	0	0	0	128	210	124	0	1475
08:15 AM	253	0	155	1	0	412	122	0	0	0	0	0	140	202	84	0	1369
08:30 AM	251	0	131	0	0	364	121	0	0	0	0	0	126	197	63	0	1253
08:45 AM	200	0	162	0	0	301	106	0	0	0	0	0	121	200	50	0	1140
Total	1000	0	622	1	0	1478	491	0	0	0	0	0	515	809	321	0	5237
0 17 1	0070		4000				004			•			4000	4500	070		40000
Grand Total	2076	0	1033	1	0	2883	901	1	0	0	0	0	1000	1529	973	1	10398
Apprch %	66.8	0	33.2	0	0	76.2	23.8	0	0	0	0	0	28.5	43.6	27.8	0	
Total %	20	0	9.9	0	0	27.7	8.7	0	0	0	0	0	9.6	14.7	9.4	0	

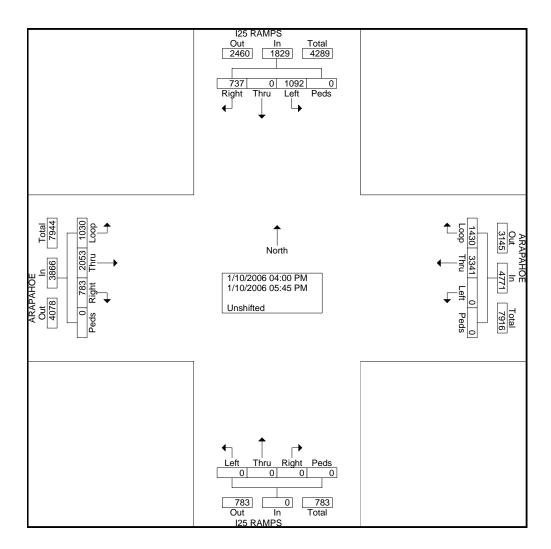
File Name : SBRAMP&ARAPAHOEAM Site Code : 00000000 Start Date : 1/10/2006 Page No : 2


		125 SB	RAMF	2			ARAP	AHOE				125 SB	RAM)			ARAP	AHOE]
		So	outhbo	und			N	/estbou	und			N	orthbo	und			E	astbou	Ind		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Loop	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Loop	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Ar	nalysis	From	07:00 /	AM to ()8:45 AN	1 - Pea	k 1 of	1													
Peak Hour fo	r Entire	e Inters	ection	Begins	s at 07:3	0 AM															
07:30 AM	284	0	95	0	379	0	400	128	0	528	0	0	0	0	0	106	192	189	0	487	1394
07:45 AM	273	0	142	0	415	0	394	124	0	518	0	0	0	0	0	99	187	215	0	501	1434
08:00 AM	296	0	174	0	470	0	401	142	0	543	0	0	0	0	0	128	210	124	0	462	1475
08:15 AM	253	0	155	1	409	0	412	122	0	534	0	0	0	0	0	140	202	84	0	426	1369
Total Volume	1106	0	566	1	1673	0	1607	516	0	2123	0	0	0	0	0	473	791	612	0	1876	5672
% App. Total	66.1	0	33.8	0.1		0	75.7	24.3	0		0	0	0	0		25.2	42.2	32.6	0		
PHF	.934	.000	.813	.250	.890	.000	.975	.908	.000	.977	.000	.000	.000	.000	.000	.845	.942	.712	.000	.936	.961

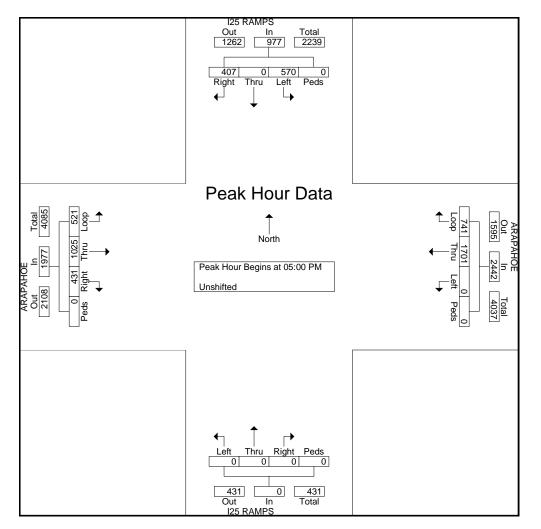
File Name : SBRAMP&ARAPAHOENOON Site Code : 00000000 Start Date : 1/10/2006 Page No : 1


							Groups	Printed-	Unshifte	ed							
	125	SB RAM			AR	APAHO	E		125	SB RAN	/IPS		AR	APAHO	E		
		South	oound			West	bound			North	bound			Eastb	ound		
Start Time	Left	Thru	Right	Peds	Left	Thru	Loop	Peds	Left	Thru	Right	Peds	Loop	Thru	Right	Peds	Int. Total
11:00 AM	154	0	75	0	0	340	90	0	0	0	0	0	156	222	54	0	1091
11:15 AM	155	0	77	0	0	364	126	0	0	0	0	0	140	228	70	0	1160
11:30 AM	164	0	95	0	0	398	136	0	0	0	0	0	156	261	55	0	1265
11:45 AM	139	0	85	0	0	380	117	0	0	0	0	0	134	237	109	0	1201
Total	612	0	332	0	0	1482	469	0	0	0	0	0	586	948	288	0	4717
12:00 PM	124	0	91	0	0	381	127	0	0	0	0	0	126	253	129	0	1231
12:15 PM	144	0	90	0	0	448	132	0	0	0	0	0	160	218	124	0	1316
12:30 PM	135	0	100	0	0	380	152	0	0	0	0	0	146	225	117	0	1255
12:45 PM	148	0	84	0	0	332	157	0	0	0	0	0	154	215	93	0	1183
Total	551	0	365	0	0	1541	568	0	0	0	0	0	586	911	463	0	4985
- ·- · · ·		-		- 1				- 1	_	-	-	- 1				_	
Grand Total	1163	0	697	0	0	3023	1037	0	0	0	0	0	1172	1859	751	0	9702
Apprch %	62.5	0	37.5	0	0	74.5	25.5	0	0	0	0	0	31	49.2	19.9	0	
Total %	12	0	7.2	0	0	31.2	10.7	0	0	0	0	0	12.1	19.2	7.7	0	

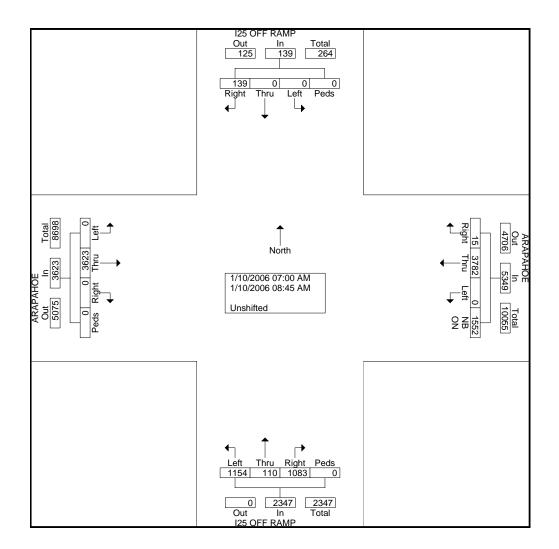
File Name : SBRAMP&ARAPAHOENOON Site Code : 00000000 Start Date : 1/10/2006 Page No : 2


	I	25 SB	RAMP	'S			ARAP	AHOE				25 SB	RAMP	S			ARAP	AHOE			
		So	outhbo	und			N	/estbou	und			N	orthbo	und			E	astbou	Ind		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Loop	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Loop	Thru	Right	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	11:00 /	AM to 1	12:45 PN	/ - Pea	k 1 of	1													
Peak Hour fo	r Entire	e Inters	section	Begins	s at 11:3	MA 0															
11:30 AM	164	0	95	0	259	0	398	136	0	534	0	0	0	0	0	156	261	55	0	472	1265
11:45 AM	139	0	85	0	224	0	380	117	0	497	0	0	0	0	0	134	237	109	0	480	1201
12:00 PM	124	0	91	0	215	0	381	127	0	508	0	0	0	0	0	126	253	129	0	508	1231
12:15 PM	144	0	90	0	234	0	448	132	0	580	0	0	0	0	0	160	218	124	0	502	1316
Total Volume	571	0	361	0	932	0	1607	512	0	2119	0	0	0	0	0	576	969	417	0	1962	5013
% App. Total	61.3	0	38.7	0		0	75.8	24.2	0		0	0	0	0		29.4	49.4	21.3	0		
PHF	.870	.000	.950	.000	.900	.000	.897	.941	.000	.913	.000	.000	.000	.000	.000	.900	.928	.808.	.000	.966	.952

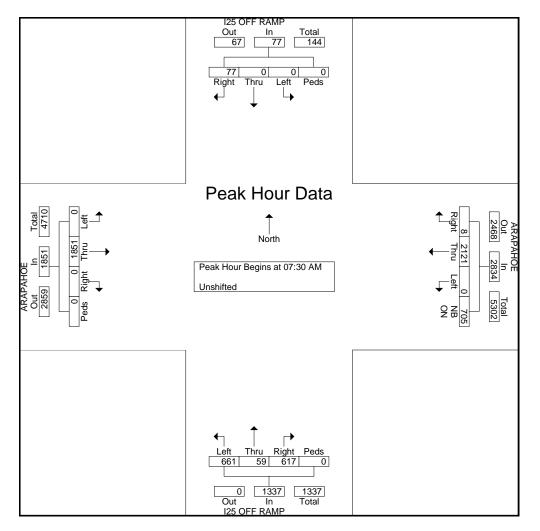
File Name : SBRAMP&ARAPAHOEPM Site Code : 00000000 Start Date : 1/10/2006 Page No : 1


							Groups	Printed-	Unshifte	ed							
	125	5 RAMP	S		AR	APAHO	E		125	5 RAMP	S		AR	APAHO	E		1
		South	bound			Westb	ound			North	bound			Eastb	ound		
Start Time	Left	Thru	Right	Peds	Left	Thru	Loop	Peds	Left	Thru	Right	Peds	Loop	Thru	Right	Peds	Int. Total
04:00 PM	138	0	76	0	0	395	205	0	0	0	0	0	139	268	56	0	1277
04:15 PM	125	0	89	0	0	409	159	0	0	0	0	0	114	272	102	0	1270
04:30 PM	128	0	74	0	0	440	164	0	0	0	0	0	132	249	98	0	1285
04:45 PM	131	0	91	0	0	396	161	0	0	0	0	0	124	239	96	0	1238
Total	522	0	330	0	0	1640	689	0	0	0	0	0	509	1028	352	0	5070
05:00 PM	166	0	103	0	0	366	192	0	0	0	0	0	171	295	81	0	1374
05:15 PM	159	0	115	0	0	466	198	0	0	0	0	0	143	264	101	0	1446
05:30 PM	125	0	98	0	0	400	186	0	0	0	0	0	125	207	128	0	1269
05:45 PM	120	0	91	0	0	469	165	0	0	0	0	0	82	259	121	0	1307
Total	570	0	407	0	0	1701	741	0	0	0	0	0	521	1025	431	0	5396
		-		- 1	_			- 1	_	-		- 1				_	
Grand Total	1092	0	737	0	0	3341	1430	0	0	0	0	0	1030	2053	783	0	10466
Apprch %	59.7	0	40.3	0	0	70	30	0	0	0	0	0	26.6	53.1	20.3	0	1
Total %	10.4	0	7	0	0	31.9	13.7	0	0	0	0	0	9.8	19.6	7.5	0	1

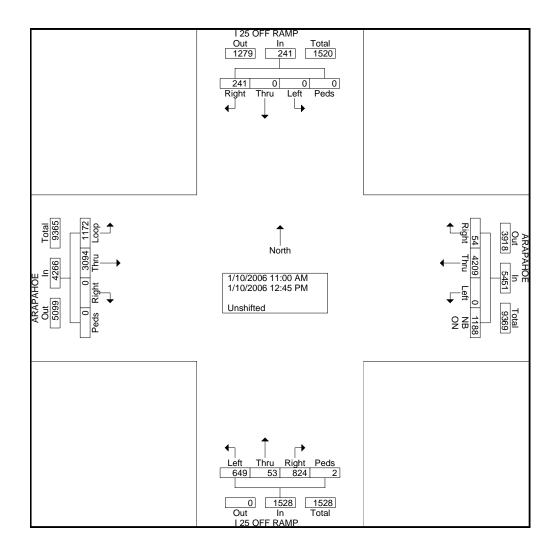
File Name : SBRAMP&ARAPAHOEPM Site Code : 00000000 Start Date : 1/10/2006 Page No : 2


		125 R/	MPS				ARAP	AHOE				125 R/	AMPS				ARAP	AHOE			
		So	outhbo	und			N	/estbou	und			N	orthbo	und			E	astbou	Ind		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Loop	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Loop	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Ar	nalysis	From	04:00 l	PM to ()5:45 PN	1 - Pea	ık 1 of	1													
Peak Hour fo	r Entire	e Inters	ection	Begins	s at 05:0	0 PM															
05:00 PM	166	0	103	0	269	0	366	192	0	558	0	0	0	0	0	171	295	81	0	547	1374
05:15 PM	159	0	115	0	274	0	466	198	0	664	0	0	0	0	0	143	264	101	0	508	1446
05:30 PM	125	0	98	0	223	0	400	186	0	586	0	0	0	0	0	125	207	128	0	460	1269
05:45 PM	120	0	91	0	211	0	469	165	0	634	0	0	0	0	0	82	259	121	0	462	1307
Total Volume	570	0	407	0	977	0	1701	741	0	2442	0	0	0	0	0	521	1025	431	0	1977	5396
% App. Total	58.3	0	41.7	0		0	69.7	30.3	0		0	0	0	0		26.4	51.8	21.8	0		
PHF	.858	.000	.885	.000	.891	.000	.907	.936	.000	.919	.000	.000	.000	.000	.000	.762	.869	.842	.000	.904	.933

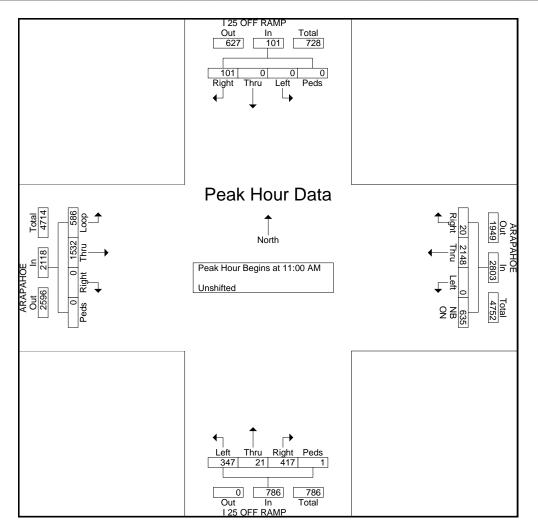
File Name : NBRAMP&ARAPAHOEAM Site Code : 00000000 Start Date : 1/10/2006 Page No : 1


							Groups	Printed-	Unshifte	ed							
	125	OFF RA	AMP		AR	APAHO	E		125	OFF RA	MP		AR	APAHO	E		
		South	bound			Westb	ound			Northb	bound			Eastb	ound		
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	NB ON	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	0	0	8	0	0	369	2	207	114	8	104	0	0	441	0	0	1253
07:15 AM	0	0	9	0	0	400	1	188	95	7	119	0	0	458	0	0	1277
07:30 AM	0	0	23	0	0	526	1	148	139	15	171	0	0	478	0	0	1501
07:45 AM	0	0	22	0	0	518	1	249	192	25	203	0	0	483	0	0	1693
Total	0	0	62	0	0	1813	5	792	540	55	597	0	0	1860	0	0	5724
1																	
08:00 AM	0	0	12	0	0	543	5	138	171	8	112	0	0	451	0	0	1440
08:15 AM	0	0	20	0	0	534	1	170	159	11	131	0	0	439	0	0	1465
08:30 AM	0	0	14	0	0	485	3	161	149	19	125	0	0	441	0	0	1397
08:45 AM	0	0	31	0	0	407	1	291	135	17	118	0	0	432	0	0	1432
Total	0	0	77	0	0	1969	10	760	614	55	486	0	0	1763	0	0	5734
Grand Total	0	0	139	0	0	3782	15	1552	1154	110	1083	0	0	3623	0	0	11458
	-			-								0	0				11450
Apprch %	0	0	100	0	0	70.7	0.3	29	49.2	4.7	46.1	0	0	100	0	0	
Total %	0	0	1.2	0	0	33	0.1	13.5	10.1	1	9.5	0	0	31.6	0	0	

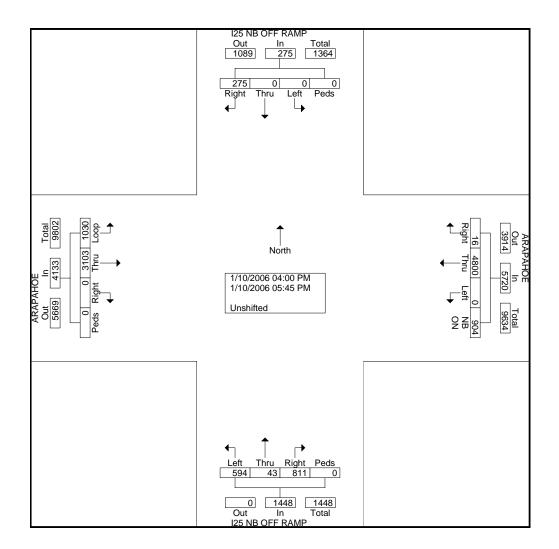
File Name : NBRAMP&ARAPAHOEAM Site Code : 00000000 Start Date : 1/10/2006 Page No : 2


	I	25 OF	F RAN	IP			ARAP	AHOE				25 OF	F RAM	P			ARAP	AHOE			
		So	outhbo	und			V	/estbou	und			N	orthbo	und			E	astbou	Ind		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	NB ON	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Ar	nalysis	From	07:00	AM to (08:45 AN	/I - Pea	ak 1 of	1													
Peak Hour fo	r Entire	e Inters	section	Begins	s at 07:3	MA 0															
07:30 AM	0	0	23	0	23	0	526	1	148	675	139	15	171	0	325	0	478	0	0	478	1501
07:45 AM	0	0	22	0	22	0	518	1	249	768	192	25	203	0	420	0	483	0	0	483	1693
08:00 AM	0	0	12	0	12	0	543	5	138	686	171	8	112	0	291	0	451	0	0	451	1440
08:15 AM	0	0	20	0	20	0	534	1	170	705	159	11	131	0	301	0	439	0	0	439	1465
Total Volume	0	0	77	0	77	0	2121	8	705	2834	661	59	617	0	1337	0	1851	0	0	1851	6099
% App. Total	0	0	100	0		0	74.8	0.3	24.9		49.4	4.4	46.1	0		0	100	0	0		
PHF	.000	.000	.837	.000	.837	.000	.977	.400	.708	.923	.861	.590	.760	.000	.796	.000	.958	.000	.000	.958	.901

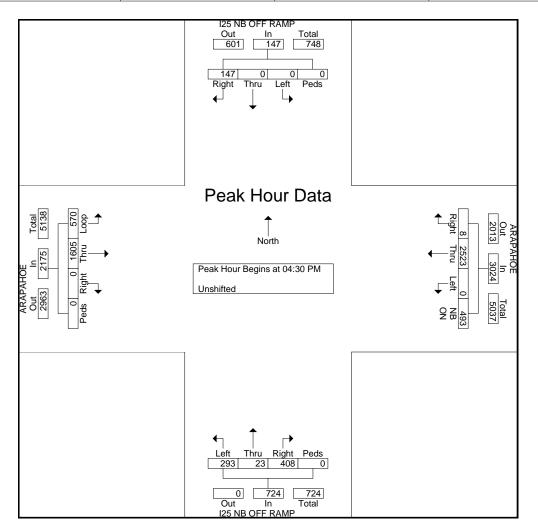
File Name : NBRAMP&ARAPAHOENOON Site Code : 0000000 Start Date : 1/10/2006 Page No : 1


							Groups	Printed-	Unshifte	ed							
	I 25	OFF R	AMP		AR	APAHO	E		125	5 OFF R	AMP		AR	APAHO	E		
		South	bound			West	bound			Northb	bound			Eastb	ound		
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	NB ON	Left	Thru	Right	Peds	Loop	Thru	Right	Peds	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
11:00 AM	0	0	23	0	0	585	6	213	85	8	86	0	156	353	0	0	1515
11:15 AM	0	0	23	0	0	510	5	141	81	3	81	0	140	381	0	0	1365
11:30 AM	0	0	27	0	0	521	5	122	74	6	119	1	156	416	0	0	1447
11:45 AM	0	0	28	0	0	532	4	159	107	4	131	0	134	382	0	0	1481
Total	0	0	101	0	0	2148	20	635	347	21	417	1	586	1532	0	0	5808
12:00 PM	0	0	38	0	0	513	10	141	98	7	80	1	126	396	0	0	1410
12:15 PM	0	0	18	0	0	418	13	97	67	11	95	0	160	350	0	0	1229
12:30 PM	0	0	34	0	0	548	4	115	65	5	99	0	146	393	0	0	1409
12:45 PM	0	0	50	0	0	582	7	200	72	9	133	0	154	423	0	0	1630
Total	0	0	140	0	0	2061	34	553	302	32	407	1	586	1562	0	0	5678
Grand Total	0	0	241	0	0	4209	54	1188	649	53	824	2	1172	3094	0	0	11486
Apprch %	Ō	Õ	100	Ō	Ō	77.2	1	21.8	42.5	3.5	53.9	0.1	27.5	72.5	Ō	Ō	
Total %	0	0	2.1	0	0	36.6	0.5	10.3	5.7	0.5	7.2	0	10.2	26.9	0	0	

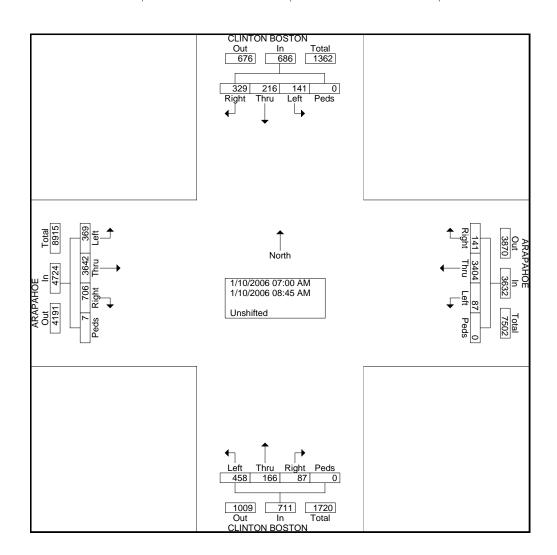
File Name : NBRAMP&ARAPAHOENOON Site Code : 0000000 Start Date : 1/10/2006 Page No : 2


	I	25 OF	FRAM	ИР			ARAP	HOE				25 OF	FRAM	/IP			ARAPA	HOE]
		So	outhbo	und			N	/estbou	und			N	orthbo	und			E	astbou	Ind		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	NB ON	App. Total	Left	Thru	Right	Peds	App. Total	Loop	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Ar	nalysis	From	11:00	AM to 1	12:45 PN	/ - Pea	k 1 of	1													
Peak Hour fo	r Entire	Inters	ection	Begins	s at 11:0	0 AM															
11:00 AM	0	0	23	0	23	0	585	6	213	804	85	8	86	0	179	156	353	0	0	509	1515
11:15 AM	0	0	23	0	23	0	510	5	141	656	81	3	81	0	165	140	381	0	0	521	1365
11:30 AM	0	0	27	0	27	0	521	5	122	648	74	6	119	1	200	156	416	0	0	572	1447
11:45 AM	0	0	28	0	28	0	532	4	159	695	107	4	131	0	242	134	382	0	0	516	1481
Total Volume	0	0	101	0	101	0	2148	20	635	2803	347	21	417	1	786	586	1532	0	0	2118	5808
% App. Total	0	0	100	0		0	76.6	0.7	22.7		44.1	2.7	53.1	0.1		27.7	72.3	0	0		
PHF	.000	.000	.902	.000	.902	.000	.918	.833	.745	.872	.811	.656	.796	.250	.812	.939	.921	.000	.000	.926	.958

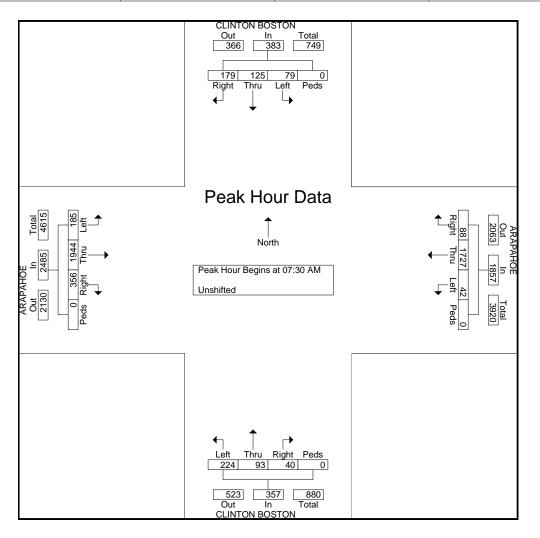
File Name : NBRAMP&ARAPAHOEPM Site Code : 00000000 Start Date : 1/10/2006 Page No : 1


							Groups	Printed-	Unshift	ed							
	125 1	NB OFF	RAMP		AR	APAHO	E		125	NB OFF	RAMP		AR	APAHO	E		
		South	bound			West	pound			Northb	ound			Eastb	ound		
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	NB ON	Left	Thru	Right	Peds	Loop	Thru	Right	Peds	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
04:00 PM	0	0	40	0	0	612	4	118	66	4	92	0	139	386	0	0	1461
04:15 PM	0	0	21	0	0	580	1	116	83	9	85	0	114	401	0	0	1410
04:30 PM	0	0	31	0	0	624	2	90	68	5	114	0	132	376	0	0	1442
04:45 PM	0	0	33	0	0	660	5	157	78	7	103	0	124	438	0	0	1605
Total	0	0	125	0	0	2476	12	481	295	25	394	0	509	1601	0	0	5918
05:00 PM	0	0	39	0	0	570	1	114	63	4	91	0	171	418	0	0	1471
05:15 PM	0	0	44	0	0	669	0	132	84	7	100	0	143	373	0	0	1552
05:30 PM	0	0	33	0	0	543	0	88	78	4	114	0	125	398	0	0	1383
05:45 PM	0	0	34	0	0	542	3	89	74	3	112	0	82	313	0	0	1252
Total	0	0	150	0	0	2324	4	423	299	18	417	0	521	1502	0	0	5658
Grand Total	0	0	275	0	0	4800	16	904	594	43	811	0	1030	3103	0	0	11576
Apprch %	0	0	100	0	0	83.9	0.3	15.8	41	3	56	0	24.9	75.1	0	0	
Total %	0	0	2.4	0	0	41.5	0.1	7.8	5.1	0.4	7	0	8.9	26.8	0	0	

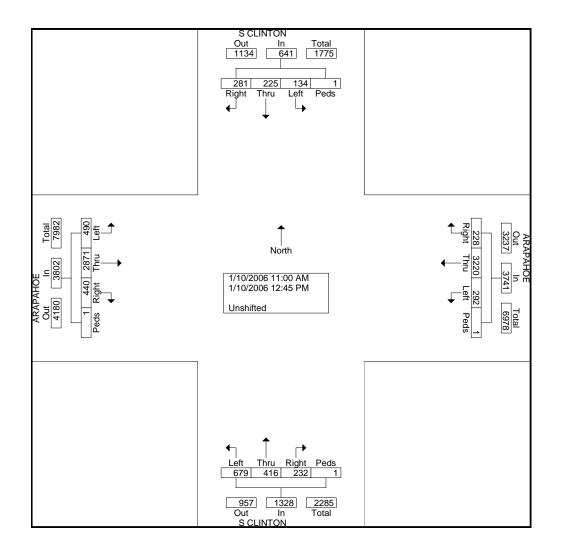
File Name : NBRAMP&ARAPAHOEPM Site Code : 00000000 Start Date : 1/10/2006 Page No : 2


	12	25 NB (OFF R	AMP			ARAPA	HOE			12	5 NB (OFF R	AMP			ARAP	AHOE			
		Sc	outhbo	und			N	/estbou	und			N	orthbo	und			E	astbou	Ind		1
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	NB ON	App. Total	Left	Thru	Right	Peds	App. Total	Loop	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Ar	nalysis	From (04:00 l	PM to ()5:45 PN	1 - Pea	k 1 of	1													
Peak Hour fo	r Entire	e Inters	ection	Begins	s at 04:3	0 PM															
04:30 PM	0	0	31	0	31	0	624	2	90	716	68	5	114	0	187	132	376	0	0	508	1442
04:45 PM	0	0	33	0	33	0	660	5	157	822	78	7	103	0	188	124	438	0	0	562	1605
05:00 PM	0	0	39	0	39	0	570	1	114	685	63	4	91	0	158	171	418	0	0	589	1471
05:15 PM	0	0	44	0	44	0	669	0	132	801	84	7	100	0	191	143	373	0	0	516	1552
Total Volume	0	0	147	0	147	0	2523	8	493	3024	293	23	408	0	724	570	1605	0	0	2175	6070
% App. Total	0	0	100	0		0	83.4	0.3	16.3		40.5	3.2	56.4	0		26.2	73.8	0	0		
PHF	.000	.000	.835	.000	.835	.000	.943	.400	.785	.920	.872	.821	.895	.000	.948	.833	.916	.000	.000	.923	.945

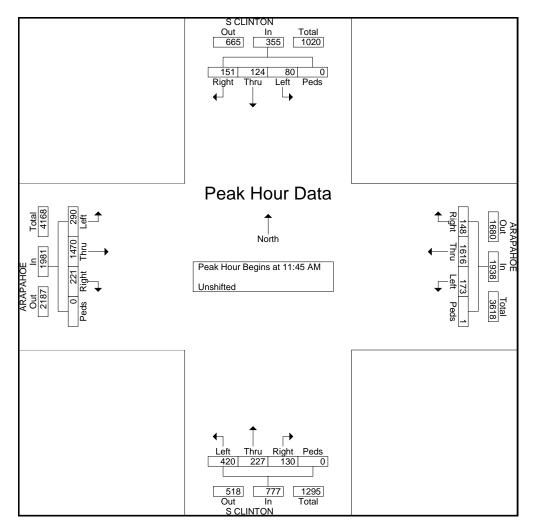
File Name : CLINTON&ARAPAHOEAM Site Code : 00000000 Start Date : 1/10/2006 Page No : 1


						G	roups	Printed	- Unshi	fted							
	CLIN	TON BO	OSTON		AR	АРАНО	E		CLIN	TON BO	OSTON		AR	АРАНО	E		
		South	bound			Westk	oound			North	bound			Eastb	ound		
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Total
07:00 AM	7	16	34	0	7	461	10	0	40	7	9	0	24	439	69	0	1123
07:15 AM	14	24	48	0	7	460	17	0	47	20	14	0	21	415	106	7	1200
07:30 AM	18	34	40	0	10	406	27	0	64	24	9	0	41	483	81	0	1237
07:45 AM	20	33	45	0	12	446	20	0	70	24	11	0	53	544	96	0	1374
Total	59	107	167	0	36	1773	74	0	221	75	43	0	139	1881	352	7	4934
08:00 AM	16	26	50	0	11	450	18	0	39	18	10	0	44	479	76	0	1237
08:15 AM	25	32	44	0	9	425	23	0	51	27	10	0	47	438	103	0	1234
08:30 AM	18	25	33	0	16	366	11	0	70	27	11	0	82	458	72	0	1189
08:45 AM	23	26	35	0	15	390	15	0	77	19	13	0	57	386	103	0	1159
Total	82	109	162	0	51	1631	67	0	237	91	44	0	230	1761	354	0	4819
- 1																	
Grand Total	141	216	329	0	87	3404	141	0	458	166	87	0	369	3642	706	7	9753
Apprch %	20.6	31.5	48	0	2.4	93.7	3.9	0	64.4	23.3	12.2	0	7.8	77.1	14.9	0.1	
Total %	1.4	2.2	3.4	0	0.9	34.9	1.4	0	4.7	1.7	0.9	0	3.8	37.3	7.2	0.1	

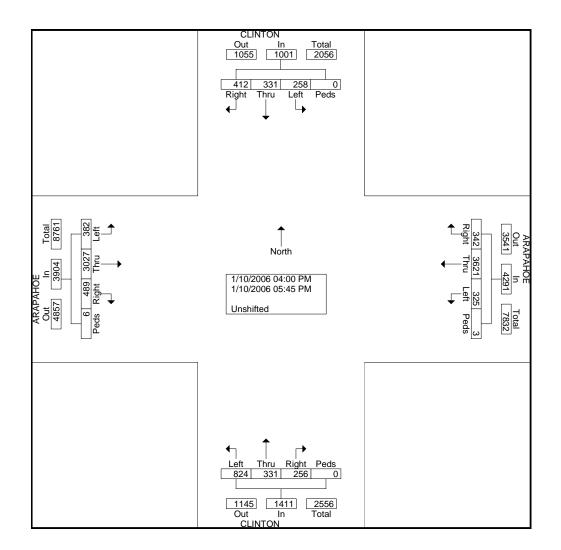
File Name : CLINTON&ARAPAHOEAM Site Code : 00000000 Start Date : 1/10/2006 Page No : 2


	CL	INTON	BOS	TON		Α	RAPA	HOE			CL	INTON	N BOS	TON		Α	RAPA	HOE]
		So	uthbo	und			W	estbo	und			No	rthbo	und			Ea	astbo	und		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Froi	m 07:0	00 AM	to 08:4	5 AM -	- Peak	1 of 1													
Peak Hour f	or Ent	ire Inte	ersecti	ion Be	gins at	07:30	AM														
07:30 AM	18	34	40	0	92	10	406	27	0	443	64	24	9	0	97	41	483	81	0	605	1237
07:45 AM	20	33	45	0	98	12	446	20	0	478	70	24	11	0	105	53	544	96	0	693	1374
08:00 AM	16	26	50	0	92	11	450	18	0	479	39	18	10	0	67	44	479	76	0	599	1237
08:15 AM	25	32	44	0	101	9	425	23	0	457	51	27	10	0	88	47	438	103	0	588	1234
Total Volume	79	125	179	0	383	42	1727	88	0	1857	224	93	40	0	357	185	1944	356	0	2485	5082
% App. Total	20.6	32.6	46.7	0		2.3	93	4.7	0		62.7	26.1	11.2	0		7.4	78.2	14.3	0		
PHF	.790	.919	.895	.000	.948	.875	.959	.815	.000	.969	.800	.861	.909	.000	.850	.873	.893	.864	.000	.896	.925

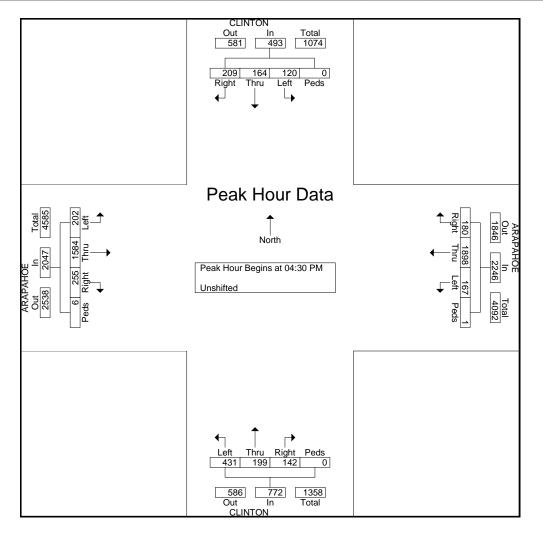
File Name : BOSTON&ARAPAHOENOON Site Code : 00000000 Start Date : 1/10/2006 Page No : 1


							Groups	Printed-	Unshifte	ed							
	SO	CLINTO	N		AR	APAHO	E		S	CLINTO	N		AR	APAHO	E		
		South	oound			West	ound			Northb	ound			Eastb	ound		
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
11:00 AM	10	17	22	1	23	400	22	0	66	43	22	1	55	300	38	0	1020
11:15 AM	15	22	38	0	29	427	15	0	82	42	24	0	43	369	43	0	1149
11:30 AM	15	29	33	0	32	399	22	0	63	60	19	0	57	384	55	0	1168
11:45 AM	23	31	32	0	38	387	36	1	104	45	27	0	90	350	52	0	1216
Total	63	99	125	1	122	1613	95	1	315	190	92	1	245	1403	188	0	4553
12:00 PM	21	29	46	0	45	433	42	0	106	52	28	0	106	358	58	0	1324
12:15 PM	22	26	43	0	48	412	41	0	114	63	47	0	43	363	72	0	1294
12:30 PM	14	38	30	0	42	384	29	0	96	67	28	0	51	399	39	Ő	1217
12:45 PM	14	33	37	0	35	378	21	0	48	44	37	0	45	348	83	1	1124
Total	71	126	156	0	170	1607	133	0	364	226	140	0	245	1468	252	1	4959
Grand Total	134	225	281	1	292	3220	228	1	679	416	232	1	490	2871	440	1	9512
Apprch %	20.9	35.1	43.8	0.2	7.8	86.1	6.1	0	51.1	31.3	17.5	0.1	12.9	75.5	11.6	0	
Total %	1.4	2.4	3	0	3.1	33.9	2.4	0	7.1	4.4	2.4	0	5.2	30.2	4.6	0	

File Name : BOSTON&ARAPAHOENOON Site Code : 00000000 Start Date : 1/10/2006 Page No : 2


		S CLIN	NOT				ARAPAHOE					S CLIN	NTON				ARAP	AHOE			
		So	outhbo	und			N	/estboi	und			N	orthbo	und			E	astbou	Ind		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	11:00 /	AM to 1	2:45 PN	/ - Pea	k 1 of	1													
Peak Hour fo	r Entire	e Inters	ection	Begins	s at 11:4	5 AM															
11:45 AM	23	31	32	0	86	38	387	36	1	462	104	45	27	0	176	90	350	52	0	492	1216
12:00 PM	21	29	46	0	96	45	433	42	0	520	106	52	28	0	186	106	358	58	0	522	1324
12:15 PM	22	26	43	0	91	48	412	41	0	501	114	63	47	0	224	43	363	72	0	478	1294
12:30 PM	14	38	30	0	82	42	384	29	0	455	96	67	28	0	191	51	399	39	0	489	1217
Total Volume	80	124	151	0	355	173	1616	148	1	1938	420	227	130	0	777	290	1470	221	0	1981	5051
% App. Total	22.5	34.9	42.5	0		8.9	83.4	7.6	0.1		54.1	29.2	16.7	0		14.6	74.2	11.2	0		
PHF	.870	.816	.821	.000	.924	.901	.933	.881	.250	.932	.921	.847	.691	.000	.867	.684	.921	.767	.000	.949	.954

File Name : BOSTON&ARAPAHOEPM Site Code : 00000000 Start Date : 1/10/2006 Page No : 1


							Groups	Printed-	Unshift	əd							
	Cl	INTON			AR	APAHO	E		С	LINTON			AR	APAHO	E		
		South	bound			West	bound			North	bound			Eastb	ound		
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
04:00 PM	27	27	46	0	35	462	48	1	99	23	15	0	49	410	56	0	1298
04:15 PM	34	23	62	0	35	436	33	1	72	45	20	0	47	394	57	0	1259
04:30 PM	26	37	68	0	36	500	36	0	89	40	45	0	49	401	75	0	1402
04:45 PM	32	39	38	0	39	471	37	0	100	33	27	0	50	399	58	6	1329
Total	119	126	214	0	145	1869	154	2	360	141	107	0	195	1604	246	6	5288
05:00 PM	37	43	49	0	43	486	49	0	139	87	40	0	47	412	56	0	1488
05:15 PM	25	43 45	49 54	0	43 49	400	49 58	1	103	87 39	40 30	0	47 56	372	50 66	0	1400
05:30 PM	25 49		54 52	0			30	0				0			67		
	• •	69		0	60	425		-	107	29	34	0	45	318		0	1285
05:45 PM	28	48	43	0	28	400	51	0	115	35	45	0	39	321	54	0	1207
Total	139	205	198	0	180	1752	188	1	464	190	149	0	187	1423	243	0	5319
Grand Total	258	331	412	0	325	3621	342	3	824	331	256	0	382	3027	489	6	10607
Apprch %	25.8	33.1	41.2	0	7.6	84.4	8	0.1	58.4	23.5	18.1	0	9.8	77.5	12.5	0.2	
Total %	2.4	3.1	3.9	0	3.1	34.1	3.2	0	7.8	3.1	2.4	0	3.6	28.5	4.6	0.1	

File Name : BOSTON&ARAPAHOEPM Site Code : 00000000 Start Date : 1/10/2006 Page No : 2

		CLINT	ΓON				ARAPAHOE					CLIN	ON			ARAPAHOE]
		So	outhbo	und			N	/estbou	und			N	orthbo	und			E	astbou	Ind		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Ar	nalysis	From	04:00 l	PM to 0)5:45 PN	1 - Pea	ık 1 of	1													
Peak Hour fo	r Entire	e Inters	section	Begins	s at 04:3	0 PM															
04:30 PM	26	37	68	0	131	36	500	36	0	572	89	40	45	0	174	49	401	75	0	525	1402
04:45 PM	32	39	38	0	109	39	471	37	0	547	100	33	27	0	160	50	399	58	6	513	1329
05:00 PM	37	43	49	0	129	43	486	49	0	578	139	87	40	0	266	47	412	56	0	515	1488
05:15 PM	25	45	54	0	124	49	441	58	1	549	103	39	30	0	172	56	372	66	0	494	1339
Total Volume	120	164	209	0	493	167	1898	180	1	2246	431	199	142	0	772	202	1584	255	6	2047	5558
% App. Total	24.3	33.3	42.4	0		7.4	84.5	8	0		55.8	25.8	18.4	0		9.9	77.4	12.5	0.3		
PHF	.811	.911	.768	.000	.941	.852	.949	.776	.250	.971	.775	.572	.789	.000	.726	.902	.961	.850	.250	.975	.934

Appendix B Existing Operational Analysis

HCM Signalized Intersection Capacity Analysis 2: Arapahoe Rd. & Yosemite

	≯	-	\mathbf{r}	•	+	•	•	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኘኘ	ተተተ	1	ኘኘ	ተተኈ		7	<u></u>	1	ኘኘ	A⊅	
Volume (vph)	260	1490	110	300	1840	490	130	490	110	200	365	110
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	
Lane Util. Factor	0.97	0.91	1.00	0.97	0.91		1.00	0.95	1.00	0.97	0.95	
Frt	1.00	1.00	0.85	1.00	0.97		1.00	1.00	0.85	1.00	0.97	
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3433	5085	1583	3433	4925		1770	3539	1583	3433	3416	
Flt Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	3433	5085	1583	3433	4925		1770	3539	1583	3433	3416	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	274	1568	116	316	1937	516	137	516	116	211	384	116
RTOR Reduction (vph)	0	0	58	0	39	0	0	0	16	0	24	0
Lane Group Flow (vph)	274	1568	58	316	2414	0	137	516	100	211	476	0
Turn Type	Prot		Perm	Prot			Prot		pm+ov	Prot		
Protected Phases	5	2		1	6		3	8	1	7	4	
Permitted Phases			2						8			
Actuated Green, G (s)	10.9	57.7	57.7	12.0	58.8		9.9	18.0	30.0	10.3	18.4	
Effective Green, g (s)	11.9	59.7	59.7	13.0	60.8		10.9	20.0	32.0	11.3	20.4	
Actuated g/C Ratio	0.10	0.50	0.50	0.11	0.51		0.09	0.17	0.27	0.09	0.17	
Clearance Time (s)	5.0	6.0	6.0	5.0	6.0		5.0	6.0	5.0	5.0	6.0	
Vehicle Extension (s)	2.0	3.0	3.0	2.0	3.0		2.0	2.0	2.0	2.0	2.0	
Lane Grp Cap (vph)	340	2530	788	372	2495		161	590	422	323	581	
v/s Ratio Prot	0.08	0.31		c0.09	c0.49		c0.08	c0.15	0.03	0.06	0.14	
v/s Ratio Perm			0.04						0.04			
v/c Ratio	0.81	0.62	0.07	0.85	0.97		0.85	0.87	0.24	0.65	0.82	
Uniform Delay, d1	52.9	21.9	15.7	52.5	28.6		53.7	48.8	34.4	52.5	48.0	
Progression Factor	1.00	1.00	1.00	1.33	0.70		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	12.3	1.2	0.2	1.7	1.7		31.7	13.2	0.1	3.6	8.4	
Delay (s)	65.2	23.1	15.9	71.6	21.8		85.4	62.0	34.5	56.1	56.4	
Level of Service	E	С	В	E	С		F	E	С	E	E	
Approach Delay (s)		28.5			27.5			62.0			56.3	
Approach LOS		С			С			E			E	
Intersection Summary												
HCM Average Control Delay			35.4	Н	CM Level	of Servic	е		D			
HCM Volume to Capacity ratio)		0.89									
Actuated Cycle Length (s)			120.0	S	um of lost	t time (s)			12.0			
Intersection Capacity Utilizatio	n		88.0%	IC	CU Level o	of Service			E			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 3: Arapahoe Rd. & I-25 SB off ramp

	۶	-	\mathbf{r}	4	+	×	•	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		<u></u>	77		<u>†</u> †					ሻሻ		77
Volume (vph)	0	720	1080	0	2000	0	0	0	0	1210	0	630
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1700	1900	1900
Total Lost time (s)		4.0	6.0		4.0					4.0		4.0
Lane Util. Factor		0.95	0.88		0.95					0.97		0.88
Frt		1.00	0.85		1.00					1.00		0.85
Flt Protected		1.00	1.00		1.00					0.95		1.00
Satd. Flow (prot)		3539	2787		3539					3072		2842
Flt Permitted		1.00	1.00		1.00					0.95		1.00
Satd. Flow (perm)		3539	2787		3539					3072		2842
Peak-hour factor, PHF	0.94	0.94	0.92	0.92	0.94	0.94	0.92	0.92	0.92	0.94	0.92	0.94
Adj. Flow (vph)	0	766	1174	0	2128	0	0	0	0	1287	0	670
RTOR Reduction (vph)	0	0	618	0	0	0	0	0	0	0	0	2
Lane Group Flow (vph)	0	766	556	0	2128	0	0	0	0	1287	0	668
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	0%
Turn Type			Perm							Prot		custom
Protected Phases		2			6					4		
Permitted Phases			2									4
Actuated Green, G (s)		56.8	56.8		56.8					52.2		52.2
Effective Green, g (s)		58.8	56.8		58.8					53.2		53.2
Actuated g/C Ratio		0.49	0.47		0.49					0.44		0.44
Clearance Time (s)		6.0	6.0		6.0					5.0		5.0
Vehicle Extension (s)		5.0	5.0		5.0					1.5		1.5
Lane Grp Cap (vph)		1734	1319		1734					1362		1260
v/s Ratio Prot		0.22			c0.60					c0.42		
v/s Ratio Perm			0.20									0.23
v/c Ratio		0.44	0.42		1.23					0.94		0.53
Uniform Delay, d1		19.9	20.8		30.6					32.0		24.3
Progression Factor		0.83	2.42		0.79					1.00		1.00
Incremental Delay, d2		0.7	0.8		105.7					13.2		0.2
Delay (s)		17.2	51.1		129.8					45.2		24.5
Level of Service		В	D		F					D		С
Approach Delay (s)		37.7			129.8			0.0			38.1	
Approach LOS		D			F			А			D	
Intersection Summary												
HCM Average Control Delay			70.4	Н	CM Leve	l of Service	;		E			
HCM Volume to Capacity ratio			1.09									
Actuated Cycle Length (s)			120.0	S	um of los	t time (s)			8.0			
Intersection Capacity Utilization	1		100.5%			of Service			G			
Analysis Period (min)			15									
c Critical Lano Croup												

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis 9: Arapahoe Rd. & I-25 NB Off Ramp

4/29/2008

	۶	-	7	4	+	×.	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		<u></u>			4111		ኘኘ	¢Î	1			77
Volume (vph)	0	1930	0	0	3030	40	400	60	620	0	0	90
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0		4.0	4.0	5.0			4.0
Lane Util. Factor		0.95			*0.75		0.97	0.95	0.95			0.88
Frt		1.00			1.00		1.00	0.88	0.85			0.85
Flt Protected		1.00			1.00		0.95	1.00	1.00			1.00
Satd. Flow (prot)		3539			5577		3433	1550	1504			2787
Flt Permitted		1.00			1.00		0.95	1.00	1.00			1.00
Satd. Flow (perm)		3539			5577		3433	1550	1504			2787
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	0	2010	0	0	3156	42	417	62	646	0	0	94
RTOR Reduction (vph)	0	0	0	0	1	0	0	90	91	0	0	9
Lane Group Flow (vph)	0	2010	0	0	3197	0	417	269	258	0	0	85
Turn Type							Split		Perm			custom
Protected Phases		2			6		8	8				
Permitted Phases									8			4
Actuated Green, G (s)		80.6			80.6		17.0	17.0	17.0			6.4
Effective Green, g (s)		82.6			82.6		18.0	18.0	17.0			7.4
Actuated g/C Ratio		0.69			0.69		0.15	0.15	0.14			0.06
Clearance Time (s)		6.0			6.0		5.0	5.0	5.0			5.0
Vehicle Extension (s)		5.0			5.0		1.5	1.5	1.5			1.5
Lane Grp Cap (vph)		2436			3839		515	233	213			172
v/s Ratio Prot		0.57			c0.57		0.12	c0.17				
v/s Ratio Perm									0.17			c0.03
v/c Ratio		0.83			0.83		0.81	1.15	1.21			0.49
Uniform Delay, d1		13.5			13.7		49.3	51.0	51.5			54.5
Progression Factor		0.80			0.25		1.00	1.00	1.00			1.00
Incremental Delay, d2		2.2			0.2		8.6	106.9	130.4			0.8
Delay (s)		13.0			3.7		58.0	157.9	181.9			55.3
Level of Service		В			А		E	F	F			E
Approach Delay (s)		13.0			3.7			128.3			55.3	
Approach LOS		В			А			F			E	
Intersection Summary												
HCM Average Control Delay			29.2	Н	CM Leve	l of Servic	е		С			
HCM Volume to Capacity ratio			0.86									
Actuated Cycle Length (s)			120.0	S	um of los	t time (s)			12.0			
Intersection Capacity Utilization			86.4%	IC	CU Level	of Service			E			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 11: Arapahoe Rd. & Boston

	≯	-	\mathbf{r}	•	+	•	•	1	1	5	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኘኘ	^	1	ኘኘ	1111	1	ኘኘ	∱ ⊅		ኘኘ	††	1
Volume (vph)	180	2020	350	250	2670	180	220	75	130	130	125	180
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	3.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Lane Util. Factor	0.97	0.91	1.00	0.97	*0.50	1.00	0.97	0.95		0.97	0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.91		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	3433	5085	1583	3433	3725	1583	3433	3203		3433	3539	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	3433	5085	1583	3433	3725	1583	3433	3203		3433	3539	1583
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	191	2149	372	266	2840	191	234	80	138	138	133	191
RTOR Reduction (vph)	0	0	27	0	0	40	0	129	0	0	0	115
Lane Group Flow (vph)	191	2149	345	266	2840	151	234	89	0	138	133	76
Turn Type	Prot		pm+ov	Prot		Perm	Prot			Prot		Perm
Protected Phases	5	2	3	1	6		3	8		7	4	
Permitted Phases			2			6						4
Actuated Green, G (s)	8.6	69.7	81.4	9.0	70.1	70.1	11.7	7.0		13.3	8.6	8.6
Effective Green, g (s)	9.6	71.7	85.4	10.0	72.1	72.1	12.7	8.0		14.3	9.6	9.6
Actuated g/C Ratio	0.08	0.60	0.71	0.08	0.60	0.60	0.11	0.07		0.12	0.08	0.08
Clearance Time (s)	5.0	6.0	5.0	5.0	6.0	6.0	5.0	5.0		5.0	5.0	5.0
Vehicle Extension (s)	1.5	5.0	1.5	1.5	5.0	5.0	1.5	1.5		1.5	1.5	1.5
Lane Grp Cap (vph)	275	3038	1127	286	2238	951	363	214		409	283	127
v/s Ratio Prot	0.06	0.42	0.04	c0.08	c0.76		c0.07	0.03		0.04	0.04	
v/s Ratio Perm			0.18			0.10						c0.05
v/c Ratio	0.69	0.71	0.31	0.93	1.27	0.16	0.64	0.42		0.34	0.47	0.60
Uniform Delay, d1	53.8	16.8	6.4	54.7	24.0	10.6	51.5	53.8		48.5	52.8	53.3
Progression Factor	1.13	0.52	0.81	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	2.9	0.7	0.0	34.8	124.7	0.4	2.9	0.5		0.2	0.5	5.0
Delay (s)	63.5	9.4	5.2	89.4	148.7	10.9	54.4	54.2		48.7	53.2	58.3
Level of Service	E	А	А	F	F	В	D	D		D	D	E
Approach Delay (s)		12.7			135.9			54.3			54.0	
Approach LOS		В			F			D			D	
Intersection Summary												
HCM Average Control Delay	/		76.8	Н	CM Level	of Service	e		E			
HCM Volume to Capacity ra	tio		1.06									
Actuated Cycle Length (s)			120.0	S	um of losi	t time (s)			12.0			
Intersection Capacity Utilization	tion		69.5%	IC	CU Level	of Service	;		С			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 2: Arapahoe Rd. & Yosemite

	≯	-	\mathbf{i}	4	←	•	1	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	***	1	ካካ	<u></u> ↑↑₽		ሻ	- ††	1	ካካ	≜ ⊅	
Volume (vph)	260	1490	110	350	1700	350	260	590	320	460	550	120
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	
Lane Util. Factor	0.97	0.91	1.00	0.97	0.91		1.00	0.95	1.00	0.97	0.95	
Frpb, ped/bikes	1.00	1.00	0.99	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	0.97		1.00	1.00	0.85	1.00	0.97	
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3433	5085	1562	3433	4955		1770	3539	1583	3433	3444	
Flt Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	3433	5085	1562	3433	4955		1770	3539	1583	3433	3444	
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	268	1536	113	361	1753	361	268	608	330	474	567	124
RTOR Reduction (vph)	0	0	58	0	26	0	0	0	4	0	16	0
Lane Group Flow (vph)	268	1536	55	361	2088	0	268	608	326	474	675	0
Confl. Peds. (#/hr)	1		1									
Turn Type	Prot		Perm	Prot			Prot		pm+ov	Prot		
Protected Phases	5	2		1	6		3	8	1	7	4	
Permitted Phases			2						8			
Actuated Green, G (s)	9.0	42.2	42.2	15.1	48.3		17.0	23.7	38.8	17.0	23.7	
Effective Green, g (s)	10.0	44.2	44.2	16.1	50.3		18.0	25.7	40.8	18.0	25.7	
Actuated g/C Ratio	0.08	0.37	0.37	0.13	0.42		0.15	0.21	0.34	0.15	0.21	
Clearance Time (s)	5.0	6.0	6.0	5.0	6.0		5.0	6.0	5.0	5.0	6.0	
Vehicle Extension (s)	2.0	3.0	3.0	2.0	3.0		2.0	2.0	2.0	2.0	2.0	
Lane Grp Cap (vph)	286	1873	575	461	2077		266	758	538	515	738	
v/s Ratio Prot	c0.08	0.30		0.11	c0.42		c0.15	0.17	0.08	0.14	c0.20	
v/s Ratio Perm			0.04						0.12			
v/c Ratio	0.94	0.82	0.10	0.78	1.01		1.01	0.80	0.61	0.92	0.92	
Uniform Delay, d1	54.7	34.3	24.8	50.3	34.8		51.0	44.7	32.9	50.3	46.1	
Progression Factor	1.00	1.00	1.00	1.33	0.86		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	36.0	4.2	0.3	3.2	15.5		57.1	5.8	1.3	21.6	15.6	
Delay (s)	90.7	38.5	25.1	70.1	45.3		108.1	50.5	34.2	71.9	61.7	
Level of Service	F	D	С	E	D		F	D	С	E	E	
Approach Delay (s)		45.0			48.9			58.9			65.8	
Approach LOS		D			D			E			E	
Intersection Summary												
HCM Average Control Delay			52.5	Н	CM Level	of Servic	e		D			
HCM Volume to Capacity ra	itio		0.98									
Actuated Cycle Length (s)			120.0		um of lost				16.0			
Intersection Capacity Utiliza	tion		94.8%	IC	CU Level o	of Service	!		F			
Analysis Period (min)			15									

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis 3: Arapahoe Rd. & I-25 SB off ramp

	۶	-	\mathbf{r}	4	+	•	1	†	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		<u></u>	77		<u></u>					ኘኘ		77
Volume (vph)	0	1170	1100	0	1780	0	0	0	0	950	0	620
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1700	1900	1900
Total Lost time (s)		4.0	6.0		4.0					4.0		4.0
Lane Util. Factor		0.95	0.88		0.95					0.97		0.88
Frt		1.00	0.85		1.00					1.00		0.85
Flt Protected		1.00	1.00		1.00					0.95		1.00
Satd. Flow (prot)		3539	2787		3539					3072		2787
Flt Permitted		1.00	1.00		1.00					0.95		1.00
Satd. Flow (perm)		3539	2787		3539					3072		2787
Peak-hour factor, PHF	0.94	0.94	0.92	0.92	0.94	0.94	0.92	0.92	0.92	0.94	0.92	0.94
Adj. Flow (vph)	0	1245	1196	0	1894	0	0	0	0	1011	0	660
RTOR Reduction (vph)	0	0	519	0	0	0	0	0	0	0	0	14
Lane Group Flow (vph)	0	1245	677	0	1894	0	0	0	0	1011	0	646
Turn Type			Perm							Prot		custom
Protected Phases		2			6					4		
Permitted Phases			2									4
Actuated Green, G (s)		67.9	67.9		67.9					41.1		41.1
Effective Green, g (s)		69.9	67.9		69.9					42.1		42.1
Actuated g/C Ratio		0.58	0.57		0.58					0.35		0.35
Clearance Time (s)		6.0	6.0		6.0					5.0		5.0
Vehicle Extension (s)		5.0	5.0		5.0					1.5		1.5
Lane Grp Cap (vph)		2061	1577		2061					1078		978
v/s Ratio Prot		0.35			c0.54					c0.33		
v/s Ratio Perm			0.24									0.23
v/c Ratio		0.60	0.43		0.92					0.94		0.66
Uniform Delay, d1		16.1	14.9		22.5					37.7		32.9
Progression Factor		1.28	4.77		0.76					1.00		1.00
Incremental Delay, d2		0.8	0.6		6.0					14.5		1.3
Delay (s)		21.4	71.9		23.0					52.2		34.2
Level of Service		С	E		С					D		С
Approach Delay (s)		46.1			23.0			0.0			45.1	
Approach LOS		D			С			А			D	
Intersection Summary												
HCM Average Control Delay			38.6	Н	CM Leve	of Servic	е		D			
HCM Volume to Capacity ratio			0.93									
Actuated Cycle Length (s)			120.0		um of los				8.0			
Intersection Capacity Utilization			86.2%	IC	CU Level	of Service			E			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 9: Arapahoe Rd. & I-25 NB Off Ramp

4/29/2008

	۶	-	7	4	+	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		<u></u>			4111		ኘኘ	et	1			77
Volume (vph)	0	2120	0	0	2660	40	320	25	410	0	0	130
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0		4.0	4.0	5.0			4.0
Lane Util. Factor		0.95			*0.75		0.97	0.95	0.95			0.88
Frt		1.00			1.00		1.00	0.87	0.85			0.85
Flt Protected		1.00			1.00		0.95	1.00	1.00			1.00
Satd. Flow (prot)		3539			5576		3433	1534	1504			2787
Flt Permitted		1.00			1.00		0.95	1.00	1.00			1.00
Satd. Flow (perm)		3539			5576		3433	1534	1504			2787
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	0	2232	0	0	2800	42	337	26	432	0	0	137
RTOR Reduction (vph)	0	0	0	0	1	0	0	86	87	0	0	28
Lane Group Flow (vph)	0	2232	0	0	2841	0	337	143	142	0	0	109
Turn Type							Perm		Perm			custom
Protected Phases		2			6			8				
Permitted Phases							8		8			4
Actuated Green, G (s)		81.3			81.3		15.7	15.7	15.7			7.0
Effective Green, g (s)		83.3			83.3		16.7	16.7	15.7			8.0
Actuated g/C Ratio		0.69			0.69		0.14	0.14	0.13			0.07
Clearance Time (s)		6.0			6.0		5.0	5.0	5.0			5.0
Vehicle Extension (s)		5.0			5.0		1.5	1.5	1.5			1.5
Lane Grp Cap (vph)		2457			3871		478	213	197			186
v/s Ratio Prot		c0.63			0.51			0.09				
v/s Ratio Perm							c0.10		0.09			c0.04
v/c Ratio		0.91			0.73		0.71	0.67	0.72			0.59
Uniform Delay, d1		15.2			11.4		49.3	49.0	50.0			54.4
Progression Factor		0.88			0.83		1.00	1.00	1.00			1.00
Incremental Delay, d2		4.3			0.1		3.8	6.4	10.5			3.0
Delay (s)		17.6			9.6		53.1	55.4	60.5			57.4
Level of Service		В			А		D	E	E			E
Approach Delay (s)		17.6			9.6			55. 9			57.4	
Approach LOS		В			А			E			Е	
Intersection Summary												
HCM Average Control Delay			19.8	Н	CM Leve	of Servic	e		В			
HCM Volume to Capacity ratio			0.85									
Actuated Cycle Length (s)			120.0	S	um of losi	t time (s)			12.0			
Intersection Capacity Utilization	1		83.0%	IC	CU Level	of Service	<u>.</u>		E			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 11: Arapahoe Rd. & Boston

	≯	-	\mathbf{r}	1	+	•	1	↑	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	ተተተ	1	ካካ	1111	1	ካካ	∱ ₽		ኘኘ	<u></u>	7
Volume (vph)	200	2075	255	170	2000	180	430	200	140	120	160	270
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	3.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Lane Util. Factor	0.97	0.91	1.00	0.97	*0.50	1.00	0.97	0.95		0.97	0.95	1.00
Frpb, ped/bikes	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.94		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	3433	5085	1565	3433	3725	1583	3433	3321		3433	3539	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	3433	5085	1565	3433	3725	1583	3433	3321		3433	3539	1583
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	213	2207	271	181	2128	191	457	213	149	128	170	287
RTOR Reduction (vph)	0	0	51	0	0	53	0	109	0	0	0	131
Lane Group Flow (vph)	213	2207	220	181	2128	138	457	253	0	128	170	156
Confl. Peds. (#/hr)	3		3									
Turn Type	Prot		pm+ov	Prot		Perm	Prot			Prot		Perm
Protected Phases	5	2	3	1	6		3	8		7	4	-
Permitted Phases			2			6						4
Actuated Green, G (s)	11.0	58.7	76.7	9.2	56.9	56.9	18.0	23.0		8.1	13.1	13.1
Effective Green, g (s)	12.0	60.7	80.7	10.2	58.9	58.9	19.0	24.0		9.1	14.1	14.1
Actuated g/C Ratio	0.10	0.51	0.67	0.08	0.49	0.49	0.16	0.20		0.08	0.12	0.12
Clearance Time (s)	5.0	6.0	5.0	5.0	6.0	6.0	5.0	5.0		5.0	5.0	5.0
Vehicle Extension (s)	1.5	5.0	1.5	1.5	5.0	5.0	1.5	1.5		1.5	1.5	1.5
Lane Grp Cap (vph)	343	2572	1052	292	1828	777	544	664		260	416	186
v/s Ratio Prot	c0.06	0.43	0.03	0.05	c0.57		c0.13	0.08		0.04	0.05	
v/s Ratio Perm	00100	0110	0.11	0100	00107	0.09	00110	0100		0101	0100	c0.10
v/c Ratio	0.62	0.86	0.21	0.62	1.16	0.18	0.84	0.38		0.49	0.41	0.84
Uniform Delay, d1	51.8	25.9	7.5	53.0	30.6	17.0	49.0	41.6		53.2	49.1	51.8
Progression Factor	1.21	0.56	0.49	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	1.2	1.9	0.0	2.8	80.3	0.5	10.8	0.1		0.5	0.2	25.5
Delay (s)	63.7	16.5	3.7	55.8	110.8	17.5	59.8	41.7		53.8	49.3	77.3
Level of Service	E	B	A	E	F	B	E	D		D	D	E
Approach Delay (s)	-	18.9		-	99.7	Ľ	-	51.8		D	64.0	-
Approach LOS		В			F			D			E	
Intersection Summary												
HCM Average Control Dela			57.6	Н	CM Level	of Servic	e		E			
HCM Volume to Capacity ra	atio		1.00									
Actuated Cycle Length (s)			120.0	S	um of los	t time (s)			16.0			
Intersection Capacity Utiliza	ation		77.4%	IC	CU Level	of Service	;		D			
Analysis Period (min)			15									

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis 2: Arapahoe Rd. & Yosemite

	≯	-	\mathbf{r}	4	+	•	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	<u> </u>	1	ሻሻ	ተተተ	1	ľ	<u></u>	1	ሻሻ	A⊅	
Volume (vph)	260	1490	110	300	1840	490	130	490	110	200	365	110
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	6.0	4.0	4.0	4.0	4.0	4.0	
Lane Util. Factor	0.97	0.91	1.00	0.97	0.91	1.00	1.00	0.95	1.00	0.97	0.95	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.97	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3433	5085	1583	3433	5085	1583	1770	3539	1583	3433	3416	
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	3433	5085	1583	3433	5085	1583	1770	3539	1583	3433	3416	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	274	1568	116	316	1937	516	137	516	116	211	384	116
RTOR Reduction (vph)	0	0	58	0	0	150	0	0	16	0	24	0
Lane Group Flow (vph)	274	1568	58	316	1937	366	137	516	100	211	476	0
Turn Type	Prot		Perm	Prot		Perm	Prot		pm+ov	Prot		
Protected Phases	5	2		1	6		3	8	1	7	4	
Permitted Phases			2			6			8			
Actuated Green, G (s)	10.9	57.7	57.7	12.0	58.8	58.8	9.9	18.0	30.0	10.3	18.4	
Effective Green, g (s)	11.9	59.7	59.7	13.0	60.8	58.8	10.9	20.0	32.0	11.3	20.4	
Actuated g/C Ratio	0.10	0.50	0.50	0.11	0.51	0.49	0.09	0.17	0.27	0.09	0.17	
Clearance Time (s)	5.0	6.0	6.0	5.0	6.0	6.0	5.0	6.0	5.0	5.0	6.0	
Vehicle Extension (s)	2.0	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	
Lane Grp Cap (vph)	340	2530	788	372	2576	776	161	590	422	323	581	
v/s Ratio Prot	0.08	0.31		c0.09	c0.38		c0.08	c0.15	0.03	0.06	0.14	
v/s Ratio Perm			0.04			0.23			0.04			
v/c Ratio	0.81	0.62	0.07	0.85	0.75	0.47	0.85	0.87	0.24	0.65	0.82	
Uniform Delay, d1	52.9	21.9	15.7	52.5	23.6	20.3	53.7	48.8	34.4	52.5	48.0	
Progression Factor	1.00	1.00	1.00	1.43	0.64	0.44	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	12.3	1.2	0.2	9.2	1.3	1.3	31.7	13.2	0.1	3.6	8.4	
Delay (s)	65.2	23.1	15.9	84.5	16.5	10.3	85.4	62.0	34.5	56.1	56.4	
Level of Service	Е	С	В	F	В	В	F	Е	С	E	Е	
Approach Delay (s)		28.5			23.1			62.0			56.3	
Approach LOS		С			С			E			E	
Intersection Summary												
HCM Average Control Delay			33.4	Н	CM Leve	of Servic	ce		С			
HCM Volume to Capacity ratio)		0.77									
Actuated Cycle Length (s)			120.0	S	um of los	t time (s)			12.0			
Intersection Capacity Utilization	on		77.1%	IC	CU Level	of Service	;		D			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 3: Arapahoe Rd. & I-25 SB off ramp

	۶	-	74	5	+	•	1	L.	~	*	*	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	SBL2	SBL	SBR	NWL	NWR	
Lane Configurations		<u>ተተ</u> ጮ	1		ተተተ	1	ካካ		77			
Volume (vph)	0	720	1080	0	2000	520	1210	0	630	0	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1700	1900	1900	1900	1900	
Total Lost time (s)		4.0	4.0		4.0	6.0	4.0		4.0			
Lane Util. Factor		0.86	0.86		0.91	1.00	0.97		0.88			
Frt		0.93	0.85		1.00	0.85	1.00		0.85			
Flt Protected		1.00	1.00		1.00	1.00	0.95		1.00			
Satd. Flow (prot)		4493	1362		5085	1583	3072		2842			
Flt Permitted		1.00	1.00		1.00	1.00	0.95		1.00			
Satd. Flow (perm)		4493	1362		5085	1583	3072		2842			
Peak-hour factor, PHF	0.94	0.94	0.92	0.92	0.94	0.94	0.94	0.92	0.94	0.92	0.92	
Adj. Flow (vph)	0	766	1174	0	2128	553	1287	0	670	0	0	
RTOR Reduction (vph)	0	115	0	0	0	281	0	0	3	0	0	
Lane Group Flow (vph)	0	1238	587	0	2128	272	1287	0	667	0	0	
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	0%	2%	2%	
Turn Type			Free			Perm	Prot		custom			
Protected Phases		2			6		4					
Permitted Phases			Free			6			4			
Actuated Green, G (s)		59.0	120.0		59.0	59.0	50.0		50.0			
Effective Green, g (s)		61.0	120.0		61.0	59.0	51.0		51.0			
Actuated g/C Ratio		0.51	1.00		0.51	0.49	0.42		0.42			
Clearance Time (s)		6.0			6.0	6.0	5.0		5.0			
Vehicle Extension (s)		5.0			5.0	5.0	1.5		1.5			
Lane Grp Cap (vph)		2284	1362		2585	778	1306		1208			
v/s Ratio Prot		0.28			c0.42		c0.42					
v/s Ratio Perm			0.43			0.17			0.23			
v/c Ratio		0.54	0.43		0.82	0.35	0.99		0.55			
Uniform Delay, d1		20.0	0.0		24.9	18.7	34.1		25.9			
Progression Factor		0.56	1.00		0.65	0.47	1.00		1.00			
Incremental Delay, d2		0.8	0.8		2.0	0.8	21.2		0.3			
Delay (s)		12.0	0.8		18.1	9.6	55.4		26.2			
Level of Service		В	А		В	А	E		С			
Approach Delay (s)		8.6			16.3			45.4		0.0		
Approach LOS		А			В			D		А		
Intersection Summary												
HCM Average Control Delay			22.7	Н	CM Leve	l of Servic	ce		С			
HCM Volume to Capacity ratio			0.90									
Actuated Cycle Length (s)			120.0	S	um of los	t time (s)			8.0			
Intersection Capacity Utilization	1		83.9%	IC	CU Level	of Service	;		Е			
Analysis Period (min)			15									
c Critical Lano Croup												

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis 9: Arapahoe Rd. &

	۶	-	\mathbf{r}	4	+	×	1	t	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተተተ			4111		ሻሻ	ę	1			77
Volume (vph)	0	1930	0	0	3030	40	400	60	620	0	0	90
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0		4.0	4.0	5.0			4.0
Lane Util. Factor		0.91			*0.75		0.97	0.95	0.95			0.88
Frt		1.00			1.00		1.00	0.88	0.85			0.85
Flt Protected		1.00			1.00		0.95	1.00	1.00			1.00
Satd. Flow (prot)		5085			5577		3433	1550	1504			2787
Flt Permitted		1.00			1.00		0.95	1.00	1.00			1.00
Satd. Flow (perm)		5085			5577		3433	1550	1504			2787
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	0	2010	0	0	3156	42	417	62	646	0	0	94
RTOR Reduction (vph)	0	0	0	0	1	0	0	90	91	0	0	9
Lane Group Flow (vph)	0	2010	0	0	3197	0	417	269	258	0	0	85
Turn Type							Split		Perm			custom
Protected Phases		2			6		8	8				
Permitted Phases									8			4
Actuated Green, G (s)		80.0			80.0		17.0	17.0	17.0			7.0
Effective Green, g (s)		82.0			82.0		18.0	18.0	17.0			8.0
Actuated g/C Ratio		0.68			0.68		0.15	0.15	0.14			0.07
Clearance Time (s)		6.0			6.0		5.0	5.0	5.0			5.0
Vehicle Extension (s)		5.0			5.0		1.5	1.5	1.5			1.5
Lane Grp Cap (vph)		3475			3811		515	233	213			186
v/s Ratio Prot		0.40			c0.57		0.12	c0.17				
v/s Ratio Perm									0.17			c0.03
v/c Ratio		0.58			0.84		0.81	1.15	1.21			0.46
Uniform Delay, d1		9.9			14.1		49.3	51.0	51.5			53.9
Progression Factor		0.80			0.30		1.00	1.00	1.00			1.00
Incremental Delay, d2		0.4			0.2		8.6	106.9	130.4			0.6
Delay (s)		8.3			4.4		58.0	157.9	181.9			54.5
Level of Service		А			А		E	F	F			D
Approach Delay (s)		8.3			4.4			128.3			54.5	
Approach LOS		А			А			F			D	
Intersection Summary												
HCM Average Control Delay			28.1	H	CM Level	of Servic	е		С			
HCM Volume to Capacity ratio			0.86									
Actuated Cycle Length (s)			120.0	S	um of lost	t time (s)			12.0			
Intersection Capacity Utilization			71.8%	IC	CU Level o	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 11: Arapahoe Rd. & Boston

Lane Configurations N HA F N HS N HS N HA F Volume (vph) 180 2020 350 250 2670 180 220 75 130 130 125 180 Ideal Flow (vphp) 1900 180 133 158 133 323 323 3433 3203 3433 3203 3433 3539 1583 3433 3203		50310										1/2	
Lane Configurations N HA F N HS N HS N HA F Volume (vph) 180 2020 350 250 2670 180 220 75 130 130 125 180 Ideal Flow (vphp) 1900 180 133 158 133 323 323 3433 3203 3433 3203 3433 3539 1583 3433 3203		≯	-	\mathbf{r}	∢	-	•	•	1	1	1	Ļ	~
Volume (vph) 180 2020 350 250 2670 180 220 75 130 130 125 180 Ideal Flow (vphp) 1900	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Volume (vph) 180 2020 350 250 2670 180 220 75 130 130 125 180 Ideal Flow (vphp) 1900	Lane Configurations	ኘኘ	<u>_</u>	1	ሻሻ	1111	1	ሻሻ	∱1 ≱		ኘኘ	<u></u>	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Volume (vph)			350			180			130			180
Lane Util. Factor 0.97 0.91 1.00 0.97 0.95 0.97 0.95 1.00 0.97 0.95 1.00 0.08 Fit 1.00 1.00 0.85 1.00 1.00 0.85 1.00 0.97 0.95 1.00 0.085 Fit Protected 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 2.33 3233 3233 3433 3233 3433 323 3433 323 3433 323 3433 323 3433 323 163 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor 0.97 0.91 1.00 0.97 0.95 0.97 0.95 1.00 0.97 0.95 1.00 0.08 Fit 1.00 1.00 0.85 1.00 1.00 0.85 1.00 0.97 0.95 1.00 0.085 Fit Protected 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 2.33 3233 3233 3433 3233 3433 323 3433 323 3433 323 3433 323 3433 323 163 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	Total Lost time (s)	4.0	4.0	3.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Fit Protected 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 0.94 </td <td>Lane Util. Factor</td> <td>0.97</td> <td>0.91</td> <td>1.00</td> <td>0.97</td> <td>*0.50</td> <td>1.00</td> <td>0.97</td> <td>0.95</td> <td></td> <td>0.97</td> <td>0.95</td> <td>1.00</td>	Lane Util. Factor	0.97	0.91	1.00	0.97	*0.50	1.00	0.97	0.95		0.97	0.95	1.00
Said. Flow (prot) 3433 5085 1583 3433 3725 1583 3433 3203 3433 3539 1583 FIP Permitted 0.95 1.00 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.94 3433 3539 1583 Satd. Flow (perm) 3433 5085 1583 3433 3725 1583 3433 3203 3433 3539 1583 Peak-hour factor, PHF 0.94 0.93 1.50 151 <td>Frt</td> <td>1.00</td> <td>1.00</td> <td>0.85</td> <td>1.00</td> <td>1.00</td> <td>0.85</td> <td>1.00</td> <td>0.91</td> <td></td> <td>1.00</td> <td>1.00</td> <td>0.85</td>	Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.91		1.00	1.00	0.85
Fit Permitted 0.95 1.00 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 1.03 3233 123 76 124 0 0 0 115 1.51 <th1< td=""><td>Flt Protected</td><td>0.95</td><td>1.00</td><td>1.00</td><td>0.95</td><td>1.00</td><td>1.00</td><td>0.95</td><td>1.00</td><td></td><td>0.95</td><td>1.00</td><td>1.00</td></th1<>	Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm) 3433 5085 1583 3433 3725 1583 3433 3203 3433 3539 1583 Peak-hour factor, PHF 0.94 0.91 138 138 133 76 74 Perm Prot Perm Prot 9.9 9.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 1660 0.60 0.	Satd. Flow (prot)	3433	5085	1583	3433	3725	1583	3433	3203		3433	3539	1583
Peak-hour factor, PHF 0.94	Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Peak-hour factor, PHF 0.94	Satd. Flow (perm)	3433	5085	1583	3433	3725	1583	3433	3203		3433	3539	1583
Adj. Flow (vph) 191 2149 372 266 2840 191 234 80 138 138 133 191 RTOR Reduction (vph) 0 0 27 0 0 40 0 124 0 0 0 115 Lane Group Flow (vph) 191 2149 345 266 2840 151 234 94 0 138 133 76 Turn Type Prot Perm Prot Perm Prot Perm Prot Perm Prot Perm Prot Perm 4 Actuated Green, G (s) 8.6 69.5 81.2 9.0 69.9 69.9 11.7 11.6 8.9 8.8 8.8 Effective Green, G (s) 8.6 69.5 81.2 10.0 71.9 12.7 12.6 9.9 9.8 8.4 Actuated GC Ratio 0.08 0.60 0.71 0.08 0.60 0.60 1.15 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1			0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
RTOR Reduction (vph) 0 0 27 0 0 40 0 124 0 0 0 115 Lane Group Flow (vph) 191 2149 345 266 2840 151 234 94 0 138 133 76 Turn Type Prot pm+ov Prot Perm Prot Prot Perm Protected Phases 5 2 3 1 6 3 8 7 4 Permitted Phases 2 6 4 4 4 4 4 4 4 4 Actuated Green, G (s) 8.6 69.5 81.2 9.0 69.9 9.17.7 11.6 8.9 8.8 8.8 Effective Green, g (s) 9.6 71.5 85.2 10.0 71.9 71.7 12.7 12.6 9.9 9.8 9.8 Actuated g/C Ratio 0.08 0.60 0.60 6.0 5.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5													
Lane Group Flow (vph) 191 2149 345 266 2840 151 234 94 0 138 133 76 Turn Type Prot pm+ov Prot Perm Prot Prot Perm Perm Perm Prot Perm Perm Perm Prot A Perm Perm Prot Perm Perm Perm Perm Perm Perm Perm													
Turn Type Prot prot prot Perm Prot Prot Perm Protected Phases 5 2 3 1 6 3 8 7 4 Permitted Phases 2 6 4 4 4 4 Actuated Green, G (s) 8.6 69.5 81.2 9.0 69.9 69.9 11.7 11.6 8.9 8.8 8.8 Effective Green, g (s) 9.6 71.5 85.2 10.0 71.9 12.7 12.6 9.9 9.8 9.8 Actuated g/C Ratio 0.08 0.60 0.71 0.08 0.60 6.0 5.													
Protected Phases 5 2 3 1 6 3 8 7 4 Permitted Phases 2 6 4 Actuated Green, G (s) 8.6 69.5 81.2 9.0 69.9 69.9 11.7 11.6 8.9 8.8 8.8 Effective Green, g (s) 9.6 71.5 85.2 10.0 71.9 71.9 12.7 12.6 9.9 9.8 9.8 Actuated g/C Ratio 0.08 0.60 0.71 0.8 0.60 0.60 5.0 </td <td></td>													
Permitted Phases 2 6 4 Actuated Green, G (s) 8.6 69.5 81.2 9.0 69.9 11.7 11.6 8.9 8.8 8.8 Effective Green, g (s) 9.6 71.5 85.2 10.0 71.9 71.9 12.7 12.6 9.9 9.8 9.8 Actuated g/C Ratio 0.08 0.00 0.71 0.08 0.60 0.11 0.10 0.08 0.08 0.08 Clearance Time (s) 5.0 6.0 5.0 4.0 7.0			2			6			8			4	
Actuated Green, G (s) 8.6 69.5 81.2 9.0 69.9 11.7 11.6 8.9 8.8 8.8 Effective Green, g (s) 9.6 71.5 85.2 10.0 71.9 71.9 12.7 12.6 9.9 9.8 9.8 Actuated g/C Ratio 0.08 0.60 0.71 0.08 0.60 0.61 6.0 5.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td>							6						4
Effective Green, g (s) 9.6 71.5 85.2 10.0 71.9 71.9 12.7 12.6 9.9 9.8 9.8 Actuated g/C Ratio 0.08 0.60 0.71 0.08 0.60 0.61 0.11 0.10 0.08 0.08 0.08 Clearance Time (s) 5.0 6.0 5.0 5.0 1.5 1.5 5.0		8.6	69.5		9.0	69.9		11.7	11.6		8.9	8.8	
Actuated g/C Ratio 0.08 0.60 0.71 0.08 0.60 0.11 0.10 0.08 0.08 0.08 Clearance Time (s) 5.0 6.0 5.0 5.0 6.0 5.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
Clearance Time (s) 5.0 6.0 5.0 5.0 6.0 5.0 </td <td></td>													
Vehicle Extension (s) 1.5 5.0 1.5 5.0 5.0 1.5 10.0 10.0 1.00 <td></td>													
Lane Grp Cap (vp) 275 3030 1124 286 2232 948 363 336 283 289 129 v/s Ratio Prot 0.06 0.42 0.04 c0.08 c0.76 c0.07 c0.03 0.04 0.04 v/s v/s Ratio Perm 0.18 0.10 c0.05 v/s v/s c0.05 v/s c0.05 v/s c0.05 v/s c0.05 v/s v/s c0.05 v/s v/s c0.05 v/s c0													
v/s Ratio Prot 0.06 0.42 0.04 c0.08 c0.76 c0.07 c0.03 0.04 0.04 v/s Ratio Perm 0.18 0.10 c0.05 v/c Ratio 0.69 0.71 0.31 0.93 1.27 0.16 0.64 0.28 0.49 0.46 0.59 Uniform Delay, d1 53.8 17.0 6.5 54.7 24.0 10.7 51.5 49.5 52.6 52.6 53.2 Progression Factor 1.23 0.47 0.31 1.00 1.0	· ·												
v/s Ratio Perm 0.18 0.10 c0.05 v/c Ratio 0.69 0.71 0.31 0.93 1.27 0.16 0.64 0.28 0.49 0.46 0.59 Uniform Delay, d1 53.8 17.0 6.5 54.7 24.0 10.7 51.5 49.5 52.6 52.6 53.2 Progression Factor 1.23 0.47 0.31 1.00													
v/c Ratio 0.69 0.71 0.31 0.93 1.27 0.16 0.64 0.28 0.49 0.46 0.59 Uniform Delay, d1 53.8 17.0 6.5 54.7 24.0 10.7 51.5 49.5 52.6 52.6 53.2 Progression Factor 1.23 0.47 0.31 1.00 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>c0.05</td>							0.10						c0.05
Uniform Delay, d1 53.8 17.0 6.5 54.7 24.0 10.7 51.5 49.5 52.6 52.6 53.2 Progression Factor 1.23 0.47 0.31 1.00		0.69	0.71		0.93	1.27		0.64	0.28		0.49	0.46	
Progression Factor 1.23 0.47 0.31 1.00 1													
Incremental Delay, d2 4.4 1.0 0.0 34.8 126.2 0.4 2.9 0.2 0.5 0.4 4.8 Delay (s) 70.7 9.0 2.1 89.4 150.3 11.0 54.4 49.7 53.1 53.0 57.9 Level of Service E A A F F B D D D D E Approach Delay (s) 12.4 137.3 52.1 55.1 55.1 Approach LOS B F D D E E HCM Average Control Delay 77.3 HCM Level of Service E													
Delay (s) 70.7 9.0 2.1 89.4 150.3 11.0 54.4 49.7 53.1 53.0 57.9 Level of Service E A A F F B D D D D E Approach Delay (s) 12.4 137.3 52.1 55.1 55.1 Approach LOS B F D D E Intersection Summary 77.3 HCM Level of Service E HCM Volume to Capacity ratio 1.10 4ctuated Cycle Length (s) 120.0 Sum of lost time (s) 16.0 Intersection Capacity Utilization 71.6% ICU Level of Service C Analysis Period (min) 15	•												
Level of ServiceEAAFFBDDDDEApproach Delay (s)12.4137.352.155.1Approach LOSBFDEIntersection SummaryHCM Average Control Delay77.3HCM Level of ServiceEHCM Volume to Capacity ratio1.10Actuated Cycle Length (s)120.0Sum of lost time (s)16.0Intersection Capacity Utilization71.6%ICU Level of ServiceCAnalysis Period (min)151516	3												
Approach Delay (s)12.4137.352.155.1Approach LOSBFDEIntersection SummaryHCM Average Control Delay77.3HCM Level of ServiceEHCM Volume to Capacity ratio1.10													
Approach LOSBFDEIntersection SummaryHCM Average Control Delay77.3HCM Level of ServiceEHCM Volume to Capacity ratio1.10Actuated Cycle Length (s)120.0Sum of lost time (s)16.0Intersection Capacity Utilization71.6%ICU Level of ServiceCAnalysis Period (min)15													
HCM Average Control Delay77.3HCM Level of ServiceEHCM Volume to Capacity ratio1.10Actuated Cycle Length (s)120.0Sum of lost time (s)16.0Intersection Capacity Utilization71.6%ICU Level of ServiceCAnalysis Period (min)1515C	Approach LOS												
HCM Volume to Capacity ratio1.10Actuated Cycle Length (s)120.0Sum of lost time (s)16.0Intersection Capacity Utilization71.6%ICU Level of ServiceCAnalysis Period (min)1515C	Intersection Summary												
HCM Volume to Capacity ratio1.10Actuated Cycle Length (s)120.0Sum of lost time (s)16.0Intersection Capacity Utilization71.6%ICU Level of ServiceCAnalysis Period (min)1515C	HCM Average Control Delay			77.3	Н	CM Level	of Servic	e		E			
Actuated Cycle Length (s)120.0Sum of lost time (s)16.0Intersection Capacity Utilization71.6%ICU Level of ServiceCAnalysis Period (min)1515C													
Intersection Capacity Utilization71.6%ICU Level of ServiceCAnalysis Period (min)15					S	um of los	t time (s)			16.0			
Analysis Period (min) 15		า						<u>;</u>					
	c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 2: Arapahoe Rd. & Yosemite

	≯	-	\mathbf{r}	•	+	•	1	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ካካ	***	1	ካካ	*††	1	<u>۲</u>	- ††	1	ካካ	≜ †≱	
Volume (vph)	195	1330	140	350	1700	350	260	590	320	460	550	120
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	6.0	4.0	4.0	5.0	4.0	4.0	
Lane Util. Factor	0.97	0.91	1.00	0.97	0.91	1.00	1.00	0.95	1.00	0.97	0.95	
Frpb, ped/bikes	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.97	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3433	5085	1562	3433	5085	1583	1770	3539	1583	3433	3444	
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	3433	5085	1562	3433	5085	1583	1770	3539	1583	3433	3444	
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	201	1371	144	361	1753	361	268	608	330	474	567	124
RTOR Reduction (vph)	0	0	83	0	0	184	0	0	147	0	16	0
Lane Group Flow (vph)	201	1371	61	361	1753	177	268	608	183	474	675	0
Confl. Peds. (#/hr)	1		1									
Turn Type	Prot		Perm	Prot		Perm	Prot		Perm	Prot		
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6			8			
Actuated Green, G (s)	8.8	42.2	42.2	15.1	48.5	48.5	17.0	22.7	22.7	18.0	23.7	
Effective Green, g (s)	9.8	44.2	44.2	16.1	50.5	48.5	18.0	24.7	23.7	19.0	25.7	
Actuated g/C Ratio	0.08	0.37	0.37	0.13	0.42	0.40	0.15	0.21	0.20	0.16	0.21	
Clearance Time (s)	5.0	6.0	6.0	5.0	6.0	6.0	5.0	6.0	6.0	5.0	6.0	
Vehicle Extension (s)	2.0	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	
Lane Grp Cap (vph)	280	1873	575	461	2140	640	266	728	313	544	738	
v/s Ratio Prot	0.06	0.27		c0.11	c0.34		c0.15	c0.17		0.14	c0.20	
v/s Ratio Perm			0.04			0.11			0.12			
v/c Ratio	0.72	0.73	0.11	0.78	0.82	0.28	1.01	0.84	0.59	0.87	0.92	
Uniform Delay, d1	53.8	32.8	24.9	50.3	30.7	24.0	51.0	45.7	43.7	49.3	46.1	
Progression Factor	1.00	1.00	1.00	1.22	0.90	0.65	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	7.1	2.6	0.4	6.1	2.8	0.8	57.1	7.9	1.8	13.8	15.6	
Delay (s)	60.9	35.3	25.3	67.5	30.4	16.5	108.1	53.6	45.5	63.2	61.7	
Level of Service	E	D	С	E	С	В	F	D	D	E	E	
Approach Delay (s)		37.5			33.8			63.5			62.3	
Approach LOS		D			С			E			E	
Intersection Summary												
HCM Average Control Delay			45.3	Н	CM Leve	of Servic	ce		D			
HCM Volume to Capacity rati	0		0.83									
Actuated Cycle Length (s)			120.0		um of los				8.0			
Intersection Capacity Utilizati Analysis Period (min)	on				CU Level	of Service	9		E			

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis 3: Arapahoe Rd. & I-25 SB off ramp

	۲	+	ľ	۲.	Ļ	•	*	L.	~	÷	*	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	SBL2	SBL	SBR	NWL	NWR	
Lane Configurations		ተተኈ	1		ተተተ	1	ኘኘ		77			
Volume (vph)	0	1010	1100	0	1780	740	950	0	620	0	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1700	1900	1900	1900	1900	
Total Lost time (s)		4.0	6.0		4.0	6.0	4.0		4.0			
Lane Util. Factor		0.86	0.86		0.91	1.00	0.97		0.88			
Frt		0.95	0.85		1.00	0.85	1.00		0.85			
Flt Protected		1.00	1.00		1.00	1.00	0.95		1.00			
Satd. Flow (prot)		4548	1362		5085	1583	3072		2787			
Flt Permitted		1.00	1.00		1.00	1.00	0.95		1.00			
Satd. Flow (perm)		4548	1362		5085	1583	3072		2787			
Peak-hour factor, PHF	0.94	0.94	0.92	0.92	0.94	0.94	0.94	0.92	0.94	0.92	0.92	
Adj. Flow (vph)	0	1074	1196	0	1894	787	1011	0	660	0	0	
RTOR Reduction (vph)	0	0	0	0	0	342	0	0	14	0	0	
Lane Group Flow (vph)	0	1672	598	0	1894	445	1011	0	646	0	0	
Turn Type			Prot			Perm	Prot		custom			
Protected Phases		2	2		6		4					
Permitted Phases						6			4			
Actuated Green, G (s)		67.9	67.9		67.9	67.9	41.1		41.1			
Effective Green, g (s)		69.9	67.9		69.9	67.9	42.1		42.1			
Actuated g/C Ratio		0.58	0.57		0.58	0.57	0.35		0.35			
Clearance Time (s)		6.0	6.0		6.0	6.0	5.0		5.0			
Vehicle Extension (s)		5.0	5.0		5.0	5.0	1.5		1.5			
Lane Grp Cap (vph)		2649	771		2962	896	1078		978			
v/s Ratio Prot		0.37	c0.44		0.37		c0.33					
v/s Ratio Perm						0.28			0.23			
v/c Ratio		0.63	0.78		0.64	0.50	0.94		0.66			
Uniform Delay, d1		16.5	20.2		16.7	15.7	37.7		32.9			
Progression Factor		0.72	0.85		0.63	1.21	1.00		1.00			
Incremental Delay, d2		0.8	5.2		0.7	1.4	14.5		1.3			
Delay (s)		12.6	22.2		11.2	20.5	52.2		34.2			
Level of Service		В	С		В	С	D		С			
Approach Delay (s)		15.1			14.0			45.1		0.0		
Approach LOS		В			В			D		А		
Intersection Summary												
HCM Average Control Delay			22.2	Н	CM Level	of Servic	e		С			
HCM Volume to Capacity ratio			0.84									
Actuated Cycle Length (s)			120.0	S	um of lost	time (s)			10.0			
Intersection Capacity Utilization	1		71.3%	IC	CU Level o	of Service	!		С			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 9: Arapahoe Rd. &

	۶	-	\mathbf{i}	4	+	×	1	Ť	~	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^			4111Þ		ኘኘ	4Î	1			11
Volume (vph)	0	1960	0	0	2660	40	320	25	410	0	0	130
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0		4.0	4.0	5.0			4.0
Lane Util. Factor		0.91			*0.75		0.97	0.95	0.95			0.88
Frt		1.00			1.00		1.00	0.87	0.85			0.85
Flt Protected		1.00			1.00		0.95	1.00	1.00			1.00
Satd. Flow (prot)		5085			5576		3433	1534	1504			2787
Flt Permitted		1.00			1.00		0.95	1.00	1.00			1.00
Satd. Flow (perm)		5085			5576		3433	1534	1504			2787
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	0	2063	0	0	2800	42	337	26	432	0	0	137
RTOR Reduction (vph)	0	0	0	0	1	0	0	90	90	0	0	28
Lane Group Flow (vph)	0	2063	0	0	2841	0	337	139	139	0	0	109
Turn Type							Perm		Perm			custom
Protected Phases		2			6			8				
Permitted Phases							8		8			4
Actuated Green, G (s)		81.4			81.4		15.6	15.6	15.6			7.0
Effective Green, g (s)		83.4			83.4		16.6	16.6	15.6			8.0
Actuated g/C Ratio		0.70			0.70		0.14	0.14	0.13			0.07
Clearance Time (s)		6.0			6.0		5.0	5.0	5.0			5.0
Vehicle Extension (s)		5.0			5.0		1.5	1.5	1.5			1.5
Lane Grp Cap (vph)		3534			3875		475	212	196			186
v/s Ratio Prot		0.41			c0.51			0.09				
v/s Ratio Perm							c0.10		0.09			c0.04
v/c Ratio		0.58			0.73		0.71	0.66	0.71			0.59
Uniform Delay, d1		9.4			11.4		49.4	49.0	50.0			54.4
Progression Factor		1.00			0.83		1.00	1.00	1.00			1.00
Incremental Delay, d2		0.4			0.1		4.0	5.5	9.1			3.0
Delay (s)		9.9			9.6		53.3	54.5	59.1			57.4
Level of Service		А			А		D	D	E			E
Approach Delay (s)		9.9			9.6			55.3			57.4	
Approach LOS		А			А			E			E	
Intersection Summary												
HCM Average Control Delay			17.0	Н	CM Level	of Servic	e		В			
HCM Volume to Capacity ratio			0.72									
Actuated Cycle Length (s)			120.0		um of lost				12.0			
Intersection Capacity Utilization			64.2%	IC	CU Level o	of Service	:		С			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 11: Arapahoe Rd. & Boston

	۶	-	\mathbf{r}	4	+	×	1	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኘካ	^	1	ሻሻ	1111	1	ኘኘ	A⊅		ኘኘ	† †	1
Volume (vph)	200	1915	255	170	2000	180	430	200	140	120	160	270
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	3.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Lane Util. Factor	0.97	0.91	1.00	0.97	*0.50	1.00	0.97	0.95		0.97	0.95	1.00
Frpb, ped/bikes	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.94		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	3433	5085	1565	3433	3725	1583	3433	3321		3433	3539	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	3433	5085	1565	3433	3725	1583	3433	3321		3433	3539	1583
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	213	2037	271	181	2128	191	457	213	149	128	170	287
RTOR Reduction (vph)	0	0	51	0	0	53	0	109	0	0	0	131
Lane Group Flow (vph)	213	2037	220	181	2128	138	457	253	0	128	170	156
Confl. Peds. (#/hr)	3		3									
Turn Type	Prot		pm+ov	Prot		Perm	Prot			Prot		Perm
Protected Phases	5	2	3	1	6		3	8		7	4	
Permitted Phases			2			6						4
Actuated Green, G (s)	11.0	58.7	76.7	9.2	56.9	56.9	18.0	23.0		8.1	13.1	13.1
Effective Green, g (s)	12.0	60.7	80.7	10.2	58.9	58.9	19.0	24.0		9.1	14.1	14.1
Actuated g/C Ratio	0.10	0.51	0.67	0.08	0.49	0.49	0.16	0.20		0.08	0.12	0.12
Clearance Time (s)	5.0	6.0	5.0	5.0	6.0	6.0	5.0	5.0		5.0	5.0	5.0
Vehicle Extension (s)	1.5	5.0	1.5	1.5	5.0	5.0	1.5	1.5		1.5	1.5	1.5
Lane Grp Cap (vph)	343	2572	1052	292	1828	777	544	664		260	416	186
v/s Ratio Prot	c0.06	0.40	0.03	0.05	c0.57		c0.13	0.08		0.04	0.05	
v/s Ratio Perm			0.11			0.09						c0.10
v/c Ratio	0.62	0.79	0.21	0.62	1.16	0.18	0.84	0.38		0.49	0.41	0.84
Uniform Delay, d1	51.8	24.4	7.5	53.0	30.6	17.0	49.0	41.6		53.2	49.1	51.8
Progression Factor	1.23	0.57	0.80	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	2.0	2.1	0.0	2.8	80.3	0.5	10.8	0.1		0.5	0.2	25.5
Delay (s)	65.8	16.1	6.0	55.8	110.8	17.5	59.8	41.7		53.8	49.3	77.3
Level of Service	E	В	А	E	F	В	Е	D		D	D	E
Approach Delay (s)		19.2			99.7			51.8			64.0	
Approach LOS		В			F			D			E	
Intersection Summary												
HCM Average Control Dela	5		58.8	Н	CM Level	of Servic	e		E			
HCM Volume to Capacity ra	atio		1.00									
Actuated Cycle Length (s)			120.0		um of los				16.0			
Intersection Capacity Utiliza Analysis Period (min)	ation		74.3% 15	IC	CU Level (of Service)		D			

c Critical Lane Group

	BASIC	FREEWAY SE	EGMENTS WORKSHEET		
80 Free-Flow Spzed FFS = 75 mith 70 65 mith 70 60 65 mith 60 50 55 mith 55 mith 40 60 60 90 40 800	B C C D 1450 B C C D 5 1200 1450		Application Input Operational (LOS) FFS, N, vp Design (N) FFS, LOS, r Design (vp) FFS, LOS, l Planning (LOS) FFS, N, AA Planning (N) FFS, LOS, l Planning (N) FFS, LOS, l Planning (vp) FFS, LOS, l Planning (vp) FFS, LOS, l	v _p N, S, D N v _p , S, E DT LOS, S AADT N, S, D	, D) , D
	Flow Rate (pc/h/ln)				
General Information			Site Information		
Analyst	SST		Highway/Direction of Travel	Southbound I	
Agency or Company Date Performed	DEA 6/23/2007		From/To Jurisdiction	Orchard to Ar	•
Analysis Time Period	AM Peak		Analysis Year	Arapahoe Co 2006	unty
	Conditions		Analysis real	2000	
✓ Oper.(LO			Des.(N)	🗖 Plannir	ng Data
Flow Inputs	-,	,			.9 - 414
Volume, V AADT Peak-Hr Prop. of AADT, K	5630	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T %RVs, P _R	0.90 7 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terrain: Grade % Length Up/Down %	Rolling mi	
Calculate Flow Adjustr	nents				
f _p	1.00		E _R	2.0	
E _T	2.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.905	
Speed Inputs	-		Calc Speed Adj and FFS		
Lane Width	12.0	ft			
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}		mi/h
Interchange Density	0.50	l/mi	f _{LC}		mi/h
Number of Lanes, N	5	1/1111	f _{ID}		mi/h
FFS (measured)	70.0	mi/h	f _N		mi/h
	70.0		FFS	70.0	mi/h
Base free-flow Speed, BFFS	NA	mi/h			
LOS and Performance	Measures		Design (N)		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N : S D = v _p / S LOS	x f _{HV} x f _p) 1382 70.0 19.7 C	pc/h/ln mi/h pc/mi/ln	$\frac{\text{Design (N)}}{\text{Design LOS}}$ $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV})$ S $D = v_p / S$ Required Number of Lanes, N	x f _p)	pc/h mi/h pc/mi/ln
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow pur volume		E _R - Exhibits23-8, 23-10 E _T - Exhibits 23-8, 23-10, 23-11 f _p - Page 23-12 LOS, S, FFS, v _p - Exhibits 23-2, 23	f _{LC} f _N	, - Exhibit 23-4 - Exhibit 23-5 - Exhibit 23-6 - Exhibit 23-7
Copyright © 2005 University of Florida			HCS+ TM Version 5.2	Gen	erated: 12/1/2007 11:36 AM

Copyright © 2005 University of Florida, All Rights Reserved

Generated: 12/1/2007 11:36 AM

	BASIC	FREEWAY SE	EGMENTS WORKSHEET		
80 Free-Flow Spzed FFS = 75 mith 70 65 mith 70 60 55 mith 60 50 10 S A 55 mith 40 60 55 mith 40 400 200	B C C C		Application Input Operational (LOS) FFS, N, vp Design (N) FFS, LOS, Design (vp) FFS, LOS, Planning (LOS) FFS, N, AA Planning (N) FFS, LOS, Planning (N) FFS, LOS, Planning (vp) FFS, LOS, 400 FFS, LOS,	v _p N, S, D N v _p , S, D ,DT LOS, S, D AADT N, S, D	
	Flow Rate (pc/h/ln)				
General Information			Site Information		
Analyst	SST		Highway/Direction of Travel	Southbound I-25	
Agency or Company	DEA		From/To	Orchard to Arapa	
Date Performed	6/23/2007		Jurisdiction	Arapahoe County	/
Analysis Time Period	PM Peak		Analysis Year	2006	
· · · · · · · · · · · · · · · · · · ·	Conditions	_			2010
Oper.(LO	5)		Des.(N)	🔲 Planning [Jata
<i>Flow Inputs</i> Volume, V AADT Peak-Hr Prop. of AADT, K	7860	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T %RVs, P _R	0.90 7 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terrain: Grade % Length Up/Down %	Rolling mi	
Calculate Flow Adjustr					
f _p	1.00		E _R	2.0	
Γρ Ε _T	2.5			0.905	
	2.0		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.900	
Speed Inputs	(0.0		Calc Speed Adj and FFS		
Lane Width	12.0	ft	f _{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}		mi/h
Interchange Density	0.50	I/mi	f _{ID}		mi/h
Number of Lanes, N	5		f _N		mi/h
FFS (measured)	70.0	mi/h		70.0	
Base free-flow Speed, BFFS		mi/h	FFS	70.0	mi/h
LOS and Performance	Measures		Design (N)		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N s S D = v _p / S LOS	x f _{HV} x f _p) 1930 66.1 29.2 D	pc/h/ln mi/h pc/mi/ln	Design (N) Design LOS v _p = (V or DDHV) / (PHF x N x f _{HV} S D = v _p / S Required Number of Lanes, N	x f _p)	pc/h mi/h pc/mi/ln
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow pur volume		E _R - Exhibits23-8, 23-10 E _T - Exhibits 23-8, 23-10, 23-11 f _p - Page 23-12 LOS, S, FFS, v _p - Exhibits 23-2, 23	f _{LC} - E f _N - Ex	Exhibit 23-4 Exhibit 23-5 Khibit 23-6 xhibit 23-7
Copyright © 2005 University of Florida			HCS+ TM Version 5.2	Conorate	d 12/1/2007 11:37 AM

Copyright © 2005 University of Florida, All Rights Reserved

Generated: 12/1/2007 11:37 AM

		RAMP	S AND	RAM	P JUN	CTIONS	S WO	ORKS	HEET	1		
General	Informati	on				Site Int	forn	natior	1			
Analyst Agency or Co Date Perform Analysis Time	ed	SST DEA 6/23/2007 AM Peak			Ju Ju	eeway/Dir onction risdiction alysis Year		vel	Arapa	nbound I ahoe Exi ahoe Co	it Ramp	
Project Descr	ription Existir	ng Conditions										
Inputs												
Upstream Adj		Terrain: Roll	ng								Downstre Ramp	am Adj
Yes	On										Yes	M On
	Ft Off									No	Off 700 ft	
L _{up} =	veh/h	C C			45.0 m	ph		- _{down} = V _D =	520 veh/h			
V _u =						now lanes, L _A , L _D ,V _R ,V _f)					- D	020 001/1
Convers	ion to pc/	h Under	Base (Condi	tions		1					
(pc/h)	V (Veh/hr)	PHF	Terra	ain	%Truck	%Rv		f _{HV}	f _p		v = V/PHI f _{HV} x f _p	Fx
Freeway	5630	0.90	Rollir	ng	7	0	0.	905	1.00)	6912	
Ramp UpStream	1840	0.90	Leve	el	2	0	0.	990	1.00)	2065	
DownStream	520	0.90	Leve	el	2	0	0.	990	1.00)	584	
		Merge Areas							Diverge	Areas		
Estimati	on of v ₁₂					Estima	tior	of v	12			
LQ · · ·	uation 25-2 g Equation					L _{EQ} = (E P _{FD} = 0.20 V ₁₂ = 305	60 i	ion 25- Ising E		·9)		
12 .	Checks					Capaci			<u>s</u>			
oapaony	Actua	Max	kimum	10)S F?			Actu	1	Maxim	num	LOS F?
						V _{FI} = \	√	5876		960		No
V _{FO}						V ₁₂	<u> </u>	3056		4400		No
V _{R12}						$V_{FO} = V_{R}$	/ _F -	3811		9600)	No
						V _R		2065		4100	D	No
Level of	Service L	Determin	ation (i	if not	F)	Level o	of S	ervice	e Dete	rmina	ation (if	not F)
D _R = 5.47	′5 + 0.00734	4 v _R + 0.00	78 V ₁₂ -	0.0062	27 L _A		D _R =	= 4.252	+ 0.00	86 V ₁₂	- 0.0009	L _D
D _R = (pc/mi/ln)					D _R =	6.8 (p	oc/mi/In)			
LOS = (Exhibit 25-4)				LOS =	A (E)	chibit 2	5-4)			
Speed Estimation						Speed	Est	imatio	on			
M _s = (Exibit 25-19)						D _s = (0.484	(Exhib	it 25-19)		
S_{R}^{2} mph (Exhibit 25-19)						S _R =	56.5 r	nph (Ex	hibit 25	-19)		
$S_0 = mph$ (Exhibit 25-19)						S ₀ =	75.2 r	nph (Ex	hibit 25	-19)		
S = mp	h (Exhibit 25	5-14)				S = (64.1 r	nph (Ex	hibit 25	-15)		
0005 11-	005 University of Florida, All Pights Reserved						S = 64.1 mph (Exhibit 25-15)					

		RAMP	S AND	RAM	P JUN	CTIONS	S W	ORKS	HEET	Г			
General	Informati					Site Int							
Analyst Agency or Cc Date Perform Analysis Time	ed	SST DEA 6/23/2007 PM Peak	,		Ju Ju	eeway/Dir c nction risdiction ialysis Year		vel	Arap	ahoe C	xit Ramp	Ramp hty Pownstream Adj amp Yes \checkmark On No \bigcirc Off down = 700 ft '_D = 520 veh/h = V/PHF x $\frac{1}{10} \times \frac{1}{10} $	
Project Descr	iption Existir	ng Conditions				5							
Inputs													
Upstream Ad	j Ramp	Terrain: Roll	ing								Downstre Ramp	eam Adj	
Yes	Cn On										I Yes	M On	
Mo No	Off									No No			
L _{up} =	ft		<u> </u>	0 mph				15.0 m	nh		L _{down} =	700 ft	
V _u =	veh/h	$S_{FF} = 70.0 \text{ mph}$ $S_{FR} = 45.0 \text{ Sketch (show lanes, } L_{A'} L_{D'} V_{R'} V_{f})$						4 3. 0 II	ipri		V _D =	520 veh/h	
Convers	ion to pc/	/h Under	Base (Condi	tions								
(pc/h)	V (Veh/hr)	PHF	Terr	ain	%Truck	%Rv		f _{HV}	f	р	v = V/PH f _{HV} x f _p	Fx	
Freeway	7860	0.90	Rollir	ng	7	0	0.	905	1.0	0	9650		
Ramp	1570	0.90	Leve	əl	2	0	0.	990	1.0	0	1762		
UpStream					ļ		ļ						
DownStream	520	0.90 Level 2 0 0.990 1.00							584				
Fstimati	on of v ₁₂	Merge Areas				Estima	tion		Diverge	e Areas			
LSumau			<u></u>			LStima			_				
LQ · ·	v. uation 25-2 g Equation					L _{EQ} = (E P _{FD} = 0.26		ion 25-	8 or 25	-9)			
V ₁₂ = pc/h	ו					V ₁₂ = 331	1 pc	:/h					
Capacity	<pre> Checks </pre>					Capaci	ity (Check	S				
	Actua	al Max	kimum	LO	IS F?			Actu	al	Max	imum	LOS F?	
V						$V_{FI} = V$	√ _F	7720		96	500	No	
V _{FO}						V ₁₂		3311		440	0:All	No	
V _{R12}						$V_{FO} = V_{R}$	/ _F -	5958		96	00	No	
						V _R		1762		41	00	No	
Level of	Service L	Determin	ation (i	if not	F)	Level c	of S	ervice	e Dete	ermin	nation (if	^r not F)	
	′5 + 0.00734				-						₂ - 0.0009	/	
	pc/mi/ln)	K	12			D _R =		oc/mi/ln			2	D	
	Exhibit 25-4	.)					 А (Е)	chibit 2	, 5-4)				
Speed Estimation						Speed			,				
$M_{\rm s}$ = (Exibit 25-19)								(Exhib		9)			
$M_{S}^{=}$ (Exhibit 25-19) S _R = mph (Exhibit 25-19)						U		nph (Ex					
S_n^- mph (Exhibit 25-19) S_n^- mph (Exhibit 25-19)								nph (Ex					
	h (Exhibit 25	,				0		• •					
2005 University of Elorida, All Pights Peserved						S = 64.9 mph (Exhibit 25-15)							

General I	nformatio			RAMP JUN	Site In					
Analyst Agency or Cor Date Performe	mpany	SST DEA 6/23/2007		Ju	eeway/Dir nction risdiction		S A	outhbou rapahoe rapahoe	Loop Ramp	
nalysis Time		AM Peak		Ar	alysis Yea	r	2	006		
	ption Existing	g Conditions								
nputs	Б	errain: Rollir	n							
pstream Adj	Ramp		9						Downstrea	m Adj Ramp
Yes	🗖 On								Yes	M On
No	└ Off								► No L _{down} =	Cff 0ff 800 ft
= qu	ft								down	000 11
u =	veh/h	S	_{FF} = 70.0	mph		S _{FR} = 25	.0 mph		V _D =	610 veh/h
u –			Sk	ketch (show lane	es, L _A , L _D ,V	′ _{R′} V _f)				
Conversi	on to pc/	h Under	Base C	onditions						
(pc/h)	V (Veh/hr)	PHF	Terrai	n %Truck	%Rv	f _{HV}	,	f _p	v = V/PHF f _{HV} x f _p	Х
reeway	3790	0.90	Rolling	·	0	0.917		1.00	4590	
amp	520	0.90	Level	2	0	0.990)	1.00	584	
IpStream JownStream	610	0.90	Level	2	0	0.990		1.00	685	
JownStream		Verge Areas	LEVEI	2	0	0.770		rge Area		
stimatic		J			Estima	ation c		5		
		$p = V_{F} (P_{FM})$						V + (V	- V _R)P _{FD}	
- = (Equa	tion 25-2 or 25	1 1101			L _{EQ} = (Ed	nuation 2	12		"R" FD	
	using Equation		-5)		$P_{FD} = us$)	
' ₁₂ = 1796			0)		$V_{12} = pc_1$)	
Capacity							ocks			
apacity	Actual	Maxi	mum	LOS F?			Actual	M	aximum	LOS F?
	Actual	Ινιαλι	num	LUJT:	V _{FI} = V	/	Actual			LUGT:
V _{FO}	4165	See Exh	ibit 25-7	No		Ϋ́F		ļ		
	_				V ₁₂					
					$V_{FO} = V_{F}$	-				
V _{R12}	2380	4600):All	No	V _R			ļ		
					V _R					
evel of S	Service D	etermina	tion (if	not F)	Level o	of Ser	vice De	eterm	ination (i	f not F)
D _R = 5	.475 + 0.00734	4 v _R + 0.0078	8 V ₁₂ - 0.00	627 L _A		D _R =	= 4.252 + 0).0086 V	₁₂ - 0.0009 L _D	
_R = 18	8.8 (pc/mi/ln)				D _R =	(pc/mi/ln)	1			
OS = B	(Exhibit 25-4)				LOS =	(Exhibit 2	25-4)			
Speed Es	stimation				Speed	Estim	ation			
	23 (Exibit 25-19	<u>)</u>)			D _s =	(Exhibit 2	25-19)			
-) mph (Exhibit					mph (Exh	nibit 25-19)	1		
i c	mph (Exhibit					•	, 1ibit 25-19)			
a 00.0				0 1 1						
0) mph (Exhibit	25-14)			S =	mph (Fxł	ibit 25-15)		

Gonoral	nformatio					formatic			
Analyst		SST			eeway/Dir o		Southb	ound I-25	
Agency or Cor Date Performe		DEA 6/23/2007			nction risdiction			loe Loop Ramp loe County	
Analysis Time		PM Peak			alysis Yea	r	2006	loc obunty	
	ption Existin	g Conditions							
nputs									
Jpstream Adj	Ramp	Terrain: Rollin	g					Downstrea	am Adj Ramp
Yes	On							Yes	M On
✓ No	Gff Off							No	Cff 0ff 800 ft
up =	ft	<u> </u>	_ 70.0	mph		2 - 25.0	mph	L _{down} =	
u =	veh/h	S _{FF} = 70.0 mph S _{FR} = 25.0 mph Sketch (show lanes, L_A , L_D , V_R , V_f)						$V_D =$	430 veh/h
					s, l _a , l _d , v	R' ^V f			
Conversi	1	h Under l	Base C	onditions		<u> </u>			,
(pc/h)	V (Veh/hr)	PHF	Terrai	n %Truck	%Rv	f _{HV}	f _p	v = V/PHF f _{HV} x f _p	X
Freeway	6290	0.90	Rolling		0	0.917	1.00	7618	
Ramp	740	0.90	Level	2	0	0.990	1.00	830	
JpStream JownStream	430	0.90	Level	2	0	0.990	1.00	483	
JownStream		Merge Areas	Levei	2	0	0.770	Diverge A		
Stimatio	on of v ₁₂				Estima	tion of			
		$_2 = V_F (P_{FM})$					$V_{12} = V_{R} + V_{R}$	(V _ V)P	
- (Equa	tion 25-2 or 25				I _ (E/	quation 25-8	12 13	F R FD	
	using Equation		E)				01 25-9) 1 (Exhibit 25-	11)	
			5)					11)	
₁₂ = 2565					V ₁₂ = pc/		ka		
Japacity	Checks	Maria			Capaci	ity Chec		Maria	
	Actual	Maxir	num	LOS F?			tual	Maximum	LOS F?
V_{FO}	6277	See Exh	bit 25-7	No	V _{FI} = V V ₁₂	F			
					$V_{FO} = V_{F}$	-			
V _{R12}	3395	4600):All	No	V _R				
					V _R				
evel of	Service D	etermina	tion (if	not F)	Level	of Servi	ce Deter	mination (if not F)
	.475 + 0.0073			/				5 V ₁₂ - 0.0009 L	
	6.6 (pc/mi/ln)	ĸ	12	A	D _R =	(pc/mi/ln)		12	D
OS = C	(Exhibit 25-4)				LOS =	(Exhibit 25-4	ł)		
	stimation				Speed	Estima	tion		
Speed Es						(Exhibit 25-1			
Speed Es)7 (Evihit 75 1)				S	_/	.,		
N _S = 0.39	97 (Exibit 25-1)) mph (Exhibit				S _p =	mph (Exhibi	25-19)		
M _S = 0.39 S _R = 58.9	9 mph (Exhibit	25-19)			IX.	mph (Exhibi mph (Exhibi			
$M_{\rm S} = 0.39$ $M_{\rm R} = 58.9$ $M_{\rm O} = 66.6$		25-19) 25-19)			S ₀ =	mph (Exhibi mph (Exhibi mph (Exhibi	t 25-19)		

Informatio	n			Sito Int	formatio	n		
mornauo	SST		En				ound I-25	
mpany	DEA			eeway/Dir o nction	n Havel		ound 1-25 oe On Ramp	
ed								
Period	AM Peak					2006		
ption Existing	Conditions							
Ramp	rrain: Rolling						Downstrea	am Adj Ramp
M On							Yes	Con Con
└ Off								Ft Off
300 ft								
520 veh/h	S _{FF} =					nph	$V_{D} =$	veh/h
				es, L _A , L _D ,V	_{R'} V _f)			
on to pc/h	Under Base	e Condi	tions					
V (Veh/hr)	PHF T	errain	%Truck	%Rv	f _{HV}	f _p	v = V/PHF f _{HV} x f _p	X
4310	0.90 R	olling	6	0	0.917	1.00	5220	
610	0.90 L	evel	2	0	0.990	1.00	685	
520	0.90 L	evel	2	0	0.990	1.00	584	
	erge Areas				tion of a	<u> </u>	reas	
where v_{12}				⊏stima	tion of v	12		
V ₁₂ =	= V _F (P _{FM})					$V_{12} = V_{R} + ($	V _F - V _R)P _{FD}	
ition 25-2 or 25-3	3)			L _{EQ} = (Ec	uation 25-8	or 25-9)		
							11)	
	. /							
						ks		
Ĩ	Maximum			Capaci			Maximum	
A A A A A A A A A A A A A A A A A A A			S F2					
Actual			S F?	V _ V	Act	uai	IVIAXIIIIUIII	LOS F?
4757	See Exhibit 25		S F? lo	V _{FI} = V		uai	Waximum	LUS F?
	1 i			V ₁₂	F		Maximum	LUSF?
	1 i				F			LUS F?
	1 i	-7 N		V ₁₂ V _{FO} = V _F	F			LUSF?
4757	See Exhibit 25	-7 N	lo	V ₁₂ V _{FO} = V _F V _R	F			
4757 3887	See Exhibit 25 4600:All	-7 N	lo	V_{12} $V_{FO} = V_{F}$ V_{R} V_{R}	F			
4757 3887 Service De	See Exhibit 25 4600:All	-7 N N 0 (if not	lo lo F)	V_{12} $V_{FO} = V_{F}$ V_{R} V_{R}	- of Servic	e Deterr	nination (i	f not F)
4757 3887 Service De .475 + 0.00734	See Exhibit 25 4600:All	-7 N N 0 (if not	lo lo F)	V_{12} $V_{FO} = V_{F}$ V_{R} V_{R} <i>Level c</i>	- - - Df Servic D _R = 4.2	e Deterr		f not F)
4757 3887 Service De .475 + 0.00734 8.9 (pc/mi/ln)	See Exhibit 25 4600:All	-7 N N 0 (if not	lo lo F)	V_{12} $V_{FO} = V_F$ V_R V_R $Level c$ $D_R = 0$	- - - Df Servic D _R = 4.2 (pc/mi/ln)	e Detern 252 + 0.0086	nination (i	f not F)
4757 3887 Service De .475 + 0.00734 8.9 (pc/mi/ln) 6 (Exhibit 25-4)	See Exhibit 25 4600:All	-7 N N 0 (if not	lo lo F)	V_{12} $V_{FO} = V_F$ V_R V_R $Level c$ $D_R = 0$ $LOS = 0$	- - - - - - - - - - - - - -	e Detern 252 + 0.0086	nination (i	f not F)
4757 3887 Service De .475 + 0.00734 8.9 (pc/mi/ln)	See Exhibit 25 4600:All	-7 N N 0 (if not	lo lo F)	V_{12} $V_{FO} = V_F$ V_R V_R $Level c$ $D_R = 0$ $LOS = 0$	- - - Df Servic D _R = 4.2 (pc/mi/ln)	e Detern 252 + 0.0086	nination (i	f not F)
4757 3887 Service De .475 + 0.00734 8.9 (pc/mi/ln) 6 (Exhibit 25-4)	See Exhibit 25 4600:All etermination v _R + 0.0078 V ₁₂ -	-7 N N 0 (if not	lo lo F)	V_{12} $V_{FO} = V_F$ V_R V_R $Level c$ $D_R = 0$ $LOS = 0$ $Speed$	- - - - - - - - - - - - - -	252 + 0.0086	nination (i	f not F)
4757 3887 Service De .475 + 0.00734 8.9 (pc/mi/ln) 6 (Exhibit 25-4) Stimation 74 (Exibit 25-19)	See Exhibit 25 4600:All etermination v _R + 0.0078 V ₁₂ -	-7 N N 0 (if not	lo lo F)	V_{12} $V_{FO} = V_F$ V_R V_R $Level C$ $D_R = 0$ $LOS = 0$ $Speed$ $D_S = 0$	F of Servic D _R = 4.2 (pc/mi/ln) (Exhibit 25-4) Estimat	252 + 0.0086	nination (i	f not F)
4757 3887 Service De .475 + 0.00734 8.9 (pc/mi/ln) 9 (Exhibit 25-4) Stimation	See Exhibit 25 4600:All 25 26 27 27 27 27 27 27 27 27 27 27 27 27 27	-7 N N 0 (if not	lo lo F)	V_{12} $V_{FO} = V_F$ V_R V_R $Level c$ $D_R = 0$ $LOS = 0$ $Speed$ $D_S = 0$ $S_R = 0$	- - - - - - - - - - - - - -	252 + 0.0086	nination (i	f not F)
	ed Period ption Existing Ramp ✓ On ✓ On Off 300 ft 520 veh/h ✓ (Veh/hr) 4310 610 520 M on of v ₁₂ V ₁₂ tion 25-2 or 25-3	ed 6/23/2007 Period AM Peak ption Existing Conditions Ramp On Off Off Off Con to pc/h Under Base V PHF Con to pc/h Under Base V PHF 4310 0.90 R 610 0.90 L 520 0.90 L Merge Areas Dn of V ₁₂ V ₁₂ = V _F (P _{FM}) tion 25-2 or 25-3) using Equation (Exhibit 25-5) pc/h	ed $6/23/2007$ Period AM Peak ption Existing Conditions Ramp On Off Off 300 ft 520 veh/h 520 veh/h 520 veh/h 520 veh/h 520 veh/h 520 veh/h 520 veh/h 520 veh/h 520 veh/h 610 0.90 Rolling 610 0.90 Level 520 0.90 Level	ad $6/23/2007$ JuPeriodAM PeakArptionExisting ConditionsRampTerrain: RollingImage: OnOnImage: OnS $_{FF}$ = 70.0 mph300 ftS $_{FF}$ = 70.0 mph320 veh/hSketch (show lane320 veh/hSketch (show lane320 veh/hPHF320 veh/hTerrain321 veh/hPHF322 veh/hPHF323 veh/hTerrain324 veh/h90325 veh/h0.90326 veh/hPHF327 veh/hPHF328 veh/h1329 veh/h0.90329 veh/h0.90320 veh/h0.90320 veh/h0.90320 veh/h0.9043100.90320 veh/h2320 veh/h2320 veh/h1320 veh/h2320 veh/h2320 veh/h2320 veh/h1320 veh/h1320 veh/h2320 veh/h2320 veh/h1320 veh/h1<	ad $6/23/2007$ JurisdictionPeriodAM PeakAnalysis YearptionExisting ConditionsRampTerrain: RollingImage: OnTerrain: RollingImage: OnSImage: OnOnImage: OnOn<	ad $6/23/2007$ Jurisdiction Period AM Peak Analysis Year ption Existing Conditions Ramp Terrain: Rolling Image: Condition of the second	d 6/23/2007 Jurisdiction Arapah Period AM Peak Analysis Year 2006 ption Existing Conditions 2006 Ramp Terrain: Rolling 2006 Image: One of the ison of the is	dia 6/23/2007 Jurisdiction Arapahoe County Period AM Peak Analysis Year 2006 ption Existing Conditions 2006 Ramp Terrain: Rolling Downstreat If on n Ferrain: Rolling Downstreat If on n Off No 0 off Sref 70.0 mph Sref 20 veh/h Sref 70.0 mph Sref 20 veh/h Sketch (show lanes, L _{A'} L _D , V _R , V _f) V _D = On to pc/h Under Base Conditions V _D = V V (veh/hr) PHF Terrain %Truck %Rv f _{HV} f _p 4310 0.90 Rolling 6 0 0.917 1.00 5220 610 0.90 Level 2 0 0.990 1.00 685 520 0.90 Level 2 0 0.990 1.00 685 520 0.90 Level 2 0 0.990 1.00 685 520 0.90 Level 2 0 0.990

		RAMP	<u>s and</u>	RAMP	<u>JUNO</u>	<u>CTIONS</u>	<u>s wor</u>	KSHE	ET		
General	Informati	on				Site In	format	tion			
Analyst		SST				eeway/Dir o	of Travel		outhbou		
Agency or Co Date Perform		DEA 6/23/2007	,			nction risdiction				On Ramp	
Analysis Time		PM Peak				nsuiction alysis Yea	r		apahoe)06	County	
	iption Existir				7.0			20			
nputs		0									
Jpstream Adj	Ramp	Terrain: Roll	ing							Downstrea	m Adj Ramp
Yes	M On									F Yes	🗖 On
No No	C Off									Mo No	
-up =	800 ft		S = 70.0 mph $S = 45.0 mph$							L _{down} =	ft
Vu =	740 veh/h		$S_{FF} = 70.0 \text{ mph}$ $S_{FR} = 45.0 \text{ mph}$ Sketch (show lanes, $L_{A'}, L_{D'}V_{R'}V_{f}$)						V _D =	veh/h	
Convers	ion to pc	h Under									
(pc/h)	V (Veh/hr)	PHF	Terr		%Truck	%Rv	f _{HV}		f _p	v = V/PHF f _{HV} x f _p	х
Freeway	7030	0.90	Rolli	ng	6	0	0.917		1.00	8514	
Ramp	430	0.90	Lev	<u> </u>	2	0	0.990		1.00	483	
UpStream	740	0.90	Lev	el	2	0	0.990		1.00	830	
DownStream											
		Merge Areas	5						rge Area	IS	
Estimatio	on of v ₁₂					Estima	ntion o	t v ₁₂			
	V	₁₂ = V _F (P _{FM})					V ₁₂ = V	$V_{\rm R} + (V_{\rm F})$	- V _R)P _{FD}	
- _{EQ} = (Equa	ation 25-2 or 2	5-3)				L _{EQ} = (Ed	quation 25	5-8 or 25-9)		
	using Equation	n (Exhibit 2	5-5)					ion (Exhib)	
/ ₁₂ = 4881						$V_{12} = pc/$					
	Checks					Capac		ecks			
	Actua	Max	timum	LOS	S F?		í	Actual	Ma	aximum	LOS F?
	7.0.00					V _{FI} = V					
V_{FO}	6497	See Ex	hibit 25-7	No)		F				
						V ₁₂					
						$V_{FO} = V_{F}$	-				
V _{R12}	5364	460	0:All	Ye	S	V _R					
						V _R					
Level of	Service L	Determin	ation (if not H	=)	Level o	of Serv	vice De	termi	ination (it	f not F)
D _R = 5	5.475 + 0.0073	34 v _R + 0.007	'8 V ₁₂ - 0.0)0627 L _∆			D _R =	4.252 + 0	.0086 V	₁₂ - 0.0009 L _D	
	30.5 (pc/mi/ln)		12	А		D _R =	(pc/mi/ln)			0	
$v_R = 3$	F (Exhibit 25-4)					(Exhibit 2	5-4)			
		•				Speed	•	,			
_OS = F	-)				Sheen	LSUIII	auon			
LOS = F Speed E	stimation					D =	(Evhihit วเ	5_10\			
LOS = F Speed E M _S = 0.9	stimation	9)				5	(Exhibit 2	,			
LOS = F Speed E M _S = 0.9 S _R = 44.	stimation 16 (Exibit 25-1 3 mph (Exhibi	19) t 25-19)				S _R =	mph (Exh	ibit 25-19)			
LOS = F Speed E $M_{S} = 0.9$ $S_{R}^{=} 44.$ $S_{0}^{=} 69.$	stimation	19) t 25-19) t 25-19)				S _R = S ₀ =	mph (Exh mph (Exh	,			

	BASIC	FREEWAY SE	EGMENTS WORKSHEET		
80 Free-Flow Spzed FFS = 75 mith 70 65 mith 60 mith 80 60 55 mith 80 10 S A 55 mith 80 10 S A 10 S A 80 10 S A 10 S A 80 10 S A 10 S A 90 400 200	B C C D 1/150 B C C D 5 101 1/150		Application Input Operational (LOS) FFS, N, vp Design (N) FFS, LOS, Design (vp) FFS, LOS, Planning (LOS) FFS, N, AA Planning (N) FFS, LOS, Planning (N) FFS, LOS, Planning (vp) FFS, LOS, 400 FFS, LOS,	v _p N, S, N v _p , S, DT LOS, 3 AADT N, S,	S, D D S, D D
	Flow Rate (pc/h/ln)				
General Information			Site Information		
Analyst	SST		Highway/Direction of Travel	Southbound	
Agency or Company	DEA		From/To	Arapahoe to	
Date Performed Analysis Time Period	6/23/2007 AM Peak		Jurisdiction Analysis Year	Arapahoe Co 2006	bunty
	Conditions		Analysis Teal	2000	
☐ Oper.(LO			Des.(N)	Plann	ing Data
Flow Inputs	-,	,			
Volume, V AADT Peak-Hr Prop. of AADT, K	4920	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T %RVs, P _R	0.90 6 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terrain: Grade % Length Up/Down %	Rolling mi	
Calculate Flow Adjustr			- - - - - - - - - - -		
f _p	1.00		E _R	2.0	
E _T	2.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.917	
Speed Inputs			Calc Speed Adj and FFS		
Lane Width	12.0	ft			
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}		mi/h
Interchange Density	0.50	l/mi	f _{LC}		mi/h
Number of Lanes, N	5	<i>i</i> /1111	f _{ID}		mi/h
FFS (measured)	70.0	mi/h	f _N		mi/h
	70.0		FFS	70.0	mi/h
Base free-flow Speed, BFFS	Magaziraa	mi/h			
LOS and Performance	Measures		Design (N)		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N : S D = v _p / S LOS	x f _{HV} x f _p) 1192 70.0 17.0 B	pc/h/ln mi/h pc/mi/ln	$\frac{\text{Design (N)}}{\text{Design LOS}}$ $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV})$ S $D = v_p / S$ Required Number of Lanes, N	x f _p)	pc/h mi/h pc/mi/ln
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow pur volume		E _R - Exhibits23-8, 23-10 E _T - Exhibits 23-8, 23-10, 23-11 f _p - Page 23-12 LOS, S, FFS, v _p - Exhibits 23-2, 23	f _L f _N	_W - Exhibit 23-4 _C - Exhibit 23-5 ₁ - Exhibit 23-6 ₀ - Exhibit 23-7
Copyright © 2005 University of Florida			HCS+ TM Version 5.2	Ga	nerated: 12/1/2007 11:38 AM

	BASIC	FREEWAY SE	GMENTS WORKSHEET		
80 Free-Flow Spzed FIS = 75 milh 70 65 milh 66 milh 60 55 milh 60 50 10 S A 55 milh 40 60 milh 60 90 10 S A 10 milh 90 400 800	Br C - C	1750	Application Input Operational (LOS) FFS, N, vp Design (N) FFS, LOS, Design (vp) FFS, LOS, Planning (LOS) FFS, N, AJ Planning (N) FFS, LOS, Planning (N) FFS, LOS, Planning (N) FFS, LOS, Planning (vp) FFS, LOS, 100 FFS, LOS,	, v _p N, S, D , N v _p , S, D ADT LOS, S, D , AADT N, S, D	
	Flow Rate (pc/h/ln)				
General Information			Site Information		
Analyst	SST		Highway/Direction of Travel	Southbound I-2	5
Agency or Company	DEA		From/To	Arapahoe to Dr	
Date Performed	6/23/2007		Jurisdiction	Arapahoe Court	nty
Analysis Time Period	PM Peak		Analysis Year	2006	
· · · · · · · · · · · · · · · · · · ·	Conditions	_			Data
Coper.(LC	15)		Des.(N)	Planning	Data
<i>Flow Inputs</i> Volume, V AADT Peak-Hr Prop. of AADT, K	7460	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T %RVs, P _R	0.90 6 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terrain: Grade % Length Up/Down %	Rolling mi	
Calculate Flow Adjustr			00,00001,10		
f _p	1.00		E _R	2.0	
'ρ Ε _Τ	2.5			0.917	
	2.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.917	
Speed Inputs		<i>c</i> ,	Calc Speed Adj and FFS		
Lane Width	12.0	ft	f _{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}		mi/h
Interchange Density	0.50	l/mi	f _{ID}		mi/h
Number of Lanes, N	5		f _N		mi/h
FFS (measured)	70.0	mi/h	FFS	70.0	mi/h
Base free-flow Speed, BFFS		mi/h		70.0	111/11
LOS and Performance	Measures		Design (N)		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N) S D = v _p / S LOS	x f _{HV} x f _p) 1807 67.8 26.7 D	pc/h/ln mi/h pc/mi/ln	<u>Design (N)</u> Design LOS v _p = (V or DDHV) / (PHF x N x f _{HV} S D = v _p / S Required Number of Lanes, N	, x f _p)	pc/h mi/h pc/mi/ln
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow spee BFFS - Base free-flow pur volume		E _R - Exhibits23-8, 23-10 E _T - Exhibits 23-8, 23-10, 23-11 f _p - Page 23-12 LOS, S, FFS, v _p - Exhibits 23-2, 2	f _{LC} - f _N - E	Exhibit 23-4 Exhibit 23-5 Exhibit 23-6 Exhibit 23-7
Copyright © 2005 University of Florida			HCS+TM Version 5.2	Genera	

Copyright © 2005 University of Florida, All Rights Reserved

Generated: 12/1/2007 11:39 AM

	BASIC	FREEWAY SE	EGMENTS WORKSHEET		
80 Free-Flow Spzed FFS = 75 minh 70 65 minh 70 minh 80 60 55 minh 80 0 55 minh 90 10 S A 10 minh 90 10 S A 10 minh 90 10 minh 10 minh	B C C D B C C D B C C D B C D B C D C D C D C D C D C D C D C D		Application Input Operational (LOS) FFS, N, vp Design (N) FFS, LOS, v Design (vp) FFS, LOS, 1 Planning (LOS) FFS, N, AA Planning (N) FFS, LOS, 1 Planning (vp) FFS, LOS, 1	V _P N, S N V _P , 1 DT LOS AADT N, S	s, s, d s, d s, d s, s, d s, s, d s, d
	Flow Rate (pc/h/ln)				
General Information			Site Information		
Analyst	SST		Highway/Direction of Travel	Northbound	d I-25
Agency or Company	DEA		From/To		
Date Performed	6/23/2007		Jurisdiction	Arapahoe (2006	County
Analysis Time Period Project Description Existing	AM Peak Conditions		Analysis Year	2006	
Oper.(LO			Des.(N)	🗌 Plan	ning Data
Flow Inputs	(0)	1		I I I I I I I I I I I I I I I I I I I	
Volume, V AADT Peak-Hr Prop. of AADT, K	6810	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T %RVs, P _R	0.90 6 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terrain: Grade % Length Up/Down %	Rolling mi	
Calculate Flow Adjustr			Op/Down %		
· · · · · · · · · · · · · · · · · · ·	1.00		E _R	2.0	
f _p					
E _T	2.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.917	
Speed Inputs	/2.2		Calc Speed Adj and FFS		
Lane Width	12.0	ft	f _{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}		mi/h
Interchange Density	0.50	I/mi	f _{ID}		mi/h
Number of Lanes, N	5		f _N		mi/h
FFS (measured)	70.0	mi/h		70.0	
Base free-flow Speed, BFFS		mi/h	FFS	70.0	mi/h
LOS and Performance	Measures		Design (N)		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N) S D = v _p / S LOS	x f _{HV} x f _p) 1650 69.2 23.9 C	pc/h/ln mi/h pc/mi/ln	$\frac{\text{Design (N)}}{\text{Design LOS}}$ $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV})$ S $D = v_p / S$ Required Number of Lanes, N	x f _p)	pc/h mi/h pc/mi/ln
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow pur volume		E _R - Exhibits23-8, 23-10 E _T - Exhibits 23-8, 23-10, 23-11 f _p - Page 23-12 LOS, S, FFS, v _p - Exhibits 23-2, 23		f _{LW} - Exhibit 23-4 f _{LC} - Exhibit 23-5 f _N - Exhibit 23-6 f _{ID} - Exhibit 23-7
Copyright © 2005 University of Florida	All Rights Reserved		HCS+ TM Version 5.2	G	Generated: 12/1/2007 11:38 AM

	BASIC	FREEWAY SE	GMENTS WORKSHEET		
80 Free-Flow Spzed FIS = 75 milh 70 65 milh 66 milh 60 55 milh 60 50 10 S A 55 milh 40 60 milh 60 90 10 S A 10 milh 90 400 800	B C C C		$\begin{tabular}{ c c c c c } \hline \hline \\ \hline \hline \\ \hline $	v _p N, S, D N v _P , S, D IDT LOS, S, D AADT N, S, D	
	Flow Rate (pc/h/ln)				
General Information			Site Information		
Analyst	SST		Highway/Direction of Travel	Northbound I-25	
Agency or Company	DEA		From/To	Dry Creek to Ara	pahoe
Date Performed	6/23/2007		Jurisdiction	Arapahoe County	/
Analysis Time Period	PM Peak		Analysis Year	2006	
· · · · · · · · · · · · · · · · · · ·	Conditions	-			
Oper.(LC	5)		Des.(N)	🔲 Planning D	ata
<i>Flow Inputs</i> Volume, V AADT Peak-Hr Prop. of AADT, K	4820	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T %RVs, P _R	0.90 6 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terrain: Grade % Length Up/Down %	Rolling mi	
Calculate Flow Adjustr			op bown /		
f _p	1.00		E _R	2.0	
E _T	2.5			0.917	
	2.0		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.917	
Speed Inputs	(0.0		Calc Speed Adj and FFS		
Lane Width	12.0	ft	f _{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}		mi/h
Interchange Density	0.50	l/mi	f _{ID}		mi/h
Number of Lanes, N	5		f _N		mi/h
FFS (measured)	70.0	mi/h		70.0	
Base free-flow Speed, BFFS		mi/h	FFS	70.0	mi/h
LOS and Performance	Measures		Design (N)		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N) S D = v _p / S LOS	x f _{HV} x f _p) 1168 70.0 16.7 B	pc/h/ln mi/h pc/mi/ln	Design (N) Design LOS v _p = (V or DDHV) / (PHF x N x f _{HV} S D = v _p / S Required Number of Lanes, N	x f _p)	pc/h mi/h pc/mi/ln
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow pur volume		E _R - Exhibits23-8, 23-10 E _T - Exhibits 23-8, 23-10, 23-11 f _p - Page 23-12 LOS, S, FFS, v _p - Exhibits 23-2, 23	f _{LC} - E f _N - Ex	xhibit 23-4 xhibit 23-5 xhibit 23-6 xhibit 23-7
Copyright © 2005 University of Florida	All Pights Reserved		HCS+ TM Version 5.2	Generate	d [.] 12/1/2007 11:38 AM

		RAMP	S AND	RAM	P JUN	CTIONS	W	ORKS	HEET	ı		
General	Informati					Site Inf						
Analyst Agency or Co Date Perform Analysis Time	ed e Period	SST DEA 6/23/2007 AM Peak			Ju Ju	eeway/Dir c nction risdiction alysis Year		vel	Arapa	bound I-25 ahoe Exit Ran ahoe County	np	
Project Descr	iption Existir	ng Conditions	5									
Inputs		Tamain Dall	!							<u> </u>		
Upstream Adj F Yes	Ramp	Terrain: Roll	ing							Dow Ram		am Adj
	□ Off									Y		M On
	ft							□ N L L		Off 700 ft		
L _{up} = V _u =	veh/h	(S _{FF} = 70.			$S_{FR} = 45.0 \text{ mph}$						520 veh/h
		<i>.</i>				s, L _A , L _D ,V		V _D =				
Convers	ion to pc	h Under	<u>Base (</u>	Condi	tions		1			<u> </u>		
(pc/h)	V (Veh/hr)	PHF	Terr	ain	%Truck	%Rv		f _{HV}	f _p	v = V f _{HV} x		- x
Freeway	6810	0.90	Rollir	ng	6	0	0.	917	1.00) 82	248	
Ramp UpStream	980	0.90	Leve	el	2	0	0.	990	1.00) 11	100	
DownStream	520	0.90	Leve	el	2	0	0.	990	1.00) 5	84	
		Merge Areas	5				р. 		Diverge	Areas		
Estimati	on of v ₁₂					Estima	tior	n of v	12			
LQ	uation 25-2 g Equation					L _{EQ} = (E) P _{FD} = 0.26 V ₁₂ = 253	50 L	ion 25- Ising E	8 or 25-	- (V _F - V _R)F 9) (Exhibit 25-1		
12 .	Checks					Capaci			<u>~</u>			
oupuony	Actua	al Ma	ximum	10	IS F?		<u>.</u> , .	Actu	il.	Maximum		LOS F?
						V _{FI} = \	/_	6599		9600		No
V _{FO}						V ₁₂	Г	2530		4400:All		No
V _{R12}						$V_{FO} = V_{R}$	/ _F -	5499	,	9600		No
						V _R		1100		4100		No
Level of	Service L	Determin	ation (i	if not	F)	Level c	of S	ervice	e Dete	rminatio	n (if	not F)
D _R = 5.47	′5 + 0.00734	4 v _R + 0.00)78 V ₁₂ -	0.0062	27 L _A		D _R =	= 4.252	+ 0.00	86 V ₁₂ - 0.0	0009	L _D
IX N	pc/mi/ln)					i.		oc/mi/In				
	Exhibit 25-4	,						chibit 2	,			
Speed E	stimation					Speed	Est	imati	on			
M _S = (Ex	xibit 25-19)					D _s = (0.397	(Exhib	it 25-19)		
S _R = mp	h (Exhibit 25	5-19)				S _R = 5	58.9 r	nph (Ex	hibit 25	-19)		
S ₀ = mp	h (Exhibit 25	5-19)				S ₀ = 72.8 mph (Exhibit 25-19)						
•	h (Exhibit 28					S = 6	66.7 r	nph (Ex	hibit 25	-15)		
2005 Universi												rated: 1/20/20

		RAMP	S AND	RAM	P JUN	CTIONS	W	ORKS	HEET	•		
General	Informati					Site Inf						
Analyst Agency or Co Date Perform Analysis Time	ed e Period	SST DEA 6/23/2007 PM Peak			Ju Ju	unction /			Arapa	Northbound I-25 Arapahoe Exit Ramp Arapahoe County 2006		
Project Descr	iption Existir	ng Conditions										
Inputs		T . D .										
Upstream Adj	•	Terrain: Roll	ing								ownstre amp	am Adj
✓ Yes ✓ No	☐ On ☐ Off										Yes	M On
	ft										No down =	Off 700 ft
-up = √ _u =	veh/h		S _{FF} = 70.		- h l	$S_{FR} = 45.0 \text{ mph}$					$d_{\rm D} =$	520 veh/h
						es, L _A , L _D ,V	R'Vf)				0	
Convers	ion to pc/	h Under	<u>Base (</u>	Condi	tions	1				<u> </u>		
(pc/h)	V (Veh/hr)	PHF	Terr	ain	%Truck	%Rv		f _{HV}	f _r		= V/PHI _{HV} x f _p	- x
Freeway	4820	0.90	Rollir	ng	6	0	0.	917	1.00)	5838	
Ramp UpStream	755	0.90	Leve	el	2	0	0.	990	1.00)	847	
DownStream	520	0.90	Leve	el	2	0	0.	990	1.00)	584	
		Merge Areas	6						Diverge	Areas		
Estimati	on of v ₁₂					Estima	tior	of v	12			
1.2	uation 25-2 g Equation					L _{EQ} = (E) P _{FD} = 0.26 V ₁₂ = 191	50 L	ion 25- Ising E	8 or 25		IX IB	
12 .	Checks					Capaci	-		'S			
oupuony	Actua	al Mai	ximum	10	IS F?		<u>, , , , , , , , , , , , , , , , , , , </u>	Actu	n	Maxim	um	LOS F?
						V _{FI} = \	/_	4963		9600		No
V _{FO}						V ₁₂		1917		4400:/	All	No
V _{R12}						$V_{FO} = V_{R}$	/ _F -	4116	,	9600		No
						V _R		847		4100		No
Level of	Service L	Determin	ation (i	if not	F)	Level c	of S	ervice	e Dete	rmina	tion (if	not F)
D _R = 5.47	′5 + 0.00734	4 v _R + 0.00)78 V ₁₂ -	0.0062	27 L _A		D _R =	= 4.252	+ 0.00	86 V ₁₂ -	0.0009	L _D
IX N	pc/mi/ln)							pc/mi/lı				
	Exhibit 25-4	,					· ·	chibit 2	,			
Speed E	stimation					Speed	Est	imati	on			
M _S = (Ex	xibit 25-19)					D _s = (0.374	(Exhib	it 25-19))		
S _R = mp	h (Exhibit 25	5-19)				S _R = 5	59.5 r	nph (Ex	hibit 25	-19)		
S ₀ = mp	h (Exhibit 25	5-19)				S ₀ = 74.8 mph (Exhibit 25-19)						
•	h (Exhibit 28					S = 6	68.0 r	nph (Ex	hibit 25	-15)		
2005 Universi											0	rated: 1/29/20

<u></u>				RAMP JU					
	Informati					formatio			
Analyst Agency or Cor	many	SST DEA			Freeway/Dir Junction	of Iravel	bound I-25 hoe Loop Ramp		
ate Performe		6/23/2007			Jurisdiction			hoe County	
nalysis Time		AM Peak			Analysis Yea	r	2006	nee eeung	
Project Descri	ption Existin	g Conditions			-				
nputs									
Jpstream Adj		Terrain: Rollin	ng					Downstrea	am Adj Ramp
Yes	Cn On							Ves	M On
No No	Gff Off							└ No	Cff 0ff 800 ft
up =	ft ,		70.0			0 05 0		L _{down} =	
/u =	veh/h	S	_{FF} = 70.0			S _{FR} = 25.0	mph	$V_{D} =$	710 veh/ł
			S	Sketch (show la	anes, L _A , L _D ,V	/ _{R′} V _f)			
Conversi	ion to pc/	h Under	Base C	Conditions	5				
(pc/h)	V (Veh/hr)	PHF	Terra	ain %Tru	ck %Rv	f _{HV}	f _p	v = V/PHF f _{HV} x f _p	Х
Freeway	5830	0.90	Rollin	ig 6	0	0.917	1.00	7061	
Ramp	470	0.90	Leve	el 2	0	0.990	1.00	527	
JpStream									
DownStream	710	0.90	Leve	2	0	0.990	1.00		
Fatimatic		Merge Areas				tion of	Diverge /	Areas	
Estimatio	01 01 v ₁₂				ESume	ation of	v 12		
	V ₁	$_{2} = V_{F} (P_{FM})$					$V_{12} = V_{R} +$	(V _F - V _R)P _{FD}	
- _{EQ} = (Equa	tion 25-2 or 2	5-3)			L _{EQ} = (E	quation 25-8	3 or 25-9)		
P _{FM} = 0.209	using Equation	n (Exhibit 25	-5)		P _{FD} = us	sing Equatio	n (Exhibit 25	5-11)	
/ ₁₂ = 1077	pc/h				V ₁₂ = pc	/h			
Capacity	Checks				Capac	ity Chec	cks		
	Actua	Maxi	mum	LOS F?			ctual	Maximum	LOS F?
					V _{FI} = \	/_			
V _{FO}	5682	See Exh	ibit 25-7	No	V ₁₂				
			ł						
					$V_{FO} = V_{FO}$	-			
V _{R12}	1604	460	0:All	No	V _R				
					V _R				
evel of	Service D	Determina	ation (i	f not F)	Level	of Servi	ce Deter	rmination (i	if not F)
D _R = 5	.475 + 0.0073	4 v _R + 0.0078	3 V ₁₂ - 0.0	0627 L _A		$D_R = 4$.252 + 0.008	86 V ₁₂ - 0.0009 L _r)
	3.8 (pc/mi/ln)	K	12	<i>N</i>	D _R =	(pc/mi/ln)		12 1	
	(Exhibit 25-4))				(Exhibit 25-4	4)		
0J- A						Estima	,		
						(Exhibit 25-			
Speed Es		0)			-S		- / /		
Speed Es M _s = 0.12	28 (Exibit 25-1					mph (Eyhihi	+ 25 10)		
Speed Es M _S = 0.12 S _R = 66.4	28 (Exibit 25-1 4 mph (Exhibit	25-19)			S _R =	mph (Exhibi	-		
Speed Es $M_{\rm S} = 0.12$ $S_{\rm R} = 66.4$ $S_{\rm O} = 64.5$	28 (Exibit 25-1	25-19) 25-19)			S _R = S ₀ =	mph (Exhibi mph (Exhibi mph (Exhibi	t 25-19)		

General	Informatio	RAMPS			Site Information						
Analyst	mornali	SST		Γr	eeway/Dir d			ound I-25			
Agency or Col	mnanv	DEA			nction	JI HAVEI		oe Loop Ramp			
ate Performe		6/23/2007			risdiction			oe County			
nalysis Time		PM Peak			alysis Year		2006				
roject Descri	ption Existing	g Conditions									
nputs											
pstream Adj	Ramp	errain: Rolling						Downstrea	am Adj Ramp		
Yes	Cn On							Yes	M On		
No	Gff Off							No I	Off Off		
= qL	ft		70.0					L _{down} =	800 ft		
u =	veh/h	S _{FF}	= 70.0 mp			$S_{FR} = 25.0 r$	nph	$V_{D} =$	490 veh/ł		
				h (show lane	s, L _A , L _D ,V	_{R'} V _f)					
Conversi	ion to pc/l	<u>h Under B</u>	ase Con	ditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PHF f _{HV} x f _p	X		
reeway	4065	0.90	Rolling	6	0	0.917	1.00	4923			
Ramp	670	0.90	Level	2	0	0.990	1.00	752			
JpStream											
DownStream	490	0.90	Level	2	0	0.990	1.00	550			
		Verge Areas					Diverge A	reas			
stimatio	on of v ₁₂				Estima	tion of v	12				
	V ₁₂	$P = V_F (P_{FM})$					$V_{12} = V_{R} + ($	V _F - V _R)P _{FD}			
{EO} = (Equa	ation 25-2 or 25	-3)			$L{EO} = (Ec$	uation 25-8	or 25-9)				
		(Exhibit 25-5))				n (Exhibit 25-	11)			
r ₁₂ = 803 p		(2/11/2/12/2010)			$V_{12} = pc/$. (27.11.517.20	,			
							ko				
apacity	Checks	Maulina			Capaci	ity Chec	Î	Marilian			
	Actual	Maxim	um	LOS F?			tual	Maximum	LOS F?		
V	4592	See Exhib	it 25-7	No	V _{FI} = V	F					
V _{FO}					V ₁₂						
v _{FO}					V_{12} $V_{ro} = V_r$	-					
		4600:	A.II.		$V_{FO} = V_{F}$	-					
V _{FO} V _{R12}	1555	4600:/	AII	No	V _{FO} = V _F V _R						
V _{R12}	1555			No	V _{FO} = V _F V _R V _R						
V _{R12}	1555	4600:/ eterminat		No	V _{FO} = V _F V _R V _R		ce Deterr	mination (i	if not F)		
V _{R12}	1555 Service D		ion (if no	No D t F)	V _{FO} = V _F V _R V _R	of Servic		mination (i v V ₁₂ - 0.0009 L _r			
V _{R12} .evel of D _R = 5	1555 Service D	eterminat	ion (if no	No Dt F)	$V_{FO} = V_F$ V_R V_R	of Servic					
V _{R12} .evel of 3 D _R = 5 R = -9	1555 Service D 6.475 + 0.00734	eterminat	ion (if no	No Dt F) ′ L _A	$V_{FO} = V_F$ V_R V_R $Level C$ $D_R = 0$	D f Servic D _R = 4.	252 + 0.0086				
V _{R12} Level of S D _R = 5 D _R = -5 OS = A	1555 Service D 5.475 + 0.00734 9.3 (pc/mi/ln) 4 (Exhibit 25-4)	eterminat	ion (if no	No Dt F) ′ L _A	$V_{FO} = V_F$ V_R V_R $D_R = 0$ $LOS = 0$	D f Servic D _R = 4 (pc/mi/ln) (Exhibit 25-4	252 + 0.0086)				
V_{R12} Level of S $D_R = 5$ $D_R = -5$ OS = -4 Speed Es	1555 Service D 5.475 + 0.00734 9.3 (pc/mi/ln) 4 (Exhibit 25-4) Stimation	eterminat 4 v _R + 0.0078 \	ion (if no	No Dt F)	$V_{FO} = V_F$ V_R V_R $Level C$ $D_R = 0$ $LOS = 0$ $Speed$	D f Servic D _R = 4.1 (pc/mi/ln) (Exhibit 25-4 Estimat	252 + 0.0086) i ion				
V_{R12} .evel of 3 $D_R = 5$ $D_R = -5$ OS = A Speed Es $M_S = 0.12$	1555 Service D 5.475 + 0.00734 9.3 (pc/mi/ln) 4 (Exhibit 25-4) Stimation 27 (Exibit 25-19)	eterminat 4 v _R + 0.0078 \ 9)	ion (if no	No Dt F) ^{7 L} A	$V_{FO} = V_F$ V_R V_R $Level c$ $D_R = 0$ $LOS = 0$ $Speed$ $D_S = 0$	D f Servic D _R = 4 (pc/mi/ln) (Exhibit 25-4 Estimat (Exhibit 25-1	252 + 0.0086) i ion 9)				
V_{R12} $D_{R} = 5$ $D_{R} = -4$ $OS = A$ $Speed Es$ $M_{S} = 0.12$ $R_{R} = 66.4$	1555 Service D 5.475 + 0.00734 9.3 (pc/mi/ln) 4 (Exhibit 25-4) Stimation 27 (Exibit 25-19 4 mph (Exhibit	eterminat 4 v _R + 0.0078 \ 9) 25-19)	ion (if no	No Dt F) ' L _A	$V_{FO} = V_F$ V_R V_R $Level C$ $D_R = 0$ $LOS = 0$ $S_R = 0$	D f Servic D _R = 4. (pc/mi/ln) (Exhibit 25-4 Estimat (Exhibit 25-1 mph (Exhibit	252 + 0.0086) f ion 9) 25-19)				
V_{R12} Level of 3 $D_R = 5$ $D_R = -9$ OS = A Speed Es $I_S = 0.12$ $R^{=} 66.4$ $0^{=} 66.3$	1555 Service D 5.475 + 0.00734 9.3 (pc/mi/ln) 4 (Exhibit 25-4) Stimation 27 (Exibit 25-19)	eterminat 4 v _R + 0.0078 v 25-19) 25-19)	ion (if no	No Dt F) ^{7 L} A	$V_{FO} = V_F$ V_R $Level c$ $D_R = 0$ $LOS = 0$ S_{Peed} $S_R = 0$ $S_0 = 0$	D f Servic D _R = 4 (pc/mi/ln) (Exhibit 25-4 Estimat (Exhibit 25-1	252 + 0.0086) ion 9) 25-19) 25-19)				

-		RAMP	5 AND	NAIVIE	3014				EI		
	Informati					Site Int					
Analyst		SST				eeway/Dir o	of Travel		orthbour		
Agency or Co Date Perform		DEA 6/23/2007	,			nction risdiction			rapanoe rapahoe	On Ramp	
Analysis Time		AM Peak				alysis Year	r		006	County	
	ription Existir					<u> </u>					
nputs											
Jpstream Ad	j Ramp	Terrain: Roll	ing							Downstrea	m Adj Ramp
Yes	M On									Tes Yes	C On
No No	Cff Off									Mo No	Coff
-up =	800 ft			<u> </u>						L _{down} =	ft
/u =	470 veh/h		S _{FF} = 70.		now lane	s, L _A , L _D ,V	S _{FR} = 45 _R ,V _f)	o.0 mph		V _D =	veh/h
Convers	ion to pc	h Under				N D					
	V								6	v = V/PHF	Х
(pc/h)	(Veh/hr)	PHF	Terr	ain	%Truck	%Rv	f _{H\}	/	f _p	f _{HV} x f _p	
Freeway	6300	0.90	Rolli	ng	6	0	0.91	7	1.00	7630	
Ramp	1000	0.90	Lev	el	2	0	0.99)	1.00	1122	
JpStream	470	0.90	Lev	el	2	0	0.99)	1.00	527	
DownStream	ı										
		Merge Areas	5						erge Area	IS	
Estimati	on of v ₁₂					Estima	tion of	of v ₁₂			
	V.	$_{12} = V_{F} (P_{FM})$)					V ₁₂ =	V _R + (V _F	- V _R)P _{FD}	
_{EQ} = (Equ	ation 25-2 or 2	5-3)				L _{EQ} = (Ec	quation 2	5-8 or 25-9))		
	using Equatio	n (Exhibit 2	5-5)			P _{FD} = us)	
/ ₁₂ = 3992		,	,			V ₁₂ = pc/		,		, ,	
	/ Checks					Capaci		ocks			
Japacny	ii .		imum	100	ГЭ	Capaci			M		LOS F?
	Actua	ii iviax	timum	LOS	F?		,	Actual	IVIč	aximum	LUSF?
V_{FO}	6578	See Ex	hibit 25-7	No		V _{FI} = V V ₁₂	F				
						V _{FO} = V _F	-				
V	5114	160)0:All	Yes		V _R					
V _{R12}	5114	400	JU.Ali	163)				├		
						V _R					
	Service L)	Level o				ination (i	/
D_ =	5.475 + 0.0073	84 v _R + 0.007	′8 V ₁₂ - 0.0	00627 L _A			D _R	= 4.252 + ().0086 V	₁₂ - 0.0009 L _D	
R	28.3 (pc/mi/ln)					D _R =	(pc/mi/ln)			
)					(Exhibit 2	25-4)			
) _R = 2	F (Exhibit 25-4					Speed	•	,			
D _R = 2 -OS = 1											
D _R = 2 _OS = 1 Speed E	stimation)				D =	(Fyhihit '	25-10)			
$D_{R} = 2$ OS = 1 Speed E $M_{S} = 0.7$	stimation 32 (Exibit 25-1	9)				5	(Exhibit 2 mph (Exi	•	N		
$D_{R} = 2$ OS = 1 Speed E $A_{S} = 0.7$ $S_{R} = 49$	Stimation 32 (Exibit 25-1 5 mph (Exhibit	9) t 25-19)				S _R = I	mph (Ex	hibit 25-19)			
$D_{R} = 2$ OS = 1 Speed E $M_{S} = 0.7$ $S_{R} = 49$ $S_{0} = 69$	stimation 32 (Exibit 25-1	9) t 25-19) t 25-19)				S _R = 1 S ₀ = 1	mph (Exi mph (Exi	•)		

		RAMP	S AND	RAM	JUN				El		
	Informati					Site In					
Analyst		SST				eeway/Dir o	of Travel		lorthbou		
Agency or Co Date Perform		DEA 6/23/2007	7			nction risdiction				On Ramp	
nalysis Time		PM Peak				nalysis Year	r		rapahoe 006	County	
	ription Existir		;								
nputs	•	<u> </u>									
Ipstream Ad	j Ramp	Terrain: Roll	ing							Downstrea	m Adj Ramp
Ves	M On									Yes	Con 🔽
No	Cff Off									Mo No	C Off
up =	800 ft			0						L _{down} =	ft
/ _{u =}	520 veh/h		S _{FF} = 70.		show lane	s, L _A , L _D ,V	S _{FR} = 45 _{R'} V _f)	o.0 mph		V _D =	veh/h
Convers	ion to pc	h Under	Base	Condit	tions						
(pc/h)	V (Veh/hr)	PHF	Terr		%Truck	%Rv	f _{H\}	/	f _p	v = V/PHF f _{HV} x f _p	Х
Freeway	4735	0.90	Rolli	ng	6	0	0.91	7	1.00	5735	
Ramp	590	0.90	Lev		2	0	0.99	0	1.00	662	
JpStream	520	0.90	Lev	el	2	0	0.99	0	1.00	584	
DownStream	n										
		Merge Areas	5						erge Area	as	
Estimati	on of v ₁₂					Estima	tion of	of v ₁₂			
	V.	₁₂ = V _F (P _{FM})					V ₁₂ =	V _R + (V _F	- V _R)P _{FD}	
_{FO} = (Equ	ation 25-2 or 2	5-3)				L _{EQ} = (Ec	quation 2	25-8 or 25-	9)		
$P_{\rm FM} = 0.789$	using Equatio	n (Exhibit 2	5-5)			P _{FD} = us)	
/ ₁₂ = 3440			-			V ₁₂ = pc/		-			
	/ Checks					Capaci		ecks			
Japaony	Actua	May	kimum		S F?	Capaci		Actual	M	aximum	LOS F?
	Actua		AITIUITI	LU	51:	<u> </u>	,	Actual	1010		LUJT:
$V_{\rm FO}$	5021	See Ex	hibit 25-7	N	0	$V_{FI} = V$ V_{12}	F				
						V _{FO} = V _F	-				
V _{R12}	4102	460	00:All	N	0	V _R					
R12					•	V _R			/		
			- 1 (-			<u> </u>	<u> </u>		
	Service L				-)	Level o				ination (i	· · · · · ·
	5.475 + 0.0073	34 v _R + 0.007	/8 V ₁₂ - 0.0	JU62/L _A			IX.		J.0086 V	₁₂ - 0.0009 L _D	
R = 2	20.6 (pc/mi/ln)					D _R =	(pc/mi/ln)			
OS = (C (Exhibit 25-4)				LOS =	(Exhibit 2	25-4)			
Speed E	stimation					Speed	Estin	nation			
	19 (Exibit 25-1						(Exhibit 2				
/.= ∩?							•)		
5	1 mah / Fulle	105 101									
S _R = 61.	1 mph (Exhibit	-					•				
$\tilde{S}_{R}^{=}$ 61. $\tilde{S}_{0}^{=}$ 70.	.1 mph (Exhibii .0 mph (Exhibii .5 mph (Exhibii	t 25-19)				S ₀ =	mph (Ex	hibit 25-19 hibit 25-19)		

1200	1750 1750 E E E E E E E E E E E E E	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p) 2400	<u>Input</u> FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AADT FFS, LOS, N	Output LOS, S, D N, S, D V _P , S, D LOS, S, D N, S, D V _P , S, D
пюм кае (роллш)				
				<u>)</u>
		- .		
			•	
			•	
Conditions				
		Des.(N)	🔲 Planning	Data
	<i>y</i>	\ /		
7300	veh/h veh/dav	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.90 7	
	· · · · · · · · · · · · · · · · · · ·	1		
		General Terrain:	-	
	veh/h	Grade % Length	mi	
1.00		Up/Down %		
ents				
1.00		E _R	2.0	
2.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.905	
			S	
12.0	ft		_	
				mi/h
				mi/h
	.,	f _{ID}		mi/h
•	mi/h	f _N		mi/h
70.0			70.0	mi/h
	mı/h			
leasures				
f _{HV} x f _p) <i>17</i> 93	pc/h/ln	<u>Design (N)</u> Design LOS		"
67.9	mi/h	F	× ' _{HV} × ' _p)	pc/h
				mi/h
	P ~	۲		pc/mi/ln
		Required Number of Lanes, I	N	
		Factor Location		
S - Speed				
		E _R - Exhibits23-8, 23-10	t _{1 \//} -	Exhibit 23-4
D - Density				
D - Density FFS - Free-flow	speed	E _T - Exhibits 23-8, 23-10, 23- f _p - Page 23-12	-11 f _{LC} -	Exhibit 23-5 Exhibit 23-6
	$ \begin{array}{c} 1200 \\ Flow Rate (pc/h/ln) \\ SST \\ DEA \\ 6/23/2007 \\ AM Peak \\ Conditions \\ 7300 \\ \hline 7300 \\ 1.00 \\ 2.5 \\ 12.0 \\ 6.0 \\ 0.50 \\ 5 \\ 70.0 \\ \hline H_V \times f_p) 1793 \\ 67.9 \\ 26.4 \\ D \\ \end{array} $	Image: system Image: s	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

	2/(0101			• •	
80 Free-Flow Speed FFS = 75 milh 70 65 milh 70 milh 60 55 milh 60 50 L0S A 57 40 57 10 milh 30 0 400 800	Br C	150 1750 0 1750 0 1750 1750 1750 1750 17	Application Operational (LC Design (N) Design (V _p) Planning (LOS) Planning (N) Planning (V _p) 2400	FFS, LOS, v _p FFS, LOS, N	Output LOS, S, D N, S, D v _p , S, D LOS, S, D N, S, D v _p , S, D
General Information	now now (permit)		Site Information		
Analyst	SST		Site Information Highway/Direction of Trave	el Northbound I-2	25
Agency or Company	DEA		From/To	Arapahoe to C	
Date Performed	6/23/2007		Jurisdiction	Arapahoe Cou	
Analysis Time Period	PM Peak		Analysis Year	2006	
	Conditions		•		
Oper.(LOS)			Des.(N)	Planning	Data
Flow Inputs					
Volume, V	5325	veh/h	Peak-Hour Factor, PHF	0.90	
AADT		veh/day	%Trucks and Buses, P _T	7	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Rolling	
$DDHV = AADT \times K \times D$	1.00	veh/h	Grade % Length Up/Down %	mi	
Driver type adjustment Calculate Flow Adjustn					
· · · · · · · · · · · · · · · · · · ·	1.00		E	2.0	
f _p			E _R		
E _T	2.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$		
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width	12.0	ft	f _{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}		mi/h
nterchange Density	0.50	I/mi	f _{ID}		mi/h
Number of Lanes, N	5				
FFS (measured)	70.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	70.0	mi/h
OS and Performance	Measures		Design (N)		
			Design (N)		
<u> Operational (LOS)</u>			Design LOS		
$v_p = (V \text{ or DDHV}) / (PHF x N x)$	x f _{HV} x f _p) <i>1308</i>	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x)$	Nxfuyxf)	pc/h
3	70.0	mi/h	S	нv / 'р/	mi/h
	10 7	pc/mi/ln			
$D = v_p / S$	18.7	pormin	$D = \sqrt{2}$		pc/mi/ln
	18.7 C	pc/m/m	$D = v_p / S$	- NI	-
		pc/m/m	Required Number of Lane	s, N	-
Glossary	С	μο/πι/π	٢	s, N	
LOS Glossary		pc/m/m	Required Number of Lanes		- Exhibit 23-4
D = v _p / S LOS Glossary N - Number of lanes V - Hourly volume	С	pc/m/m	Required Number of Lanes Factor Location E _R - Exhibits23-8, 23-10	f _{LW}	- Exhibit 23-4
LOS Glossary N - Number of lanes	C S - Speed	- 	Required Number of Lanes	f _{LW} - 23-11 f _{LC} -	- Exhibit 23-4 Exhibit 23-5 Exhibit 23-6

Appendix C No Build Operational Analysis

HCM Signalized Intersection Capacity Analysis 2: Arapahoe Rd. & Yosemite

	≯	-	\mathbf{r}	4	+	•	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	ተተተ	1	ካካ	ተተተ	1	٦	- † †	1	ሻሻ	≜ ⊅	
Volume (vph)	265	1720	130	550	2340	715	165	800	245	330	555	110
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	6.0	4.0	4.0	4.0	4.0	4.0	
Lane Util. Factor	0.97	0.91	1.00	0.97	0.91	1.00	1.00	0.95	1.00	0.97	0.95	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3433	5085	1583	3433	5085	1583	1770	3539	1583	3433	3451	
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	3433	5085	1583	3433	5085	1583	1770	3539	1583	3433	3451	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	279	1811	137	579	2463	753	174	842	258	347	584	116
RTOR Reduction (vph)	0	0	61	0	0	148	0	0	5	0	14	0
Lane Group Flow (vph)	279	1811	76	579	2463	605	174	842	253	347	686	0
Turn Type	Prot		Perm	Prot		Perm	Prot		pm+ov	Prot		
Protected Phases	5	2		1	6		3	8	1	7	4	
Permitted Phases			2			6			8			
Actuated Green, G (s)	10.9	57.0	57.0	12.0	58.1	58.1	10.0	18.0	30.0	11.0	19.0	
Effective Green, g (s)	11.9	59.0	59.0	13.0	60.1	58.1	11.0	20.0	32.0	12.0	21.0	
Actuated g/C Ratio	0.10	0.49	0.49	0.11	0.50	0.48	0.09	0.17	0.27	0.10	0.18	
Clearance Time (s)	5.0	6.0	6.0	5.0	6.0	6.0	5.0	6.0	5.0	5.0	6.0	
Vehicle Extension (s)	2.0	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	
Lane Grp Cap (vph)	340	2500	778	372	2547	766	162	590	422	343	604	
v/s Ratio Prot	0.08	0.36		c0.17	c0.48		0.10	c0.24	0.06	c0.10	0.20	
v/s Ratio Perm			0.05			0.38			0.09			
v/c Ratio	0.82	0.72	0.10	1.56	0.97	0.79	1.07	1.43	0.60	1.01	1.14	
Uniform Delay, d1	53.0	24.1	16.3	53.5	29.0	25.8	54.5	50.0	38.4	54.0	49.5	
Progression Factor	1.00	1.00	1.00	1.36	0.68	0.60	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	14.0	1.9	0.3	251.6	1.7	0.8	91.8	201.9	1.5	51.6	80.1	
Delay (s)	67.0	25.9	16.5	324.2	21.5	16.4	146.3	251.9	39.9	105.6	129.6	
Level of Service	E	С	В	F	С	В	F	F	D	F	F	
Approach Delay (s)		30.5			66.6			194.6			121.6	
Approach LOS		С			E			F			F	
Intersection Summary												
HCM Average Control Delay			83.4	Н	CM Level	of Servic	ce		F			
HCM Volume to Capacity ratio	C		1.10									
Actuated Cycle Length (s)			120.0	S	um of los	t time (s)			12.0			
Intersection Capacity Utilization	on		97.6%	IC	U Level	of Service	;		F			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 3: Arapahoe Rd. & I-25 SB off ramp

	≯	-	7	5	+	•	1	L.	~	*	*	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	SBL2	SBL	SBR	NWL	NWR	
Lane Configurations		ተተኈ	1		^	1	ኘኘ		11			
Volume (vph)	0	765	1530	0	2870	755	1625	0	735	0	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1700	1900	1900	1900	1900	
Total Lost time (s)		4.0	4.0		4.0	6.0	4.0		4.0			
Lane Util. Factor		0.86	0.86		0.91	1.00	0.97		0.88			
Frt		0.92	0.85		1.00	0.85	1.00		0.85			
Flt Protected		1.00	1.00		1.00	1.00	0.95		1.00			
Satd. Flow (prot)		4441	1362		5085	1583	3072		2842			
Flt Permitted		1.00	1.00		1.00	1.00	0.95		1.00			
Satd. Flow (perm)		4441	1362		5085	1583	3072		2842			
Peak-hour factor, PHF	0.94	0.94	0.92	0.92	0.94	0.94	0.94	0.92	0.94	0.92	0.92	
Adj. Flow (vph)	0	814	1663	0	3053	803	1729	0	782	0	0	
RTOR Reduction (vph)	0	154	0	0	0	408	0	0	0	0	0	
Lane Group Flow (vph)	0	1492	831	0	3053	395	1729	0	782	0	0	
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	0%	2%	2%	
Turn Type			Free			Perm	Prot		custom			
Protected Phases		2			6		4					
Permitted Phases			Free			6			4			
Actuated Green, G (s)		59.0	120.0		59.0	59.0	50.0		50.0			
Effective Green, g (s)		61.0	120.0		61.0	59.0	51.0		51.0			
Actuated g/C Ratio		0.51	1.00		0.51	0.49	0.42		0.42			
Clearance Time (s)		6.0			6.0	6.0	5.0		5.0			
Vehicle Extension (s)		5.0			5.0	5.0	1.5		1.5			
Lane Grp Cap (vph)		2258	1362		2585	778	1306		1208			
v/s Ratio Prot		0.34			c0.60		c0.56					
v/s Ratio Perm			0.61			0.25			0.28			
v/c Ratio		0.91dr	0.61		1.18	0.51	1.32		0.65			
Uniform Delay, d1		21.8	0.0		29.5	20.7	34.5		27.4			
Progression Factor		0.60	1.00		0.76	0.96	1.00		1.00			
Incremental Delay, d2		1.0	1.4		81.9	0.2	151.2		0.9			
Delay (s)		14.2	1.4		104.4	20.0	185.7		28.3			
Level of Service		В	А		F	В	F		С			
Approach Delay (s)		9.9			86.8			136.7		0.0		
Approach LOS		А			F			F		A		
Intersection Summary												
HCM Average Control Delay			79.4	Н	CM Level	of Servic	e		E			
HCM Volume to Capacity ratio			1.25									
Actuated Cycle Length (s)			120.0	S	um of lost	time (s)			8.0			
Intersection Capacity Utilization	1		113.9%		CU Level o		è.		H			
Analysis Period (min)			15									
dr Defacto Right Lane. Reco	de with	1 though		right lan	е.							
c Critical Lane Group				3								

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis 9: Arapahoe Rd. & I-25 NB Off Ramp

4/29/2008

	۶	-	7	4	+	•	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተተተ			4111		ሻሻ	el el	1			77
Volume (vph)	0	2390	0	0	4275	40	700	75	960	0	0	100
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0		4.0	4.0	5.0			4.0
Lane Util. Factor		0.91			*0.75		0.97	0.95	0.95			0.88
Frt		1.00			1.00		1.00	0.87	0.85			0.85
Flt Protected		1.00			1.00		0.95	1.00	1.00			1.00
Satd. Flow (prot)		5085			5580		3433	1542	1504			2787
Flt Permitted		1.00			1.00		0.95	1.00	1.00			1.00
Satd. Flow (perm)		5085			5580		3433	1542	1504			2787
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	0	2490	0	0	4453	42	729	78	1000	0	0	104
RTOR Reduction (vph)	0	0	0	0	1	0	0	80	81	0	0	0
Lane Group Flow (vph)	0	2490	0	0	4494	0	729	468	449	0	0	104
Turn Type							Split		Perm			custom
Protected Phases		2			6		8	8				
Permitted Phases									8			4
Actuated Green, G (s)		80.0			80.0		17.0	17.0	17.0			7.0
Effective Green, g (s)		82.0			82.0		18.0	18.0	17.0			8.0
Actuated g/C Ratio		0.68			0.68		0.15	0.15	0.14			0.07
Clearance Time (s)		6.0			6.0		5.0	5.0	5.0			5.0
Vehicle Extension (s)		5.0			5.0		1.5	1.5	1.5			1.5
Lane Grp Cap (vph)		3475			3813		515	231	213			186
v/s Ratio Prot		0.49			c0.81		0.21	c0.30				
v/s Ratio Perm									0.30			c0.04
v/c Ratio		0.72			1.18		1.42	2.03	2.11			0.56
Uniform Delay, d1		11.8			19.0		51.0	51.0	51.5			54.3
Progression Factor		0.81			0.44		1.00	1.00	1.00			1.00
Incremental Delay, d2		0.1			80.7		198.2	476.8	514.8			2.1
Delay (s)		9.7			89.1		249.2	527.8	566.3			56.4
Level of Service		А			F		F	F	F			E
Approach Delay (s)		9.7			89.1			426.7			56.4	
Approach LOS		А			F			F			E	
Intersection Summary												
HCM Average Control Delay			135.1	Н	CM Leve	of Servic	e		F			
HCM Volume to Capacity ratio			1.27									
Actuated Cycle Length (s)			120.0		um of los				12.0			
Intersection Capacity Utilization	l		98.4%	IC	CU Level	of Service	:		F			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 11: Arapahoe Rd. & Boston

Lane Configurations Y A+A Y Y HIII Y Y A+A Y Volume (vph) 320 2495 535 45 3700 90 360 95 45 80 125 25 Ideal Flow (vphp) 1900 190 </th <th>П. Агараное Ко.</th> <th></th> <th>11</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1/2</th> <th></th>	П. Агараное Ко.		11									1/2	
Lane Configurations Y A+A Y Y HIII Y Y A+A Y Volume (vph) 320 2495 535 45 3700 90 360 95 45 80 125 25 Ideal Flow (vphp) 1900 190 </th <th></th> <th>٦</th> <th>-</th> <th>\mathbf{r}</th> <th>4</th> <th>+</th> <th>•</th> <th>1</th> <th>Ť</th> <th>1</th> <th>1</th> <th>Ļ</th> <th>~</th>		٦	-	\mathbf{r}	4	+	•	1	Ť	1	1	Ļ	~
Volume (vph) 320 2495 535 45 3700 900 360 95 45 80 125 25 Ideal Flow (vphpl) 1900 100 100 <	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Volume (vph) 320 2495 535 45 3700 900 360 95 45 80 125 25 Ideal Flow (vphpl) 1900 100 100 <	Lane Configurations	ሻሻ	^	1	ሻሻ	1111	1	ሻሻ	A		ሻሻ	^	1
Ideal Flow (vphpl) 1900 1	J. J									45			255
Total Lost time (s) 4.0			1900	1900	1900	1900	1900			1900	1900	1900	1900
Lane Util, Factor 0.97 0.91 1.00 0.97 '0.50 1.00 0.97 0.95 0.97 0.95 1.00 1.00 0.85 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0		4.0	4.0	3.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Fit Protected 0.95 1.00 1.00 0.95 1.00 0.95 1.00 0.95 1.00 1.00 Satat. Flow (prot) 3433 5085 1583 3433 3725 1583 3433 3368 3433 3539 158 Satat. Flow (perm) 3433 5085 1583 3433 3725 1583 3433 3368 3433 3539 158 Satat. Flow (perm) 3433 5085 1583 3433 3725 1583 3433 3368 3433 3539 158 Peak-hour factor, PHF 0.94			0.91	1.00	0.97	*0.50	1.00	0.97	0.95		0.97	0.95	1.00
Fit Protected 0.95 1.00 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.05 1.00 0.95 1.00 0.05 1.00 0.95 1.00 0.05 1.00 0.95 1.00 0.07 1.00 0.95 1.00 0.07 1.00 0.95 1.00 0.07 1.00 0.95 1.00 0.07 1.00 0.95 1.00 0.07 1.00 0.95 1.00 0.07 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 1.00 1.00 0.95 1.00 </td <td>Frt</td> <td>1.00</td> <td>1.00</td> <td>0.85</td> <td>1.00</td> <td>1.00</td> <td>0.85</td> <td>1.00</td> <td>0.95</td> <td></td> <td>1.00</td> <td>1.00</td> <td>0.85</td>	Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.95		1.00	1.00	0.85
Satd. Flow (prot) 3433 5085 1583 3433 3725 1583 3433 3368 3433 3539 158 FIP Permitted 0.95 1.00 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.94	Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00		0.95	1.00	1.00
Fit Permitted 0.95 1.00 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 </td <td>Satd. Flow (prot)</td> <td></td> <td>1583</td>	Satd. Flow (prot)												1583
Satd. Flow (perm) 3433 5085 1583 3433 3725 1583 3433 3368 3433 3539 1583 Peak-hour factor, PHF 0.94	4 7												1.00
Peak-hour factor, PHF 0.94 0.91													1583
Adj. Flow (vph) 340 2654 569 48 3936 96 383 101 48 85 133 27 RTOR Reduction (vph) 0 0 93 0 0 16 0 40 0 0 0 10 Lane Group Flow (vph) 340 2654 476 48 3936 80 383 109 0 85 133 16 Turn Type Prot permit pm+ov Prot Perm Prot Prot Permit Prot Permited Prot Permited 910 6 3 8 7 4 Permited Prot 910 7.2 12.0 10.0			0.94	0.94						0.94			0.94
RTOR Reduction (vph) 0 0 93 0 0 16 0 40 0 0 0 10 Lane Group Flow (vph) 340 2654 476 48 3936 80 383 109 0 85 133 16 Turn Type Prot pm+ov Prot Perm Prot Prot Prot Pernt Protected Phases 5 2 3 1 6 3 8 7 4 Permitted Phases 2 6 6 3 8 7 4 9 Permitted Phases 2 6 6 3 8 7 4 9 Effective Green, g (s) 10.0 70.4 86.3 6.7 67.1 67.1 14.9 19.7 7.2 12.0 12.1 Actuated Green, G (s) 9.0 68.4 82.3 5.7 65.0 1.5 1.5 1.5 1.5 1.5 1.5 Leard Green, g (s) 10.0 20.6 0.05 6.0 5.0 1.5													271
Lane Group Flow (vph) 340 2654 476 48 3936 80 383 109 0 85 133 16 Turn Type Prot pm+ov Prot Perm Prot Prot Perm Prot Perd A Perd A Perd P													102
Turn Type Prot pm+ov Prot Perm Prot Pern Prot Pern Prot Pern													169
Protected Phases 5 2 3 1 6 3 8 7 4 Permitted Phases 2 6	· _ · _ · · · · · ·												Perm
Permitted Phases 2 6 Actuated Green, G (s) 9.0 68.4 82.3 5.7 65.1 65.1 13.9 18.7 6.2 11.0 11. Effective Green, g (s) 10.0 70.4 86.3 6.7 67.1 67.1 14.9 19.7 7.2 12.0 12.0 Actuated g/C Ratio 0.08 0.59 0.72 0.06 0.56 0.50 5.0			2			6	T OITH		8			4	T OIIII
Actuated Green, G (s)9.0 68.4 82.3 5.7 65.1 65.1 13.9 18.7 6.2 11.0 11.1 Effective Green, g (s) 10.0 70.4 86.3 6.7 67.1 67.1 14.9 19.7 7.2 12.0 12.0 Actuated g/C Ratio 0.08 0.59 0.72 0.06 0.56 0.56 0.12 0.16 0.06 0.10 0.11 Clearance Time (s) 5.0 6.0 5.0 5.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 Vehicle Extension (s) 1.5 5.0 1.5 1.5 5.0 5.0 1.5 1.5 1.5 1.5 1.5 Lane Grp Cap (vph) 286 2983 1138 192 2083 885 426 553 206 354 15 Vis Ratio Prot $c0.10$ $c0.52$ 0.06 0.01 $c1.06$ $c0.11$ 0.03 0.02 0.04 v/s Ratio Prem $c2.5$ 0.05 $c0.11$ 0.03 0.02 0.04 $c0.16$ $c0.11$ 0.33 54.4 55.5 Vic Ratio 1.19 0.89 0.42 0.25 1.89 0.09 0.20 0.41 0.38 1.0 Uniform Delay, d1 55.0 21.4 6.8 54.2 26.4 12.3 51.8 43.3 54.4 50.5 54.9 Progression Factor 1.16 0.47 0.57 1.00 1.00 $1.$		0	2		•	U	6	0	U		,	•	4
Effective Green, g (s) 10.0 70.4 86.3 6.7 67.1 67.1 14.9 19.7 7.2 12.0 12. Actuated g/C Ratio 0.08 0.59 0.72 0.06 0.56 0.12 0.16 0.06 0.10 0.1 Clearance Time (s) 5.0 6.0 5.0 5.0 6.0 5.0		9.0	68.4		57	65 1		13.9	18 7		62	11.0	11.0
Actuated g/C Ratio 0.08 0.59 0.72 0.06 0.56 0.12 0.16 0.06 0.10 0.1 Clearance Time (s) 5.0 6.0 5.0 5.0 6.0 6.0 5.0													12.0
Clearance Time (s) 5.0 6.0 5.0 6.0 6.0 5.0 </td <td></td> <td>0.10</td>													0.10
Vehicle Extension (s) 1.5 5.0 1.5 5.0 5.0 1.5 <th1.5< th=""> 1.5 1.5</th1.5<>													5.0
Lane Grp Cap (vph) 286 2983 1138 192 2083 885 426 553 206 354 15 v/s Ratio Prot c0.10 c0.52 0.06 0.01 c1.06 c0.11 0.03 0.02 0.04 v/s Ratio Perm 0.25 0.05 c0.11 0.03 0.02 0.41 0.38 1.0 v/c Ratio 1.19 0.89 0.42 0.25 1.89 0.09 0.20 0.41 0.38 1.0 Uniform Delay, d1 55.0 21.4 6.8 54.2 26.4 12.3 51.8 43.3 54.4 50.5 54. Progression Factor 1.16 0.47 0.57 1.00													1.5
v/s Ratio Prot c0.10 c0.52 0.06 0.01 c1.06 c0.11 0.03 0.02 0.04 v/s Ratio Perm 0.25 0.05 c0.1 0.03 0.02 0.41 0.38 1.0 v/c Ratio 1.19 0.89 0.42 0.25 1.89 0.09 0.90 0.20 0.41 0.38 1.0 Uniform Delay, d1 55.0 21.4 6.8 54.2 26.4 12.3 51.8 43.3 54.4 50.5 54. Progression Factor 1.16 0.47 0.57 1.00 <td>· · ·</td> <td></td> <td>158</td>	· · ·												158
v/s Ratio Perm 0.25 0.05 c0.1 v/c Ratio 1.19 0.89 0.42 0.25 1.89 0.09 0.90 0.20 0.41 0.38 1.00 Uniform Delay, d1 55.0 21.4 6.8 54.2 26.4 12.3 51.8 43.3 54.4 50.5 54.4 Progression Factor 1.16 0.47 0.57 1.00 <							005						150
v/c Ratio 1.19 0.89 0.42 0.25 1.89 0.09 0.90 0.20 0.41 0.38 1.0 Uniform Delay, d1 55.0 21.4 6.8 54.2 26.4 12.3 51.8 43.3 54.4 50.5 54.4 Progression Factor 1.16 0.47 0.57 1.00 <td></td> <td>00.10</td> <td>00.02</td> <td></td> <td>0.01</td> <td>01.00</td> <td>0.05</td> <td>00.11</td> <td>0.00</td> <td></td> <td>0.02</td> <td>0.04</td> <td>c0.11</td>		00.10	00.02		0.01	01.00	0.05	00.11	0.00		0.02	0.04	c0.11
Uniform Delay, d1 55.0 21.4 6.8 54.2 26.4 12.3 51.8 43.3 54.4 50.5 54.4 Progression Factor 1.16 0.47 0.57 1.00		1 19	0.89		0 25	1 89		0.90	0.20		0.41	0 38	1.07
Progression Factor 1.16 0.47 0.57 1.00 1													54.0
Incremental Delay, d2 94.4 1.2 0.0 0.2 402.1 0.2 20.7 0.1 0.5 0.2 91. Delay (s) 158.2 11.3 3.9 54.5 428.6 12.5 72.5 43.4 54.9 50.7 145. Level of Service F B A D F B E D D D Approach Delay (s) 24.1 414.4 64.4 104.2 4proach LOS F E F													1.00
Delay (s) 158.2 11.3 3.9 54.5 428.6 12.5 72.5 43.4 54.9 50.7 145. Level of Service F B A D F B E D D D D Approach Delay (s) 24.1 414.4 64.4 104.2 Approach LOS C F E F F Intersection Summary C F E F <td>•</td> <td></td> <td>91.9</td>	•												91.9
Level of ServiceFBADFBEDDDApproach Delay (s)24.1414.464.4104.2Approach LOSCFEFIntersection SummaryHCM Average Control Delay214.9HCM Level of ServiceFHCM Volume to Capacity ratio1.63	,												145.9
Approach Delay (s)24.1414.464.4104.2Approach LOSCFEFIntersection SummaryFFFFHCM Average Control Delay214.9HCM Level of ServiceFHCM Volume to Capacity ratio1.63													F
Approach LOSCFEFIntersection SummaryHCM Average Control Delay214.9HCM Level of ServiceFHCM Volume to Capacity ratio1.63Actuated Cycle Length (s)120.0Sum of lost time (s)20.0				7.	D		D				U		
Intersection SummaryHCM Average Control Delay214.9HCM Level of ServiceFHCM Volume to Capacity ratio1.63TActuated Cycle Length (s)120.0Sum of lost time (s)20.0													
HCM Average Control Delay214.9HCM Level of ServiceFHCM Volume to Capacity ratio1.63Actuated Cycle Length (s)120.0Sum of lost time (s)20.0													
HCM Volume to Capacity ratio1.63Actuated Cycle Length (s)120.0Sum of lost time (s)20.0	HCM Average Control Dela	IV		214.9	H	CM Leve	of Servio	e		F			
Actuated Cycle Length (s) 120.0 Sum of lost time (s) 20.0													
					S	um of los	t time (s)			20.0			
Intersection Capacity Utilization 92.2% ICU Level of Service F	Intersection Capacity Utiliza	ation		92.2%			• •)		F			
Analysis Period (min) 15													
c Critical Lane Group													

HCM Signalized Intersection Capacity Analysis 2: Arapahoe Rd. & Yosemite

	≯	-	\mathbf{r}	*	+	*	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ካካ	***	1	ካካ	***	1	<u>۲</u>	- ††	1	ካካ	≜ ⊅	
Volume (vph)	200	1555	185	595	2155	310	345	970	495	665	865	125
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	6.0	4.0	4.0	5.0	4.0	4.0	
Lane Util. Factor	0.97	0.91	1.00	0.97	0.91	1.00	1.00	0.95	1.00	0.97	0.95	
Frpb, ped/bikes	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3433	5085	1562	3433	5085	1583	1770	3539	1583	3433	3472	
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	3433	5085	1562	3433	5085	1583	1770	3539	1583	3433	3472	
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	206	1603	191	613	2222	320	356	1000	510	686	892	129
RTOR Reduction (vph)	0	0	96	0	0	129	0	0	141	0	9	0
Lane Group Flow (vph)	206	1603	9 5	613	2222	191	356	1000	369	686	1012	0
Confl. Peds. (#/hr)	1		1									
Turn Type	Prot		Perm	Prot		Perm	Prot		Perm	Prot		
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6			8			
Actuated Green, G (s)	8.8	41.0	41.0	16.0	48.2	48.2	17.0	24.0	24.0	17.0	24.0	
Effective Green, g (s)	9.8	43.0	43.0	17.0	50.2	48.2	18.0	26.0	25.0	18.0	26.0	
Actuated g/C Ratio	0.08	0.36	0.36	0.14	0.42	0.40	0.15	0.22	0.21	0.15	0.22	
Clearance Time (s)	5.0	6.0	6.0	5.0	6.0	6.0	5.0	6.0	6.0	5.0	6.0	
Vehicle Extension (s)	2.0	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	
Lane Grp Cap (vph)	280	1822	560	486	2127	636	266	767	330	515	752	
v/s Ratio Prot	0.06	0.32		c0.18	c0.44		0.20	c0.28		0.20	c0.29	
v/s Ratio Perm			0.06			0.12			0.23			
v/c Ratio	0.74	0.88	0.17	1.26	1.04	0.30	1.34	1.30	1.12	1.33	1.35	
Uniform Delay, d1	53.8	36.1	26.3	51.5	34.9	24.4	51.0	47.0	47.5	51.0	47.0	
Progression Factor	1.00	1.00	1.00	1.30	0.80	0.51	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	8.4	6.5	0.7	125.5	27.8	0.7	175.5	146.1	85.4	162.3	164.2	
Delay (s)	62.2	42.5	27.0	192.5	55. 9	13.0	226.5	193.1	132.9	213.3	211.2	
Level of Service	E	D	С	F	E	В	F	F	F	F	F	
Approach Delay (s)		43.1			78.1			183.0			212.0	
Approach LOS		D			E			F			F	
Intersection Summary												
HCM Average Control Delay			118.7	Н	CM Level	of Servic	ce		F			
HCM Volume to Capacity rati	0		1.16									
Actuated Cycle Length (s)			120.0		um of losi				8.0			
Intersection Capacity Utilizati	on		107.8%	IC	CU Level	of Service	<u>;</u>		G			
Analysis Period (min)			15									

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis 3: Arapahoe Rd. & I-25 SB off ramp

	۲	-	-*	5	+	*	1	L.	~	*	*	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	SBL2	SBL	SBR	NWL	NWR	
Lane Configurations		ተተኈ	1		ተተተ	1	ሻሻ		77			
Volume (vph)	0	1270	1445	0	2410	1085	980	0	650	0	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1700	1900	1900	1900	1900	
Total Lost time (s)		4.0	6.0		4.0	6.0	4.0		4.0			
Lane Util. Factor		0.86	0.86		0.91	1.00	0.97		0.88			
Frt		0.94	0.85		1.00	0.85	1.00		0.85			
Flt Protected		1.00	1.00		1.00	1.00	0.95		1.00			
Satd. Flow (prot)		4541	1362		5085	1583	3072		2787			
Flt Permitted		1.00	1.00		1.00	1.00	0.95		1.00			
Satd. Flow (perm)		4541	1362		5085	1583	3072		2787			
Peak-hour factor, PHF	0.94	0.94	0.92	0.92	0.94	0.94	0.94	0.92	0.94	0.92	0.92	
Adj. Flow (vph)	0	1351	1571	0	2564	1154	1043	0	691	0	0	
RTOR Reduction (vph)	0	0	0	0	0	477	0	0	3	0	0	
Lane Group Flow (vph)	0	2137	785	0	2564	677	1043	0	688	0	0	
Turn Type			Prot			Perm	Prot		custom			
Protected Phases		2	2		6		4					
Permitted Phases						6			4			
Actuated Green, G (s)		67.5	67.5		67.5	67.5	41.5		41.5			
Effective Green, g (s)		69.5	67.5		69.5	67.5	42.5		42.5			
Actuated g/C Ratio		0.58	0.56		0.58	0.56	0.35		0.35			
Clearance Time (s)		6.0	6.0		6.0	6.0	5.0		5.0			
Vehicle Extension (s)		5.0	5.0		5.0	5.0	1.5		1.5			
Lane Grp Cap (vph)		2630	766		2945	890	1088		987			
v/s Ratio Prot		0.47	c0.58		0.50		c0.34					
v/s Ratio Perm						0.43			0.25			
v/c Ratio		0.90dr	1.02		0.87	0.76	0.96		0.70			
Uniform Delay, d1		20.1	26.2		21.4	20.1	37.9		33.2			
Progression Factor		0.88	0.91		0.71	1.14	1.00		1.00			
Incremental Delay, d2		0.8	23.1		0.4	0.6	17.8		1.8			
Delay (s)		18.3	47.0		15.6	23.4	55.7		35.0			
Level of Service		В	D		В	С	E		С			
Approach Delay (s)		26.0			18.0			47.5		0.0		
Approach LOS		С			В			D		А		
Intersection Summary												
HCM Average Control Delay			26.9	H	CM Leve	of Servic	e		С			
HCM Volume to Capacity ratio			1.00									
Actuated Cycle Length (s)			120.0		um of los				10.0			
Intersection Capacity Utilization			84.5%	IC	CU Level	of Service	:		E			
Analysis Period (min)			15									
dr Defacto Right Lane. Reco	de with	1 though	lane as a	right lan	e.							

dr Defacto Right Lane. Recode with 1 though lane as a right lane.

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis 9: Arapahoe Rd. & I-25 NB Off Ramp

4/29/2008

	۶	-	7	4	+	•	•	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተተተ			4111		ካካ	ef 🔰	1			77
Volume (vph)	0	2250	0	0	3430	40	655	35	645	0	0	150
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0		4.0	4.0	5.0			4.0
Lane Util. Factor		0.91			*0.75		0.97	0.95	0.95			0.88
Frt		1.00			1.00		1.00	0.87	0.85			0.85
Flt Protected		1.00			1.00		0.95	1.00	1.00			1.00
Satd. Flow (prot)		5085			5579		3433	1531	1504			2787
Flt Permitted		1.00			1.00		0.95	1.00	1.00			1.00
Satd. Flow (perm)		5085			5579		3433	1531	1504			2787
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	0	2368	0	0	3611	42	689	37	679	0	0	158
RTOR Reduction (vph)	0	0	0	0	1	0	0	81	82	0	0	2
Lane Group Flow (vph)	0	2368	0	0	3652	0	689	282	271	0	0	156
Turn Type							Perm		Perm			custom
Protected Phases		2			6			8				
Permitted Phases							8		8			4
Actuated Green, G (s)		78.0			78.0		19.0	19.0	19.0			7.0
Effective Green, g (s)		80.0			80.0		20.0	20.0	19.0			8.0
Actuated g/C Ratio		0.67			0.67		0.17	0.17	0.16			0.07
Clearance Time (s)		6.0			6.0		5.0	5.0	5.0			5.0
Vehicle Extension (s)		5.0			5.0		1.5	1.5	1.5			1.5
Lane Grp Cap (vph)		3390			3719		572	255	238			186
v/s Ratio Prot		0.47			c0.65			0.18				
v/s Ratio Perm							c0.20		0.18			c0.06
v/c Ratio		0.70			0.98		1.20	1.11	1.14			0.84
Uniform Delay, d1		12.5			19.3		50.0	50.0	50.5			55.4
Progression Factor		0.90			0.88		1.00	1.00	1.00			1.00
Incremental Delay, d2		0.6			1.9		107.9	87.9	101.4			25.9
Delay (s)		11.7			18.8		157.9	137.9	151.9			81.2
Level of Service		В			В		F	F	F			F
Approach Delay (s)		11.7			18.8			151.2			81.2	
Approach LOS		В			В			F			F	
Intersection Summary												
HCM Average Control Delay			42.4	Н	CM Leve	of Servic	e		D			
HCM Volume to Capacity ratio			1.01									
Actuated Cycle Length (s)			120.0		um of los				12.0			
Intersection Capacity Utilization	1		84.9%	IC	CU Level	of Service	:		E			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 11: Arapahoe Rd. & Boston

	٨	-	\mathbf{r}	4	+	×	•	t	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኘኘ	***	1	ኘኘ	1111	1	ሻሻ	≜ ⊅		ሻሻ	† †	1
Volume (vph)	330	2150	415	170	2510	180	695	200	145	120	165	265
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	3.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Lane Util. Factor	0.97	0.91	1.00	0.97	*0.50	1.00	0.97	0.95		0.97	0.95	1.00
Frpb, ped/bikes	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.94		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	3433	5085	1565	3433	3725	1583	3433	3316		3433	3539	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	3433	5085	1565	3433	3725	1583	3433	3316		3433	3539	1583
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	351	2287	441	181	2670	191	739	213	154	128	176	282
RTOR Reduction (vph)	0	0	48	0	0	44	0	111	0	0	0	127
Lane Group Flow (vph)	351	2287	393	181	2670	147	739	256	0	128	176	155
Confl. Peds. (#/hr)	3		3									
Turn Type	Prot		pm+ov	Prot		Perm	Prot			Prot		Perm
Protected Phases	5	2	3	1	6		3	8		7	4	
Permitted Phases			2			6						4
Actuated Green, G (s)	12.9	57.8	76.8	9.2	54.1	54.1	19.0	23.9		8.1	13.0	13.0
Effective Green, g (s)	13.9	59.8	80.8	10.2	56.1	56.1	20.0	24.9		9.1	14.0	14.0
Actuated g/C Ratio	0.12	0.50	0.67	0.08	0.47	0.47	0.17	0.21		0.08	0.12	0.12
Clearance Time (s)	5.0	6.0	5.0	5.0	6.0	6.0	5.0	5.0		5.0	5.0	5.0
Vehicle Extension (s)	1.5	5.0	1.5	1.5	5.0	5.0	1.5	1.5		1.5	1.5	1.5
Lane Grp Cap (vph)	398	2534	1054	292	1741	740	572	688		260	413	185
v/s Ratio Prot	c0.10	c0.45	0.07	0.05	c0.72		c0.22	0.08		0.04	0.05	
v/s Ratio Perm			0.19			0.09						c0.10
v/c Ratio	0.88	0.90	0.37	0.62	1.53	0.20	1.29	0.37		0.49	0.43	0.84
Uniform Delay, d1	52.2	27.4	8.5	53.0	32.0	18.8	50.0	40.8		53.2	49.3	51.9
Progression Factor	1.17	0.71	1.03	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	12.9	3.7	0.0	2.8	243.1	0.6	144.1	0.1		0.5	0.3	25.7
Delay (s)	73.8	23.0	8.8	55.8	275.0	19.4	194.1	41.0		53.8	49.5	77.5
Level of Service	E	С	А	E	F	В	F	D		D	D	E
Approach Delay (s)		26.8			245.9			143.3			63.9	
Approach LOS		С			F			F			Ε	
Intersection Summary												
HCM Average Control Dela	5		131.4	Н	CM Leve	of Servic	ce		F			
HCM Volume to Capacity ra	atio		1.35									
Actuated Cycle Length (s)			120.0		um of los				20.0			
Intersection Capacity Utiliza Analysis Period (min)	ation		86.4% 15	IC	CU Level	of Service	<u>;</u>		E			

c Critical Lane Group

		RAMP	S AND	RAM) JUN	CTIONS	WOR	(SHE	ET		
General	Informati	on				Site Int	formati	on			
Analyst Agency or Co Date Performe Analysis Time	ed Period				Ju Ju	eeway/Dir c nction risdiction nalysis Year		A A	Northbound Arapahoe L Arapahoe (2030	oop Ramp	
Project Descri	iption No Bu	ald Alternative	9								
Inputs		Terrain: Leve									
Upstream Adj	Ramp		51								am Adj Ramp
F Yes	Con On									I Yes I No	I On I Off
Mo No	Cff Off									L _{down} =	800 ft
L _{up} =	ft										
Vu =	veh/h	c c	S _{FF} = 70.		show lane	S s, L _A , L _D ,V	S _{FR} = 25.0	mph		V _D =	740 veh/h
Convers	ion to pc	/h I Indor				, <u> </u>	R' 1/				
Conversi			Dase	Conu		1				v = V/PHF	x
(pc/h)	(Veh/hr)	PHF	Terr		%Truck		f _{HV}		f _p	f _{HV} x f _p	^
Freeway	7105	0.90	Lev		6	0	0.971	_	1.00	8131	
Ramp UpStream	800	0.90	Lev	ei	2	0	0.990		1.00	898	
DownStream	740	0.90	Lev	el	2	0	0.990		1.00	830	
Downoticam	140	Merge Areas		01		Ŭ	0.000	Dive	erge Areas		
Estimatio	on of v_{12}					Estima	tion of		<u> </u>		
L _{EQ} = (Equa P _{FM} = 0.209 V ₁₂ = 1215	V. ation 25-2 or 2 using Equatio					L _{EQ} = (Ec P _{FD} = us	uation 25- ing Equatio	V ₁₂ = 8 or 25-		V _R)P _{FD}	
						V ₁₂ = pc/					
Capacity	1				0 = 0	Capaci	í		1		
V _{FO}	Actua 6712		imum hibit 25-7	LO: N	S F? 0	V _{FI} = V		ctual	Max	kimum	LOS F?
V _{R12}	2113	460	00:All	N	0	V_{12} $V_{FO} = V_F$ V_R V_R					
Level of	Service L	Determin	ation (if not	F)	Level c	of Servi	ce D	etermir	nation (i	f not F)
D _R = -{	5.475 + 0.0073 5.0 (pc/mi/ln) \ (Exhibit 25-4		'8 V ₁₂ - 0.0	00627 L _A			D _R = 4 (pc/mi/ln) (Exhibit 25-		0.0086 V ₁₂	₂ - 0.0009 L _[)
Speed Es	stimation					Speed	Estima	tion			
S _R = 66.0	41 (Exibit 25-1 0 mph (Exhibit 5 mph (Exhibit	t 25-19)				$D_{s} = (Exhibit 25-19)$ $S_{R} = mph (Exhibit 25-19)$ $S_{0} = mph (Exhibit 25-19)$					

<u> </u>	lafa	RAMPS			0011						
	Informatio				_	Site In				11.05	
Analyst Agency or Co	mnany	SST DEA				eeway/Dir o nction	of Travel		Vorthbour		
Date Performe	nipany ed	6/23/2007				risdiction			Arapahoe	Loop Ramp County	
Analysis Time		AM Peak				alysis Year	r		2030	oountj	
Project Descri	ption No Bui	ild Alternative									
nputs											
Jpstream Adj		Terrain: Leve								Downstrea	m Adj Ramp
Yes	Cn On									Yes	M On
Mo No	Gff									No I	Con Cit
-up =	ft			<u> </u>						L _{down} =	800 ft
/u =	veh/h	S	_{FF} = 70.					5.0 mph		V _D =	1060 veh/ł
						es, L _A , L _D ,V	_{R'} V _f)				
Conversi	ion to pc/	h Under	Base (Condit	ions						
(pc/h)	V (Veh/hr)	PHF	Terra	ain	%Truck	%Rv	f _H	v	f _p	v = V/PHF f _{HV} x f _p	Х
Freeway	10165	0.90	Leve	el	6	0	0.97	1	1.00	11633	
Ramp	745	0.90	Leve	el	2	0	0.99	0	1.00	836	
UpStream	10/0			. I					1.00	1100	
DownStream	1060	0.90 Merge Areas	Leve	el	2	0	0.99		1.00 erge Area	1190	
Estimatio		Merge Areas				Estima	tion		erge Area	15	
						LStilla					
		$_{2} = V_{F} (P_{FM})$						12		- V _R)P _{FD}	
LQ · ·	ation 25-2 or 2					L _{EQ} = (Ea					
P _{FM} = 0.209	using Equation	n (Exhibit 25	-5)			P _{FD} = us	ing Equ	ation (Exhi	bit 25-11)	
V ₁₂ = 1909	pc/h					V ₁₂ = pc/	'n				
Capacity	Checks					Capaci	ity Ch	ecks			
	Actual	Maxi	mum	LOS	S F?			Actual	Ma	aximum	LOS F?
						V _{FI} = V	′ _F		ĺ	1	
V_{FO}	9969	See Exh	ibit 25-7	Ye	S	V ₁₂					
						1					
M	0745			N.		$V_{FO} = V_{F}$	-				
V _{R12}	2745	4600	J:All	No)	V _R			<u> </u>		
						V _R					
Level of	Service D	Determina	ntion (i	if not F	-)	Level o	of Ser	vice D	eterm	ination (i	f not F)
D _R = 5	.475 + 0.0073	4 v _R + 0.0078	8 V ₁₂ - 0.0	00627 L _A			D _R	= 4.252 +	0.0086 V	₁₂ - 0.0009 L _D	
0 _R = -(0.1 (pc/mi/ln)					D _R =	(pc/mi/ln)			
	(Exhibit 25-4)					LOS =	(Exhibit)	25-4)			
	stimation					Speed		,			
		0)					(Exhibit				
M _S = 0.1	70 (Exibit 25-1					5	•	hibit 25-19)		
• · ·	I man ha / Euchildet	·)L 10)				U D ⁻		1111111 Z Ə- I Y	1		
	2 mph (Exhibit	-				IX.	•				
S ₀ = 55.0	5 mph (Exhibit 5 mph (Exhibit 3 mph (Exhibit	25-19)				S ₀ =	mph (Ex	hibit 25-19 hibit 25-15)		

Copyright © 2005 University of Florida, All Rights Reserved

		RAMP	S AND	RAM	P JUN	CTIONS	S W	ORKS	HEET		
General	Informati	on				Site Int	forn	natior	1		
Analyst Agency or Co Date Perform Analysis Time	ed e Period	SST DEA 6/23/2007 AM Peak			Ju Ju	eeway/Dir on nction risdiction nalysis Year		vel	Arapa	bound I-25 hoe Exit Ramp hoe County	
	ription No Bu	ild Alternativ	9								
Inputs		Terrain: Lev								<u> </u>	
Upstream Ad	j Ramp	Terrain. Lev	ei							Ramp	eam Adj
No	☐ Off									Yes	
L _{up} =	ft									L _{down} =	
-up	i.		S _{FF} = 70.	0 mph		S	FR =	45.0 m	nph		
V _u =	veh/h				show lane	s, L _A , L _D ,V				V _D =	745 veh/h
Convers	ion to pc	/h Under				A D	IX I'				
(pc/h)	V (Veh/hr)	PHF	Terr		%Truck	%Rv		f _{HV}	f _p	v = V/Pł f _{HV} x f _p	lF x
Freeway	11900	0.90	Leve	el	6	0	0.	971	1.00		
Ramp	1735	0.90	Leve	el	2	0	0.	990	1.00	1947	
UpStream											
DownStream	n 745	0.90	Leve	el	2	0	0.	990	1.00		
		Merge Areas	6						Diverge	Areas	
Estimati	on of v ₁₂					Estima	tioi	n of v	12		
20	uation 25-2 g Equation					L _{EQ} = (E P _{FD} = 0.20 V ₁₂ = 427	60 i	ion 25- using E	8 or 25-	· (V _F - V _R)P _{FD} 9) (Exhibit 25-11)	
12 .	Checks					Capaci			(S		
oapaony	Actua	al Ma	ximum	LO	S F?			Actu	1	Maximum	LOS F?
						V _{FI} = \	V_{r}	1089		9600	Yes
V_{FO}						V ₁₂	<u> </u>	4274		4400:All	No
V _{R12}						V _{FO} = V V _R	/ _F -	8949)	9600	No
						V _R		1947	'	4100	No
Level of	Service L	Determin	ation (i	if not	F)	Level o	of S	ervice	e Deter	rmination (if not F)
	75 + 0.00734				/		D ₀ :	= 4.252	2 + 0.008	36 V ₁₂ - 0.000	9 L _D
	pc/mi/ln)	K	12					(pc/mi/l		12	U
_OS = (Exhibit 25-4	+)				LOS =	F (E>	khibit 2	5-4)		
Speed E	stimation					Speed	Est	timati	on		
	xibit 25-19)								it 25-19)	
-	h (Exhibit 2	5-19)							hibit 25		
· ·	h (Exhibit 2	,							hibit 25	,	
•		0		• •	chibit 25						
•	h (Exhibit 2	Il Rights Rese									perated: 4/29/20

		RAMPS	S AND	RAM	P JUN	CTIONS	W	ORKS	HE	ET		
General	Informati	on				Site Inf	forr	natior	1			
Analyst Agency or Col Date Performe Analysis Time	ed Period	SST DEA 6/23/2007 PM Peak			Ju Ju	eeway/Dir o nction risdiction alysis Year		vel	Ar Ar	orthbound apahoe E apahoe (30	Exit Ramp	
Project Descri	ption No Bu	ild Alternative										
Inputs												
Upstream Adj		Terrain: Leve)								Downstre Ramp	eam Adj
	On Off										🗹 Yes	M On
	ft										I No L _{down} =	☐ Off 700 ft
- _{up} = V _u =	veh/h	S	_{FF} = 70.		show lane	S _I s, L _A , L _D ,V _F		45.0 m	iph		V _D =	800 veh/h
Conversi	ion to pc	/h Under				, <u> </u>						
	V V										v = V/PH	Fx
(pc/h)	(Veh/hr)	PHF	Terra		%Truck	%Rv		f _{HV}		f _p	f _{HV} x f _p	
Freeway	8440	0.90	Leve		6	0		971		.00	9659	
Ramp UpStream	1335	0.90	Leve)	2	0	0.	990		.00	1498	
DownStream	800	0.90	Leve	اد	2	0	0	990		.00	898	
Domiotican	000	Merge Areas	Love			Ū	0.	000		ge Areas		
Estimatio	on of v_{12}					Estima	tior	n of v		90	·	
$P_{FM} = using$ $V_{12} = pc/h$	ation 25-2 g Equation	₁₂ = V _F (P _{FM}) or 25-3) (Exhibit 25-5)				L _{EQ} = (E0 P _{FD} = 0.26 V ₁₂ = 311	50 u 8 pa	ion 25- using E c/h	8 or 2 quati	25-9)	- V _R)P _{FD} bit 25-11)	
Capacity	Checks					Capaci	ty (Check	S			
	Actua	al Max	imum	LO	S F?			Actu			kimum	LOS F?
V _{FO}						$V_{FI} = V$	/ _F	7728		9	600	No
FU						V ₁₂		3118		44(D0:All	No
V _{R12}						V _{FO} = V V _R	′ _F -	6230)	96	600	No
						V _R		1498	;	41	00	No
Level of	Service L	Determina	ation (i	if not	F)	Level o	of S	ervice	e De	termin	nation (in	f not F)
D _R = 5.47	5 + 0.00734	4 v _R + 0.00	78 V ₁₂ -	0.0062	27 L _A		D _R :	= 4.252	+ 0.	0086 V.	12 - 0.0009	L _D
	oc/mi/ln)	·				D _R = 7	7.3 (r	oc/mi/In)			
	Exhibit 25-4	ł)						xhibit 2	,			
•	stimation	,				Speed	<u> </u>		,			
	(ibit 25-19)							(Exhib		19)		
	n (Exhibit 25	5-19)				-	57.9 r	mph (Ex	hibit	25-19)		
	n (Exhibit 25							nph (Ex				
0		/				ľ		. `		,		

-		RAMP	5 AND		3014						
	Informati					Site In					
Analyst		SST				eeway/Dir o	of Travel		lorthbou		
Agency or Co Date Perform		DEA 6/23/2007				nction risdiction			vrapanoe vrapahoe	On Ramp	
allysis Time		AM Peak				nalysis Year	r		030	County	
	ription No Bu		;								
nputs											
Jpstream Ad	j Ramp	Terrain: Leve	el El							Downstrea	m Adj Ramp
Yes	M On									F Yes	On
No	Cff Off									No No	C Off
up =	800 ft									L _{down} =	ft
/u =	745 veh/h	S	S _{FF} = 70.				S _{FR} = 4	5.0 mph		V _D =	veh/h
ŭ				Sketch (s	show lane	es, L _A , L _D ,V	_{R'} V _f)				
Convers	ion to pc/	/h Under	Base	Condi	tions						
(pc/h)	V (Veh/hr)	PHF	Terr	ain	%Truck	%Rv	f _H	/	f _p	V = V/PHF	х
Fragman	(Ven/ni) 10910	0.90	Lov		4	0				f _{HV} x f _p 12486	
Freeway Ramp	10910	0.90	Lev		6 2	0	0.97		1.00 1.00	12480	
UpStream	745	0.90	Lev	-	2	0	0.99		1.00	836	
DownStream		0.70	LCV			0	0.77	5	1.00	000	
2011104.04	1	Merge Areas					Į	Dive	erge Area	as	
Estimati	on of v ₁₂					Estima	tion of	of v_{12}	<u> </u>		
		$V_{P} = V_{F} (P_{FM})$)						V_ + (V_	- V _R)P _{FD}	
- (Eau	ation 25-2 or 2)			L _{EQ} = (Ea	nuation (12		"R/"FD	
)							N	
	using Equatio)-D)			P _{FD} = us			UIL 23-11)	
/ ₁₂ = 7307						V ₁₂ = pc/					
Capacity	<u> Checks</u>	í				Capaci	ity Ch			i	
	Actua	l Max	imum	LOS	S F?			Actual	M	aximum	LOS F?
V_{FO}	11108	See Ex	hibit 25-7	Ye	es	$V_{FI} = V$ V_{12}	/ _F				
		_				$V_{FO} = V_F$					
M	0.400			N.							
V _{R12}	8429	460	0:All	Ye	es	V _R			ļ		
						V _R					
evel of	Service L	Determina	ation (if not	F)	Level o	of Ser	vice De	eterm	ination (i	f not F)
D _R = !	5.475 + 0.0073	34 v _R + 0.007	8 V ₁₂ - 0.0	00627 L _A			D _R	= 4.252 + 0	0.0086 V	₁₂ - 0.0009 L _D	
) _R = 5	54.2 (pc/mi/ln)					D _R =	(pc/mi/ln)			
.OS = 1	F (Exhibit 25-4))				LOS =	(Exhibit)	25-4)			
Speed E	stimation					Speed	Estin	nation			
	.937 (Exibit 25						(Exhibit)				
-	•						•	hibit 25-19)		
	32.2 mph (Exhi	uii 20-19)									
IX .	0 mmh / = 1 1	AF 10				S =	mnh (Fv	hihit 25-10)		
$S_0 = 67.$.0 mph (Exhibi 1.9 mph (Exhib					Ŭ	•	hibit 25-19 hibit 25-15			

Copyright © 2005 University of Florida, All Rights Reserved

		RAMP	S AND	RAM) JUN	CTIONS	WOR	KSHE	ET		
General	Informatio	on				Site Int	formati	ion			
					Ju Ju	eeway/Dir c Inction Irisdiction nalysis Year		A A	lorthbour rapahoe rapahoe 030	On Ramp	
Inputs											
Upstream Adj		Ferrain: Leve	el							Downstrea	am Adj Ramp
Ves	M On									Yes	Cn On
🔲 No	Cff Off									⊠ No L _{down} =	Ft Off
L _{up} = {	800 ft		S _{FF} = 70.	0 mph			S _{FR} = 45.0) mph		_	
	800 veh/h			Sketch (es, L _A , L _D ,V		, mpn		V _D =	veh/h
Convers	ion to pc/	h Under	Base	Condi	tions						
(pc/h)	V (Veh/hr)	PHF	Terr	rain	%Truck	%Rv	f _{HV}		f _p	v = V/PHF f _{HV} x f _p	x
Freeway	7905	0.90	Lev	el	6	0	0.971		1.00	9047	
Ramp	740	0.90	Lev		2	0	0.990		1.00	830	
UpStream	800	0.90	Lev	el	2	0	0.990		1.00	898	
DownStream	1	Marra Araa				 		Dive			
Estimativ		Merge Areas	•			Estima	tion of		erge Area	15	
Estimatio						Estima					
	ation 25-2 or 25 using Equatior					L _{EQ} = (Ec P _{FD} = us V ₁₂ = pc/	ing Equati	8 or 25-9	9)	V _R)P _{FD})	
								alva			
Capacity	Checks	1				Capaci	ty Cne	CKS	1		
V _{FO}	Actual 7377		imum hibit 25-7	LO: N	S F?	V _{FI} = V		ctual	Ma	aximum	LOS F?
V _{R12}	5859	460)0:All	Ye	es	V_{12} $V_{FO} = V_F$ V_R V_R	-				
Level of	Service D	etermin	ation (if not	F)	Level c	of Serv	ice De	eterm	ination (i	if not F)
D _R = 5	5.475 + 0.0073	4 v _R + 0.007	'8 V ₁₂ - 0.0	00627 L _A			D _R = 4	4.252 + (0.0086 V	₁₂ - 0.0009 L _[)
D _R = 3	84.2 (pc/mi/ln)					D _R = ((pc/mi/ln)				
	(Exhibit 25-4)						Exhibit 25	-4)			
	stimation					Speed	,	,			
	50 (Exibit 25-1)	9)					Exhibit 25				
Ũ	4 mph (Exhibit	,				S _R = r	mph (Exhit	oit 25-19)		
	1 mph (Exhibit	,				S ₀ = r	mph (Exhil	oit 25-19)		

BASIC FREEWAY SEGMENTS WORKSHEET

80 Free-Flow Speed FFS = 75 milh 70 60 60 milh 60 55 milh 60 50 0 55 milh 40 60 60 80 60 60 90 90 90 30 400 800	B C	50 1(500 1750 E Imple 1600 2000	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	<u>Input</u> FFS, N, v _p FFS, LOS, V _p FFS, LOS, N FFS, N, AADT FFS, LOS, AA FFS, LOS, N	
Concret Information	Tion Note (permit)		Cite Inform			
General Information	SST		Site Infor	ection of Travel	Northbound	1125
Agency or Company	DEA		From/To		Arapahoe to	o Orchard
Date Performed	6/23/2007		Jurisdiction	\r	Arapahoe C 2030	Jounty
Analysis Time Period Project Description No Build	AM Peak Alternative		Analysis Yea	11	2030	
Project Description No Build			Des.(N)		Dlanni	ng Data
Flow Inputs		ļ	Des.(N)		Fidilili	ny Dala
Volume, V AADT	12360	veh/h veh/day	Peak-Hour F %Trucks and	,	0.90 7	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	%RVs, P _R General Terr Grade %	ain: Length Up/Down %	0 Level mi	
Calculate Flow Adjustn	nents					
f _p	1.00		E _R		1.2	
Ε _T	1.5		f _{HV} = 1/[1+P _T (E	E _T - 1) + P _R (E _R - 1)]	0.966	
Speed Inputs			Calc Spee	ed Adj and FFS	;	
Lane Width	12.0	ft				mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			
nterchange Density	0.50	l/mi	f _{LC}			mi/h
Number of Lanes, N	5		f _{ID}			mi/h
FFS (measured)	70.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS	·	mi/h	FFS		70.0	mi/h
LOS and Performance	Measures		Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x N >		pc/h/ln	<u>Design (N)</u> Design LOS			
s D = v _p / S LOS	F	mi/h pc/mi/ln	S D = v _p / S	DHV) / (PHF x N x f	f _{HV} x f _p)	pc/h mi/h pc/mi/ln
Glossary			Factor Lo	cation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre	-	E _R - Exhibits	23-8, 23-10 23-8, 23-10, 23-11	1 f _L	_{.W} - Exhibit 23-4 _{.C} - Exhibit 23-5 _N - Exhibit 23-6

I

	DAGICT			
80 Free-Flow Spzed FrS = 75 milh 70 60 65 milh 60 55 milh 50 LOS A 10 55 milh 10 60 10 55 milh 10 60	Br Cr	1450 1750 1750 1750 1750 1750 1750	Desig Desig Plann Plann Plann Plann	tional (LOS) FFS, N, v _p n (N) FFS, LOS, v _p
440 200	Flow Rate (pc/h/ln		2400	
General Information			Site Information	1
Analyst Agency or Company Date Performed Analysis Time Period Project Description No Build	SST DEA 6/23/2007 PM Peak I Alternative		Highway/Direction of From/To Jurisdiction Analysis Year	f Travel Northbound I-25 Arapahoe to Orch Arapahoe County 2030
Oper.(LOS)			Des.(N)	Planning Dat
<i>Flow Inputs</i> Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	8645	veh/h veh/day veh/h	Peak-Hour Factor, P %Trucks and Buses %RVs, P _R General Terrain: Grade % Len	, P _T 7 <i>O</i> <i>Level</i> gth <i>mi</i>
Driver type adjustment Calculate Flow Adjustn	<u>1.00</u>		Up/Dov	VII %
f _p E _⊤ Speed Inputs	1.00 1.5		E_{R} $f_{HV} = 1/[1+P_{T}(E_{T} - 1) + P_{T}(E_{T} - 1)]$ Calc Speed Adj	
Lane Width	12.0	ft		
Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N	6.0 0.50 5	ft I/mi	f _{LW} f _{LC} f _{ID}	
FFS (measured)	70.0	mi/h	f _N FFS	70.0
Base free-flow Speed, BFFS		mi/h		
LOS and Performance I Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF x N x)$ $f_p)$ S $D = v_p / S$ LOS		pc/h/ln mi/h pc/mi/ln	Design (N)Design (N)Design LOS $v_p = (V \text{ or DDHV}) / (h_p)$ SD = v_p / S Required Number of	
Glossary			Factor Location	
N - Number of lanes	S - Speed			

Date Performed6/23/2007JurisdictionArapahoe CountAnalysis Time PeriodAM PeakAnalysis Year2030Project DescriptionNo Build Alternative					
General InformationSite InformationAnalystSSTHighway/Direction of TravelSouthbound I-25Agency or Company DEA From/To $Orchard to ArapaDate PerformedA02322007JurisdictionArapahoe CountAnalysis Time PeriodAM PeakAnalysis Year2030Project DescriptionNo Build AlternativeDes.(N)Planning DeFlow InputsOper.(LOS)Des.(N)Planning DeVolume, V8970veh/hPeak-Hour Factor, PHF0.90AADTveh/day%Trucks and Buses, P_T7Peak-Hr Direction Prop. DGeneral Terrain:LevelDDHV = AADT x K x Dveh/hGrade %LengthDirver type adjustment1.00E_R1.2E_T1.5f_{HV} = 1/(1+P_T(E_T-1) + P_R(E_R-1))0.966Speed InputsCalc Speed Adj and FFSLane Width12.0ftf_{LW}Number of Lanes, N5ftf_LFFS (measured)70.0mi/hFFSNumber of Lanes, N5ftf_NSase free-flow Speed, BFFSmi/hFFS70.0LOSDQeisn (N)Design (N)Operational (LOS)V_p = (V or DDHV) / (PHF x N x f_{HV} x f_p)f_pS63.6mi/hSD = v_p / S32.5pc/h/lnFactor Location$	Free-Flow Spzed Frs = 75 milh 70 60 65 milh 60 55 milh 55 milh 80 50 10 milh 90 55 milh 60 90 55 milh 10 milh 90 55 milh 10 milh 90 50 10 milh 90 50 10 milh 90 50 10 milh 90 50 10 milh	B, , , , , , , , , , , , , , , , , , ,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Operational Design (N) Design (v _p) Planning (U Planning (v _p)	(LOS) FFS, N, v _p FFS, LOS, v _p FFS, LOS, N OS) FFS, N, AADT I) FFS, LOS, AADT
AnalystSSTHighway/Direction of TravelSouthbound I-25Agency or CompanyDEAFrom/ToOrchard to ArapaDate Performed6/23/2007JurisdictionArapahoe CountAnalysis Time PeriodAM PeakAnalysis Year2030Project DescriptionNo Build AlternativeDes.(N)Planning DeFlow InputsVolume, V8970veh/hPeak-Hour Factor, PHF0.90Volume, V8970veh/hPeak-Hour Factor, PHF0.90AADTveh/day% Trucks and Buses, PT7Peak-Hr Direction Prop, DGeneral Terrain:LevelDDHV = AADT X K X Dveh/hGrade% LengthDDHV = AADT X K X Dveh/hGrade% LengthDriver type adjustment1.00ER1.2ET1.5fHV = 1/(1+PT(ET-1)+PR(ER-1))0.966Speed InputsCalc Speed Adj and FFSLane Width12.0ftInterchange Density0.50I/miNumber of Lanes, N5fiFFS (measured)70.0mi/hSond Performance MeasuresDesign (N)Operational (LOS) $P_p = (V \text{ or DDHV}) / (PHF x N x f_HV x)p_p < V / S32.5pc/h/inS63.6mi/hDP_p / SRequired Number of Lanes, NSDDRequired Number of Lanes, NGlossaryFactor Location$		Flow Rate (pc/h/lr	n)		
Agency or Company Date PerformedDEAFrom/ToOrchard to Arapa Dute PerformedDate Performed $6/23/2007$ JurisdictionArapahae Count Analysis Time PeriodAM PeakAnalysis Time PeriodAM PeakAnalysis Year2030Project DescriptionNo Build AlternativeDes.(N)Planning DateFlow InputsVolume, V8970veh/hPeak-Hour Factor, PHF0.90Volume, V8970veh/day%Trucks and Buses, PT7Peak-Hr Direction Prop, DGeneral Terrain:LevelDh've rype adjustment1.00Veh/hGrade% LengthDriver type adjustment1.00ER1.2ET1.5f _{HV} = 1/(1+PT(ET-1) + PR(ER-1))0.966Speed InputsCalc Speed Adj and FFSLane Width12.0ftfLInterchange Density0.50I/mifLNumber of Lanes, N5fNFFSFFS (measured)70.0mi/hFFSOperational (LOS) $V_p = (V \text{ or DDHV}) / (PHF x N x f_HV xfp)S63.6mi/hSD = v_p / S32.5pc/h/lnLOSDRequired Number of Lanes, NGlossaryFactor Location$					
Analysis Time PeriodAM PeakAnalysis Year2030Project DescriptionNo Build AlternativeProject DescriptionNo Build AlternativeProject DescriptionNo Build AlternativePoper.(LOS)Des.(N)Planning DeVolume, V8970Veh/hPeak-Hour Factor, PHF0.90AADTAADTVeh/hYencks and Buses, PTPeak-Hr Direction Prop, DGeneral Terrain:DDHV = AADT x K x Dveh/hDriver type adjustment1.00Up/Down %Calculate Flow Adjustmentsfp1.00ETftfp1.00ETftT1.5fp1.00ETftfp1.00ETftfp1.00ETftfp1.00ETftfp1.00ftftftftftftftftftftftftftftRt-Shoulder Lat. Clearance6.0ftftNumber of Lanes, N5FFS (measured)70.0mi/hFESS63.6pftpSGlossaryDDesign (N)Design LOSvpfS32.5pc/mi/hDNS63.6mi/h </td <td>Agency or Company</td> <td>DEA</td> <td></td> <td>From/To</td> <td>Orchard to Arapa</td>	Agency or Company	DEA		From/To	Orchard to Arapa
Flow InputsDes.(N)Planning DateVolume, V8970veh/hPeak-Hour Factor, PHF0.90AADTveh/day%Trucks and Buses, P %Trucks and Buses, P %T %RVs, P R % Gale dual terrain:0Design (N) Design LOS vp = (V or DDHV) / (PHF x N x f HV X S S (V or DDHV) / (PHF x N x f HV X S S (P)Design (N) S S 2063 Design LOS N Design LOS N S 					
Flow InputsVolume, V8970veh/hPeak-Hour Factor, PHF0.90AADTveh/day%Trucks and Buses, P %Trucks and Buses, P %RVS, P Grade0Peak-Hr Prop. of AADT, K%RVS, P %RVS, P General Terrain:0Peak-Hr Direction Prop, D DDHV = AADT X K x Dveh/hGeneral Terrain:LevelDDHV = AADT X K x Dveh/hGrade% Length Up/Down %0Calculate Flow Adjustments1.00E R1.21.2E T1.5f_{HV} = 1/(1+P_T(E_T-1) + P_R(E_R-1))0.966Speed InputsCalc Speed Adj and FFSLane Width12.0ft f_LInterchange Density0.50I/miNumber of Lanes, N5FFS (measured)70.0Base free-flow Speed, BFFSmi/hLOS and Performance MeasuresDesign (N)Operational (LOS) $\gamma_p = (V or DDHV) / (PHF x N x f_{HV} xf_p)2063SLOS63.6mi/hpSLOS0GlossaryFactor Location$	Project Description No Build	Alternative			
Volume, V8970veh/hPeak-Hour Factor, PHF0.90AADTveh/day%Trucks and Buses, P_T 7Peak-Hr Prop. of AADT, K%RVs, P_R 0Peak-Hr Direction Prop, DGeneral Terrain:LevelDDHV = AADT x K x Dveh/hGrade% LengthDriver type adjustment1.00Veh/hGrade f_p 1.00 E_R 1.2 E_T 1.5 $f_{HV} = 1/(1+P_T(E_T+1) + P_R(E_R-1))$ 0.966Speed InputsCalc Speed Adj and FFSLane Width12.0ft f_{LC} Interchange Density0.50I/mi f_{LC} Number of Lanes, N5 f_{ID} f_{N} FFS (measured)70.0mi/hFFSDesign (N)Design (N)Design (N)Operational (LOS) $p_c/h/ln$ p_s $\gamma_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} xp_p/sp_c/h/lnf_p)S63.6mi/hSD = v_p/S32.5pc/mi/lnSD = v_p/SRequired Number of Lanes, NF_{IU} x x f_{HV} xf_p)DP_p/SRequired Number of Lanes, N$,			Des.(N)	Planning Date
AADTveh/day%Trucks and Buses, P_T 7Peak-Hr Prop. of AADT, K%RVs, P_R 0Peak-Hr Direction Prop, DGeneral Terrain:LevelDDHV = AADT x K x Dveh/hGrade% LengthDriver type adjustment1.00 $Up/Down %$ Calculate Flow Adjustments f_p 1.00 E_R 1.2 E_T 1.5 $f_{HV} = 1/[1+P_T(E_T \cdot 1) + P_R(E_R \cdot 1)]$ 0.966Speed InputsCalc Speed Adj and FFSLane Width12.0ft f_{LC} Interchange Density0.50I/mi f_{LC} Number of Lanes, N5 f_{ID} f_{ID} See free-flow Speed, BFFSmi/hFFS70.0LOS and Performance MeasuresDesign (N)Design LOS $v_p \in (V \text{ or DDHV}) / (PHF x N x f_{HV} x f_p)^2$ 2063 pc/h/lnS63.6mi/hS $D = v_p / S$ LOSDDFactor Location					
Peak-Hr Direction Prop, D DDHV = AADT x K x D veh/hGeneral Terrain: Grade % Up/Down %LevelGrade Torver type adjustment1.00Calculate Flow AdjustmentsUp/Down % f_p T1.00 E_R HV = 1/(1+PT(ET-1) + PR(ER-1)]1.2 E_T 1.5 $f_{HV} = 1/(1+PT(ET-1) + PR(ER-1)]$ 0.966Speed InputsLane Width12.0ft H Lane Width f_{LO} TRt-Shoulder Lat. Clearance Interchange Density0.501/mi Min f_{LC} T T Number of Lanes, N f_{CO} Speed InputsLOS and Performance MeasuresDesign (N) 2063Operational (LOS) $V_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} xf_p)p_{P} (V \text{ or DDHV}) / (PHF x N x f_{HV} xf_p)p_{P} (V \text{ or DDHV}) / (PHF x N x f_{HV} xf_p)SSCOSGasaryGasaryFactor Location$		8970			
Calculate Flow Adjustments f_p 1.00 E_R 1.2 E_T 1.5 $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$ 0.966Speed InputsLane Width12.0ftRt-Shoulder Lat. Clearance6.0ftInterchange Density0.50I/miNumber of Lanes, N5FFS (measured)70.0Base free-flow Speed, BFFSmi/hCoperational (LOS)Vp = (V or DDHV) / (PHF x N x f_{HV} x f_p S63.6S63.6mi/hDe vp / S32.5pc/mi/lnLOSDFactor Location	Peak-Hr Direction Prop, D DDHV = AADT x K x D	1.00	veh/h	General Terrain: Grade % Length	Level mi
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		nents		•	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				E _R	1.2
Lane Width12.0ft f_{LW} Rt-Shoulder Lat. Clearance6.0ft f_{LC} Interchange Density0.50I/mi f_{LC} Number of Lanes, N5 f_{ID} FFS (measured)70.0mi/hBase free-flow Speed, BFFSmi/hFFS70.0mi/hFFSDesign (N)Design (N)Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ 2063 f_p 63.6S63.6LOS $D = v_p / S$ LOS D Factor Location		1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1)] <i>0.966</i>
Rt-Shoulder Lat. Clearance 6.0 ft f_{LW} Interchange Density 0.50 I/mi f_{LC} Number of Lanes, N 5 f_{ID} FFS (measured) 70.0 mi/hBase free-flow Speed, BFFSmi/hFFS LOS and Performance MeasuresDesign (N) Operational (LOS) $V_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ $\gamma_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ 2063 p_p S S 63.6 D = v_p / S 32.5 LOS D GlossaryFactor Location	Speed Inputs			Calc Speed Adj and	I FFS
Rt-Shoulder Lat. Clearance 6.0 ft f_{LC} Interchange Density 0.50 I/mi f_{LC} Number of Lanes, N 5 f_{ID} FFS (measured) 70.0 mi/hBase free-flow Speed, BFFSmi/hFFS LOS and Performance MeasuresDesign (N) Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ 2063 $pc/h/ln$ $pc/h/ln$ S 63.6 D = v_p / S 32.5 LOS D Cos D Factor Location	Lane Width	12.0	ft	f.w	
Interchange Density 0.50 I/mi f_{ID} Number of Lanes, N5fFFS (measured)70.0mi/hBase free-flow Speed, BFFSmi/h LOS and Performance MeasuresDesign (N) Operational (LOS)Vp = (V or DDHV) / (PHF x N x f_{HV} x $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ 2063 f_p)SS63.6D = v_p / S32.5LOSD GlossaryFactor Location			ft		
FFS (measured)70.0mi/h f_N Base free-flow Speed, BFFSmi/hFFS70.0LOS and Performance MeasuresDesign (N)Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ $f_p)Design (N)S63.6mi/hD = v_p / SLOS32.5pc/mi/lnBase free-flow Speed, BFFS92.5Provide the second $	- · ·		l/mi		
If is (interstrict)70.0mi/hFFS70.0Base free-flow Speed, BFFSmi/hFFS70.0LOS and Performance MeasuresDesign (N)Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ $f_p)Design LOSv_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)f_p)Design LOSv_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)f_p)S63.6mi/hD = v_p / SLOSSD92.5pc/mi/lnDSGlossaryFactor Location$			- //		
LOS and Performance MeasuresDesign (N)Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)f_pDesign LOSv_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)f_pS63.6mi/hD = v_p / SLOS32.5pc/mi/lnDDP_p / SRequired Number of Lanes, NGlossaryFactor Location$, , ,	70.0			70.0
$\begin{array}{c c} \hline Operational (LOS) \\ v_p = (V \ or \ DDHV) / (PHF \ x \ N \ x \ f_{HV} \ x \\ f_p) \\ S & 63.6 \ mi/h \\ D = v_p \ / \ S & 32.5 \ pc/mi/ln \\ LOS & D \end{array} \begin{array}{c} \hline Design \ (N) \\ Design \ LOS \\ v_p = (V \ or \ DDHV) \ / \ (PHF \ x \ N \ x \ f_{HV} \ x \\ f_p) \\ S \\ D = v_p \ / \ S \\ Required \ Number \ of \ Lanes, \ N \end{array}$		Maaauraa	111//11	Docian (N)	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		Measures		<u>Design (N)</u>	
S 63.6 mi/h p' D = v_p / S 32.5 pc/mi/ln $D = v_p / S$ LOSD D Required Number of Lanes, NGlossaryFactor Location	v _p = (V or DDHV) / (PHF x N >	< f _{HV} x 2063	pc/h/ln	v _p = (V or DDHV) / (PHF	x N x f _{HV} x
$\begin{array}{cccc} D = v_p / S & 32.5 & pc/mi/ln \\ LOS & D & & \\ \hline \hline$	S	63.6	mi/h		
Cos Required Number of Lanes, N Glossary Factor Location	E Contraction of the second seco		pc/mi/ln		
	LOS	D			es, N
	Glossary			Factor Location	
		S - Speed			

BASIC FREEWAY SEGMENTS WORKSHEET

	2/(0101				
80 Free-Flow Speed FFS = 75 milh 70 65 milh 70 milh 60 55 milh 60 50 LOS A 50 40 60 60 60 40 60	Br C	150 1750 0 1750 E	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p) 2400	<u>Input</u> FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AADT FFS, LOS, N	Output LOS, S, D N, S, D v _p , S, D LOS, S, D N, S, D v _p , S, D
•	ных кае (релли)				
General Information			Site Information	O a with the average of the	25
Analyst Agency or Company	SST DEA		Highway/Direction of Travel From/To	Southbound I- Orchard to Ar	
Date Performed	6/23/2007		Jurisdiction	Arapahoe Col	
Analysis Time Period	PM Peak		Analysis Year	2030	
Project Description No Build	d Alternative		-		
🔽 Oper.(LOS)			Des.(N)	🔲 Planning	j Data
Flow Inputs					
Volume, V	11905	veh/h	Peak-Hour Factor, PHF	0.90	
AADT		veh/day	%Trucks and Buses, P _T	7	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade % Length Up/Down %	mi	
Calculate Flow Adjustr					
	1.00		E _R	1.2	
f _p					
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.966	
Speed Inputs			Calc Speed Adj and Fl	-S	
_ane Width	12.0	ft	f _{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}		mi/h
nterchange Density	0.50	l/mi	f _{ID}		mi/h
Number of Lanes, N	5				
FFS (measured)	70.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	70.0	mi/h
LOS and Performance	Measures		Design (N)		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N)		pc/h/ln	<u>Design (N)</u> Design LOS		
$p = v_p / S$ $D = v_p / S$ LOS	ну _р , - : : : : F	mi/h pc/mi/ln	v _p = (V or DDHV) / (PHF x N S D = v _p / S	·	pc/h mi/h pc/mi/ln
			Required Number of Lanes,	N	
			Factor Location		
	S - Speed			f	- Exhibit 23-4
Glossary N - Number of lanes V - Hourly volume	S - Speed D - Density		E _R - Exhibits23-8, 23-10		- Exhibit 23-4 - Exhibit 23-5
N - Number of lanes		speed		-11 f _{LC}	- Exhibit 23-4 - Exhibit 23-5 Exhibit 23-6

		RAMP	S AND	RAM) JUN	CTIONS	WORK	SHEE	T		
General	Informati	on				Site Inf	formatio	n			
Analyst Agency or Co Date Performo Analysis Time Project Descri	ed	SST DEA 6/23/2007 AM Peak ild Alternative			Ju Ju	eeway/Dir c nction risdiction nalysis Year		Ara	apahoe C	oop Ramp	
Inputs			,								
inputs		Terrain: Leve	<u>اد</u>							1	
Upstream Adj	Ramp		51								im Adj Ramp
	On									Yes	I On I Off
Mo No	Cff Off									L _{down} =	800 ft
L _{up} =	ft										
Vu =	veh/h	S	S _{FF} = 70.		show lane	S s, L _A , L _D ,V	S _{FR} = 25.0 r _D ,V ₄)	nph		V _D =	785 veh/h
Convers	ion to pc/	/h Under				Y AY DY I	n' I'				
										v = V/PHF	x
(pc/h)	(Veh/hr)	PHF	Terr		%Truck	%Rv	f _{HV}		f _p	f _{HV} x f _p	
Freeway	6610 755	0.90 0.90	Leve Leve		6 2	0	0.971 0.990		.00	7565 847	
Ramp UpStream	755	0.90	Lev			0	0.990	<u> </u>	.00	047	
DownStream	785	0.90	Lev	əl	2	0	0.990	1	.00	881	
Donnotioun		Merge Areas		51		Ů	0.000		ge Areas	001	
Estimatio		U				Estima	tion of v		J		
	V ₁ ation 25-2 or 2 using Equatio					L _{EQ} = (Eq	juation 25-8 ing Equation	V ₁₂ = V or 25-9)		V _R)P _{FD}	
Capacity							ity Chec	ke			
Capacity	Ĩ	I May	imum		S F?	Capaci	í	ĩ	Max	imum	LOS F?
V _{FO}	Actua 6256		hibit 25-7	N		V _{FI} = V V ₁₂		ual	IVIdX		LUG F !
V _{R12}	3382	460)0:All	N	0	$V_{FO} = V_F$ V_R V_R	-				
Level of	Service L	Determin	ation (i	if not	F)	Level c	of Servic	e Det	termin	ation (i	f not F)
D _R = 5	5.475 + 0.0073	34 v _R + 0.007	'8 V ₁₂ - 0.0	0627 L _A			D _R = 4.2	252 + 0.0	0086 V ₁₂	- 0.0009 L _C)
	26.4 (pc/mi/ln)	-				D _R = ((pc/mi/ln)		.=	-	
	C (Exhibit 25-4)					Exhibit 25-4)			
	stimation	,				`	Estimat	, 			
	96 (Exibit 25-1						Exhibit 25-1				
ů	9 mph (Exhibit	,					mph (Exhibit	25-19)			
	6 mph (Exhibit	,					mph (Exhibit	25-19)			

Gonoral	Informatio			AMP JUN		formatic			
	mornati	SST		г.				ound I-25	
nalyst gency or Co	mnany	DEA			eeway/Dir o nction	Di Travei		ioe Loop Ramp	
ate Performe		6/23/2007			risdiction			noe County	
nalysis Time		PM Peak			alysis Year	ſ	2030	lee eeung	
	iption No Bui	Id Alternative			*				
nputs									
pstream Adj		Terrain: Level						Downstrea	am Adj Ramp
Yes	Cn On							Yes	M On
Vo No	Cff							No I	Off Off
up =	ft		70.0					L _{down} =	800 ft
u =	veh/h	5	_F = 70.0 I			S _{FR} = 25.0 I	nph	$V_D =$	645 veh/ł
				etch (show lane	es, L _A , L _D ,V	_{R'} V _f)			
Conversi	ion to pc/	h Under I	Base Co	onditions					
(pc/h)	V (Veh/hr)	PHF	Terrair	n %Truck	%Rv	f _{HV}	f _p	v = V/PHF f _{HV} x f _p	X
reeway	10440	0.90	Level	6	0	0.971	1.00	11948	
Ramp	1085	0.90	Level	2	0	0.990	1.00	1218	
JpStream									
DownStream	645	0.90	Level	2	0	0.990	1.00	724	
		Merge Areas				(**** * (Diverge A	reas	
stimatio	on of v ₁₂				Estima	tion of	12		
	V ₁	$_2 = V_F (P_{FM})$					$V_{12} = V_{R} +$	(V _F - V _R)P _{FD}	
{FO} = (Equa	ation 25-2 or 2	ō-3)			$L{FO} = (EC)$	quation 25-8	or 25-9)		
	using Equation		5)				n (Exhibit 25-	-11)	
/ ₁₂ = 3990		(- /		$V_{12} = pc/$		(,	
	Checks					ity Chec	ke		
σματηγ	ï	Movir			Capaci	1	î	Mavimum	
	Actual	Maxir	num	LOS F?			tual	Maximum	LOS F?
V _{FO}	10666	See Exhi	bit 25-7	Yes	$V_{FI} = V$	F			
		_			V ₁₂				
					$V_{FO} = V_{F}$	-			
V _{R12}	5208	4600	:All	Yes	V _R				
					V _R				
		Determina	tion (if	not F)	Level	of Servic	e Deter	mination (i	f not F)
evel of	Service D			i i				5 V ₁₂ - 0.0009 L _r	
	Service D 5.475 + 0.0073		V ₁₀ - 0.006	DZ/L		ĸ		12 1	J
D _R = 5	5.475 + 0.0073		V ₁₂ - 0.006		D _D =	(pc/mi/ln)			
$D_R = 5$ R = 4	5.475 + 0.0073 0.5 (pc/mi/ln)	4 v _R + 0.0078	V ₁₂ - 0.006			(pc/mi/ln) (Exhibit 25-4	.)		
D _R = 5 _R = 4 OS = F	5.475 + 0.0073 0.5 (pc/mi/ln) ^F (Exhibit 25-4)	4 v _R + 0.0078	V ₁₂ - 0.006		LOS =	(Exhibit 25-4			
D _R = 5 D _R = 4 OS = F Speed Es	5.475 + 0.0073 0.5 (pc/mi/ln) ^F (Exhibit 25-4) Stimation	4 v _R + 0.0078	V ₁₂ - 0.006		LOS = Speed	(Exhibit 25-4 Estimat	ion		
$D_{R} = 5$ $D_{R} = 4$ OS = F Speed Es $M_{S} = 0.99$	5.475 + 0.0073 0.5 (pc/mi/ln) ⁶ (Exhibit 25-4) stimation 94 (Exibit 25-1	4 v _R + 0.0078 9)	V ₁₂ - 0.006		LOS = Speed D _s =	(Exhibit 25-4 Estimat (Exhibit 25-1	ion 9)		
$D_{R} = 5$ $OS = F$ $Speed Es$ $A_{S} = 0.99$ $B_{R} = 42.2$	5.475 + 0.0073 0.5 (pc/mi/ln) ⁻ (Exhibit 25-4) stimation 94 (Exibit 25-1 2 mph (Exhibit	4 v _R + 0.0078 9) 25-19)	V ₁₂ - 0.006		LOS = Speed D _s = S _R =	(Exhibit 25-4 Estimat (Exhibit 25-1 mph (Exhibit	f ion 9) 25-19)		
$D_{R} = 5$ $O_{R} = 4$ OS = F Speed Es $M_{S} = 0.99$ $G_{R} = 42.2$ $G_{0} = 60.9$	5.475 + 0.0073 0.5 (pc/mi/ln) ⁶ (Exhibit 25-4) stimation 94 (Exibit 25-1	4 v _R + 0.0078 9) 25-19) 25-19)	V ₁₂ - 0.006		LOS = Speed $D_s =$ $S_R =$ $S_0 =$	(Exhibit 25-4 Estimat (Exhibit 25-1	9) 25-19) 25-19)		

Copyright © 2005 University of Florida, All Rights Reserved

Agency or Company Date Performed Analysis Time Period Project Description No Build Inputs	SST DEA 6/23/2007 AM Peak		Ju Ju	nction risdiction			So			
Agency or Company Date Performed Analysis Time Period Project Description No Build Inputs	DEA 6/23/2007 AM Peak Alternative		Ju Ju	nction risdiction	of Trav	/el				
Inputs					Freeway/Dir of TravelSouthbound I-25JunctionArapahoe Exit RampJurisdictionArapahoe CountyAnalysis Year2030					
	rrain: Level									
Upstream Adj Ramp	rain: Level									
									Downstre Ramp	eam Adj
✓ Yes ✓ On ✓ No ✓ Off									I Yes	M On
									I No L _{down} =	☐ Off 700 ft
- _{up} = ft V _u = veh/h	S _{FF} = 70		show lane	S es, L _A , L _D ,V _F		45.0 m	ph		V _D =	755 veh/h
Conversion to pc/h	Under Rase			, , , , , , , , , , , , , , , , , , ,	₹' * †/					
V									v = V/PH	Fx
(pc/h) (Veh/hr)		rain	%Truck	%Rv		f _{HV}		f _p	f _{HV} x f _p	
Freeway 8970	0.90 Le		7	0		966		.00	10315	
Ramp 2360 UpStream	0.90 Le	/el	2	0	0.9	990	1	.00	2648	
DownStream 755	0.90 Le	رما	2	0	0.0	990	1	.00	847	
	erge Areas			0	0.,	550		ge Areas	047	
Estimation of v ₁₂				Estima	tior	of v,		jernede		
L_{EQ} = (Equation 25-2 or P _{FM} = using Equation (E) V ₁₂ = pc/h				L _{EQ} = (E0 P _{FD} = 0.26 V ₁₂ = 410	60 u 5 pc	on 25-8 sing Eo	B or 2	5-9)	- V _R)P _{FD} it 25-11)	
Capacity Checks				Capaci	ty C	Check	S			
Actual	Maximum	LC	DS F?	ļ		Actua	al	Maxi	mum	LOS F?
V _{FO}				$V_{FI} = V$	/ _F	8252		96	600	No
· FO				V ₁₂		4105		440	0:All	No
V _{R12}				$V_{FO} = V_{R}$	′ _F -	5604		960	00	No
				V _R		2648		41(00	No
Level of Service De	termination	(if not	F)	Level o	of Se	ervice	Det	termin	ation (if	^r not F)
D _R = 5.475 + 0.00734 v	_R + 0.0078 V ₁₂	- 0.0062	27 L _A		D _R =	4.252	+ 0.0	086 V ₁	₂ - 0.0009	L _D
D _R = (pc/mi/ln)				D _R = 1	15.8 (pc/mi/l	n)			
_OS = (Exhibit 25-4)					3 (E>	hibit 2	5-4)			
Speed Estimation				Speed			,			
M _s = (Exibit 25-19)						(Exhib		19)		
S _R = mph (Exhibit 25-1	9)			, s		nph (Ex				
$S_0 = mph (Exhibit 25-1)$						nph (Ex				
U	- /			ľ				,		

		RAMP	S AND	RAM	P JUN	CTIONS	S W	ORKS	HEET		
General	Informati					Site Int					
Analyst Agency or Co Date Perform Analysis Time	ed	SST DEA 6/23/2007 PM Peak	1		Ju Ju	eeway/Dir on nction risdiction alysis Year		vel	Arapał	bound I-25 noe Exit Ramp noe County	
	iption No Bu		9			<u> </u>					
Inputs											
upstream Adj	Ramp	Terrain: Lev	el							Downstre Ramp	eam Adj
Ves 🗐	🗖 On									i ✓ Yes	🔽 On
Mo No	Off									No I	Off
-up =	ft		S _{FF} = 70.	0 mph				45.0 m	nh	L_down =	700 ft
V _u =	veh/h				show lane	s, L _A , L _D ,V		45.011	ipri	V _D =	1085 veh/
Convers	ion to pc	<u>/h Under</u>	Base (Condi	tions						
(pc/h)	V (Veh/hr)	PHF	Terr	ain	%Truck	%Rv		f _{HV}	f _p	v = V/PH f _{HV} x f _p	Fx
Freeway	11905	0.90	Leve	el	7	0	0.	.966	1.00	13691	
Ramp	1465	0.90	Leve	el	2	0	0.	.990	1.00	1644	
UpStream											
DownStream	1085	0.90	Leve	el	2	0	0.	.990	1.00	1218	
		Merge Areas	6						Diverge A	reas	
Estimati	on of v ₁₂					Estima	tioi	n of v	12		
1.2	uation 25-2 g Equation					L _{EQ} = (E P _{FD} = 0.20 V ₁₂ = 406	60 l	tion 25- using E	8 or 25-9	(V _F - V _R)P _{FD} 9) Exhibit 25-11)	
	Checks						· ·		7S		
oupuony	Actua	al Ma	ximum	10	SF?			Actu	ũ.	Maximum	LOS F?
	710100					V _{FI} = \	/_	1095		9600	Yes
V_{FO}						V ₁₂	· F	4064		4400:All	No
V _{R12}						$V_{FO} = V_{R}$	/ _F -	9309		9600	No
R12						V _R		1644		4100	No
Level of	Service L	Determin	ation (i	if not	F)	Levelo	of S	ervice	e Deter	mination (i	f not F)
	25 + 0.0073				,					6 V ₁₂ - 0.0009	/
	pc/mi/ln)	R	12			D _R =		(pc/mi/l		12	D
_OS = (Exhibit 25-4	ł)				LOS =	F (Ex	xhibit 2	5-4)		
Speed E	stimation					Speed	Est	timati	on		
	xibit 25-19)					D _s = (0.446	(Exhib	it 25-19)		
0	h (Exhibit 2	5-19)				0		•	hibit 25-		
к ·								• •			
$S_0 = mph (Exhibit 25-19)$											
= mph (Exhibit 25-14)						S = 63.3 mph (Exhibit 25-15)					

		RAMP	S AND	RAM) JUN	CTIONS	WORK	SHEE	Т		
General	Informati	on				Site Int	formatic	n			
Analyst Agency or Co Date Performe Analysis Time Project Descri	ed Period				Ju Ju	eeway/Dir c nction risdiction nalysis Year		Ara	uthbound apahoe O apahoe C 30	n Ramp	
Inputs			,								
inputs		Terrain: Leve	<u>اد</u>							<u>г</u>	
Upstream Adj											m Adj Ramp
	M On									F Yes	□ Off
	Cff Off									L _{down} =	ft
L _{up} = 8	800 ft									-	
Vu =	755 veh/h	ę	S _{FF} = 70.		show lane	S s, L _A , L _D ,V _I	S _{FR} = 45.0 r _D ,V _f)	nph		V _D =	veh/h
Convers	ion to pc	/h Under					1. 17			Į	
	v V									v = V/PHF	х
(pc/h)	(Veh/hr)	PHF	Terr		%Truck		f _{HV}		f _p	f _{HV} x f _p	
Freeway	7365 785	0.90 0.90	Lev Lev		6 2	0	0.971 0.990	_	.00 .00	8429 881	
Ramp UpStream	755	0.90	Lev		2	0	0.990	_	.00	847	
DownStream		0.50	LUV			Ŭ	0.000		.00	047	
Donnotioun	<u> </u>	Merge Areas			<u>I</u>			Diver	ge Areas	l	
Estimatio	on of v_{12}					Estima	tion of v				
L _{EQ} = (Equa P _{FM} = 0.762 V ₁₂ = 4591	V ation 25-2 or 2 using Equatio					L _{EQ} = (Ec	uation 25-8 ing Equatior	V ₁₂ = V or 25-9)	_R + (V _F - 25-11)	V _R)P _{FD}	
	· · · · · · · · · · · · · · · · · · ·							<u>ke</u>			
Capacity	1	1				Capaci	ty Chec	ĩ		Í	100 50
V _{FO}	Actua 6908		imum hibit 25-7	LO: N	S F? 0	V _{FI} = V		tual	Maxi	mum	LOS F?
V _{R12}	5472		00:All	Ye		V_{12} $V_{FO} = V_F$ V_R V_R					
Level of	<u>Service E</u>	Determin	ation (if not i	<u>F)</u>	Level c	of Servic	e Det	termin	ation (i	f not F)
	5.475 + 0.0073	34 v _R + 0.007	8 V ₁₂ - 0.0	00627 L _A		D - (D _R = 4.3 pc/mi/ln)	252 + 0.0	0086 V ₁₂	- 0.0009 L _C	
	1.2 (pc/mi/ln) (Exhibit 25-4)					Exhibit 25-4)			
Speed Es	stimation					Speed	Estimat	ion			
Ŭ	11 (Exibit 25-1 7 mph (Exhibit	,				, v	Exhibit 25-1 nph (Exhibit	,			
	2 mph (Exhibit	,					nph (Exhibit				

	-		5 AND	RAM	JUN	CTIONS			IEEI		
	Informati					Site In					
Analyst	mpany	SST				eeway/Dir o	of Trave	el	Southbou		
Agency or Co Date Perform		DEA 6/23/2007				nction risdiction			Arapahoe	e On Ramp e County	
Analysis Time		PM Peak				alysis Year	r		2030	county	
	ription No Bu					,					
nputs											
Jpstream Ad	j Ramp	Terrain: Leve	5							Downstrea	m Adj Ramp
Ves	M On									F Yes	C On
No	Cff Off									Mo L _{down} =	Ft Off
-up =	800 ft									down	п
	1085 veh/h	S	_{FF} = 70.	0 mph		S	$S_{FR} = 4$	45.0 mph		$V_D =$	veh/h
u –	1005 Ven/II		1	Sketch (show lane	es, L _A , L _D ,V	κ,V _f)				
Convers	ion to pc/	h Under/	Base	Condi	tions						
(pc/h)	V	PHF	Terr		%Truck	%Rv	f		f	v = V/PHF	Х
(pc/II)	(Veh/hr)		Tell	alli	POTTUCK	70KV		HV	f _p	f _{HV} x f _p	
Freeway	11525	0.90	Lev		6	0	0.9		1.00	13190	
Ramp	645	0.90	Lev	-	2	0	0.9		1.00	724	
UpStream DownStream	1085	0.90	Lev	el	2	0	0.9	90	1.00	1218	
DownStream	1	Merge Areas			<u> </u>		ļ	<u> </u>	viverge Are	25	
Estimati	on of v ₁₂	iverge ricus				Estima	ntion			45	
		$_{2} = V_{F} (P_{FM})$	1			I /F		12	$= V_R + (V_R)$	F ^{-V} R ^{JF} FD	
24	ation 25-2 or 2					L _{EQ} = (Ea					
	using Equatio	n (Exhibit 25)-5)			P _{FD} = us		uation (E)	knidit 25-11)	
/ ₁₂ = 8354						V ₁₂ = pc/					
Capacity	/ Checks	a a a a a a a a a a a a a a a a a a a		i		Capaci	ity C	hecks			
	Actua	l Max	imum	LO	S F?			Actual	N	laximum	LOS F?
V _{FO}	11414	See Ext	nibit 25-7	Ye	es	$V_{FI} = V$ V_{12}	/ _F				
						$V_{FO} = V_F$			_		
N/	0070										
V _{R12}	9078	460	0:All	Ye	es	V _R					
						V _R					
	Service L				-	Level o				ination (i	/
D _R = 5	5.475 + 0.0073	4 v _R + 0.007	8 V ₁₂ - 0.0)0627 L _A			D _F	_R = 4.252	+ 0.0086 \	/ ₁₂ - 0.0009 L _C)
) _R = 5	59.4 (pc/mi/ln)					D _R =	(pc/mi/l	n)			
.OS = 1	F (Exhibit 25-4))				LOS =	(Exhibi	t 25-4)			
Speed E	stimation	1				Speed	Esti	matio	1		
	.249 (Exibit 25-							t 25-19)			
-		•						xhibit 25-	19)		
IX .	39.0 mph (Exhi	-					•	xhibit 25-			
` /¬						.		ALIM (11 Z 1)*	1 / /		
0	.6 mph (Exhibit 8.8 mph (Exhib	,				Ŭ	•	xhibit 25-	-		

Copyright © 2005 University of Florida, All Rights Reserved

I

	DASIC F	KEEWAI JE	GIVIENTS WO	KNONEEI	
80 Free-Flow Spzed FFS = 75 milh 70 65 milh 70 60 55 milh 70 50 LOS A 52 40 55 milh 60 30 0 400 800	B- C-	450 1750 0 1750 0 1750 1750 1750 1750 175		<u>Application</u> Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	<u>Input</u> FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AADT FFS, LOS, N
General Information	Flow Rate (pc/h/ln))	Site Informa	tion	
Analyst	SST		Highway/Directi		Northbound I-25
Agency or Company	DEA		From/To		Normbound 1-25
Date Performed	6/23/2007		Jurisdiction		Arapahoe County
Analysis Time Period	AM Peak		Analysis Year		2030
Project Description			, 		
Oper.(LOS)			Des.(N)		Planning Dat
Flow Inputs			× /		
Volume, V	11900	veh/h	Peak-Hour Fact	or, PHF	0.90
AADT		veh/day	%Trucks and B	uses, P _T	6
Peak-Hr Prop. of AADT, K			%RVs, P _R	·	0
Peak-Hr Direction Prop, D			General Terrain	:	Level
DDHV = AADT x K x D		veh/h	Grade %	Length	mi
Driver type adjustment	1.00		Up	/Down %	
Calculate Flow Adjustn	nents				
f _p	1.00		E _R		1.2
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - T_T)]$	1) + P _R (E _R - 1)]	0.971
Speed Inputs			Calc Speed	Adj and FFS	3
Lane Width	12.0	ft	1 .		
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}		
Interchange Density	0.50	l/mi	f _{LC}		
Number of Lanes, N	5	.,	f _{ID}		
FFS (measured)	70.0	mi/h	f _N		
, , ,	70.0		FFS		70.0
Base free-flow Speed, BFFS		mi/h			
LOS and Performance	Measures		Design (N)		
Operational (LOS)			<u>Design (N)</u>		
$v_p = (V \text{ or DDHV}) / (PHF x N)$	κ f χ		Design LOS		
r	¹ HV 2724	pc/h/ln	v _p = (V or DDH)	√) / (PHF x N x	f _{HV} x
f _p)		mi/h	f _p)		
S D w / C		mi/h	S		
$D = v_p / S$	_	pc/mi/ln	$D = v_p / S$		
LOS	F		Required Numb	er of Lanes. N	
Glossary			Factor Loca		
N - Number of lanes	S - Speed				
	o - opeeu		I		

	BASIC F	REEWAY SE	GMENTS WORKSHE	ET
(Unitur) 70 70 70 70 70 70 70 70 70 70	B/ C	1450 1750 1750 1750 150 150 1600 2000	Application Operational Design (N) Design (V _p) Planning (U Planning (N Planning (V _p) 2400	(LOS) FFS, N, v _p FFS, LOS, v _p FFS, LOS, N OS) FFS, N, AADT I) FFS, LOS, AADT
General Information	non nos (pom	,	Site Information	
Analyst Agency or Company Date Performed Analysis Time Period Project Description Mp Build	SST DEA 6/23/2007 PM Peak d Alternative		Highway/Direction of Tra From/To Jurisdiction Analysis Year	vel Northbound I-25 Arapahoe County 2030
✓ Oper.(LOS)			Des.(N)	Planning Dat
<i>Flow Inputs</i> Volume, V AADT Peak-Hr Prop. of AADT, K	8440	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T %RVs, P _R	0.90 6 0
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terrain: Grade % Length Up/Down %	Level mi
Calculate Flow Adjustn	nents			
f _p	1.00		E _R	1.2
Ε _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1)] <i>0.971</i>
Speed Inputs			Calc Speed Adj and	I FFS
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured) Base free-flow Speed, BFFS	12.0 6.0 0.50 5 70.0	ft ft I/mi mi/h mi/h	f _{LW} f _{LC} f _{ID} f _N FFS	70.0
LOS and Performance	Moasuros	111/11	Design (N)	
$\frac{\text{Operational (LOS)}}{\text{v}_{p} = (V \text{ or DDHV}) / (PHF x N x)}$ f_{p} S D = v_{p} / S LOS		pc/h/ln mi/h pc/mi/ln	Design (N) Design LOS $v_p = (V \text{ or DDHV}) / (PHF)$ f_p S D = v_p / S Required Number of Lan	

Factor Location

S - Speed

Glossary

N - Number of lanes

	BACIOT			
	B	1450 1750 0	Application Operational (LOS Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AADT FFS, LOS, N
• 0 400 800	1200 Flow Rate (pc/h/ln	1600 2000 I)) 2400	
General Information			Site Information	
Analyst Agency or Company Date Performed Analysis Time Period Project Description No Build	SST DEA 6/23/2007 AM Peak Alternative		Highway/Direction of Travel From/To Jurisdiction Analysis Year	Southbound I-25 Arapahoe to Dry (Arapahoe County 2030
Oper.(LOS)			Des.(N)	Planning Dat
<i>Flow Inputs</i> Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	8150	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T %RVs, P _R General Terrain:	0.90 6 0 Level
DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustn	1.00	veh/h	Grade % Length Up/Down %	mi
	1.00		E _R	1.2
E _T	1.5		-R $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.971
Speed Inputs			Calc Speed Adj and Fl	
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N	12.0 6.0 0.50 5	ft ft I/mi	f _{LW} f _{LC} f _{ID}	
FFS (measured) Base free-flow Speed, BFFS	70.0	mi/h mi/h	f _N FFS	70.0
LOS and Performance	Measures		Design (N)	
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N > f _p) S D = v _p / S	1865 67.1 27.8	pc/h/ln mi/h pc/mi/ln	$\frac{\text{Design (N)}}{\text{Design LOS}}$ $v_{p} = (V \text{ or DDHV}) / (PHF x N)$ f_{p} S $D = v_{p} / S$	x f _{HV} x
LOS	D		Required Number of Lanes,	N
Glossary			Factor Location	
N - Number of lanes	S - Speed		I	

Peak-Hr Direction Prop, D

Rt-Shoulder Lat. Clearance

Base free-flow Speed, BFFS

LOS and Performance Measures

 $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$

Calculate Flow Adjustments

 $DDHV = AADT \times K \times D$

Driver type adjustment

Speed Inputs

Interchange Density

Number of Lanes, N

FFS (measured)

Operational (LOS)

Lane Width

fp E_{T}

f_p)

 $D = v_p / S$

Glossary

- Number of lanes

LOS

Ν

1.00

1.00

1.5

12.0

6.0

0.50

70.0

5

BASIC FREEWAY WORK	KSHEET				Page 1 of 2
	BASIC	FREEWAY SE	GMENTS WO	RKSHEET	
80 Frœ-Flow Speed FFS = 75 mih 70 65 mih 70 mih 60 55 mih 55 mih 50 LOS A 52 mih 40 60 mih 60 mih 9 0 400 200		1450 (600 0 1750 0 1750 1750 1750 1750 1750 10 10 100 2000	2400	<u>Application</u> Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AADT FFS, LOS, N
General Information			Site Informa	ation	
Analyst Agency or Company Date Performed Analysis Time Period	SST DEA 6/23/2007 PM Peak		Highway/Direct From/To Jurisdiction Analysis Year	ion of Travel	Southbound I-25 Arapahoe to Dry (Arapahoe County 2030
Project Description No Build	d Alternative				
Vper.(LOS)			Des.(N)		Planning Dat
Flow Inputs					
Volume, V AADT	12170	veh/h veh/day	Peak-Hour Fac %Trucks and B		0.90 6
Peak-Hr Prop. of AADT, K			%RVs, P _R		0

General Terrain:

%

 $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$

Calc Speed Adj and FFS

 $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$

Required Number of Lanes, N

Factor Location

Length

Up/Down %

Grade

E_R

 f_{LW}

f_{LC}

f_{ID}

f_N

f_p)

S

FFS

Design (N) Design (N)

Design LOS

 $D = v_p / S$

veh/h

ft

ft

l/mi

mi/h

mi/h

pc/h/ln

pc/mi/ln

mi/h

Level

mi

1.2

0.971

70.0

file://C:\Documents and Settings\hmg\Local Settings\Temp\f2kCC.tmp

2786

F

S - Speed

Appendix D Alternatives Operational Analysis

HCM Signalized Intersection Capacity Analysis 1: E Arapahoe Rd & S Yosemite St

4/29/2008

	٦	-	\mathbf{r}	4	-	•	1	Ť	*	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	ተተተ	1	ካካ	ተተተ	1	ሻሻ	- † †	1	ሻሻ	↑ ĵ≽	
Volume (vph)	265	1605	165	535	2105	700	260	810	190	255	555	110
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Lane Util. Factor	0.97	0.91	1.00	0.97	0.91	1.00	0.97	0.95	1.00	0.97	0.95	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3433	5085	1583	3433	5085	1583	3433	3539	1583	3433	3451	
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	3433	5085	1583	3433	5085	1583	3433	3539	1583	3433	3451	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	279	1689	174	563	2216	737	274	853	200	268	584	116
RTOR Reduction (vph)	0	0	42	0	0	133	0	0	150	0	13	0
Lane Group Flow (vph)	279	1689	132	563	2216	604	274	853	50	268	687	0
Turn Type	Prot		Perm	Prot		Perm	Prot		Perm	Prot		
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6			8			
Actuated Green, G (s)	9.0	41.0	41.0	20.0	52.0	52.0	13.5	29.0	29.0	9.0	24.5	
Effective Green, g (s)	10.0	43.0	43.0	21.0	54.0	54.0	14.5	30.0	30.0	10.0	25.5	
Actuated g/C Ratio	0.08	0.36	0.36	0.18	0.45	0.45	0.12	0.25	0.25	0.08	0.21	
Clearance Time (s)	5.0	6.0	6.0	5.0	6.0	6.0	5.0	5.0	5.0	5.0	5.0	
Vehicle Extension (s)	2.0	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	
Lane Grp Cap (vph)	286	1822	567	601	2288	712	415	885	396	286	733	
v/s Ratio Prot	0.08	c0.33		0.16	c0.44		0.08	c0.24		0.08	c0.20	
v/s Ratio Perm			0.08			0.38			0.03			
v/c Ratio	0.98	0.93	0.23	0.94	0.97	0.85	0.66	0.96	0.13	0.94	0.94	
Uniform Delay, d1	54.9	37.0	26.9	48.8	32.2	29.4	50.4	44.5	34.9	54.7	46.5	
Progression Factor	1.00	1.00	1.00	0.78	0.66	0.45	0.52	0.62	1.30	1.00	1.00	
Incremental Delay, d2	45.9	9.7	1.0	3.1	1.9	1.2	1.2	11.3	0.0	36.0	19.0	
Delay (s)	100.8	46.7	27.9	41.1	23.2	14.3	27.4	39.1	45.2	90.7	65.5	
Level of Service	F	D	С	D	С	В	С	D	D	F	E	
Approach Delay (s)		52.2			24.2			37.6			72.5	
Approach LOS		D			С			D			E	
Intersection Summary												
HCM Average Control Dela	у		39.9	Н	CM Leve	of Servic	e		D			
HCM Volume to Capacity ra			0.96									
Actuated Cycle Length (s)			120.0	S	um of los	t time (s)			12.0			
Intersection Capacity Utiliza	ation		91.2%			of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

	≯	-	┥	•	1	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		ttttt	ተተተ		ካካዣ	1		
Volume (vph)	0	2050	2465	0	1485	875		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)		4.0	4.0		4.0	3.0		
Lane Util. Factor		0.81	0.91		0.94	0.86		
Frt		1.00	1.00		0.97	0.85		
Flt Protected		1.00	1.00		0.96	1.00		
Satd. Flow (prot)		7544	5085		4910	1362		
Flt Permitted		1.00	1.00		0.96	1.00		
Satd. Flow (perm)		7544	5085		4910	1362		
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94		
Adj. Flow (vph)	0	2181	2622	0	1580	931		
RTOR Reduction (vph)	0	0	0	0	0	0		
Lane Group Flow (vph)	0	2181	2622	0	1924	587		
Turn Type						Free		
Protected Phases		2	6		4			
Permitted Phases						Free		
Actuated Green, G (s)		51.1	51.1		58.9	120.0		
Effective Green, g (s)		52.1	52.1		59.9	120.0		
Actuated g/C Ratio		0.43	0.43		0.50	1.00		
Clearance Time (s)		5.0	5.0		5.0			
Vehicle Extension (s)		3.0	3.0		3.0			
Lane Grp Cap (vph)		3275	2208		2451	1362		
v/s Ratio Prot		0.29	c0.52		c0.39			
v/s Ratio Perm						0.43		
v/c Ratio		0.67	1.19		0.78	0.43		
Uniform Delay, d1		27.0	33.9		24.7	0.0		
Progression Factor		0.77	0.74		1.00	1.00		
Incremental Delay, d2		0.5	86.7		1.7	1.0		
Delay (s)		21.4	111.9		26.5	1.0		
Level of Service		С	F		С	А		
Approach Delay (s)		21.4	111.9		20.5			
Approach LOS		С	F		С			
Intersection Summary								
HCM Average Control Delay			53.5	Н	CM Leve	of Service	D	
HCM Volume to Capacity ratio			0.97					
Actuated Cycle Length (s)			120.0		um of los		8.0	
Intersection Capacity Utilization	1		88.6%	IC	CU Level	of Service	E	
Analysis Period (min)			15					
c Critical Lane Group								

HCM Signalized Intersection Capacity Analysis 3: E Arapahoe Rd & I-25 Ramp NB

4/29/2008

	۶	-	\mathbf{r}	4	+	×	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		<u> </u>			41111		ካካ	÷	1			1
Volume (vph)	0	1970	0	0	3790	40	680	125	910	0	0	100
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0		4.0	4.0	4.0			4.0
Lane Util. Factor		0.91			0.81		0.91	0.86	0.95			1.00
Frt		1.00			1.00		1.00	0.90	0.85			0.86
Flt Protected		1.00			1.00		0.95	0.99	1.00			1.00
Satd. Flow (prot)		5085			7532		3221	1435	1504			1611
Flt Permitted		1.00			1.00		0.95	0.99	1.00			1.00
Satd. Flow (perm)		5085			7532		3221	1435	1504			1611
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	0	2052	0	0	3948	42	708	130	948	0	0	104
RTOR Reduction (vph)	0	0	0	0	1	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	2052	0	0	3989	0	637	590	559	0	0	104
Turn Type							Perm		Perm			custom
Protected Phases		2			6			8				
Permitted Phases							8		8			4
Actuated Green, G (s)		63.0			63.0		47.0	47.0	47.0			47.0
Effective Green, g (s)		64.0			64.0		48.0	48.0	48.0			48.0
Actuated g/C Ratio		0.53			0.53		0.40	0.40	0.40			0.40
Clearance Time (s)		5.0			5.0		5.0	5.0	5.0			5.0
Vehicle Extension (s)		3.0			3.0		1.5	1.5	1.5			3.0
Lane Grp Cap (vph)		2712			4017		1288	574	602			644
v/s Ratio Prot		0.40			c0.53							
v/s Ratio Perm							0.20	0.41	0.37			0.06
v/c Ratio		0.76			0.99		0.49	1.03	0.93			0.16
Uniform Delay, d1		21.9			27.8		26.9	36.0	34.4			23.1
Progression Factor		1.09			0.42		1.00	1.00	1.00			1.00
Incremental Delay, d2		1.5			2.9		0.1	44.9	20.4			0.1
Delay (s)		25.3			14.6		27.0	80.9	54.7			23.2
Level of Service		С			В		С	F	D			С
Approach Delay (s)		25.3			14.6			53.5			23.2	
Approach LOS		С			В			D			С	
Intersection Summary												
HCM Average Control Delay			26.2	F	ICM Leve	of Servic	e		С			
HCM Volume to Capacity ratio			1.01									
Actuated Cycle Length (s)			120.0	S	um of los	t time (s)			8.0			
Intersection Capacity Utilization			82.3%	[(CU Level	of Service	<u>;</u>		E			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 39: E Arapahoe Rd & S Boston St

	<u>, , , , , , , , , , , , , , , , , , , </u>	_	~	~	+	×	•	ŧ	*	1	T	7
Movement	EBL	EBT	EBR	▼ WBL	WBT	WBR	۲ NBL	NBT	NBR	SBL	▼ SBT	SBR
Lane Configurations	<u>ነ</u> ካ			<u>ייטנ</u>	1111		ሻሻ	†	NDI	<u>ጋጋር</u> ካካ	<u></u>	
Volume (vph)	350	2110	420	60	3350	90	250	125	60	70	150	230
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	120	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	1700	4.0	4.0	4.0
Lane Util. Factor	0.97	0.91	1.00	0.97	*0.80	1.00	0.97	0.95		0.97	0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.95		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	3433	5085	1583	3433	5961	1583	3433	3367		3433	3539	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		1.00	1.00	1.00
	3433	5085	1583	3433	5961	1583	3433	3367		3614	3539	1583
Satd. Flow (perm)									0.04			
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	372	2245	447	64	3564	96	266	133	64	74	160	245
RTOR Reduction (vph)	0	0	153	0	0	49	0	56	0	0	0	77
Lane Group Flow (vph)	372	2245	294	64	3564	47	266	141	0	74	160	168
Turn Type	Prot		Perm	Prot		Perm	Prot	-		pm+pt		Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6				4		4
Actuated Green, G (s)	14.8	66.9	66.9	4.9	57.0	57.0	10.0	12.2		17.2	17.2	17.2
Effective Green, g (s)	15.8	68.9	68.9	5.9	59.0	59.0	11.0	13.2		18.2	18.2	18.2
Actuated g/C Ratio	0.13	0.57	0.57	0.05	0.49	0.49	0.09	0.11		0.15	0.15	0.15
Clearance Time (s)	5.0	6.0	6.0	5.0	6.0	6.0	5.0	5.0		5.0	5.0	5.0
Vehicle Extension (s)	1.5	5.0	5.0	1.5	5.0	5.0	1.5	1.5		1.5	1.5	1.5
Lane Grp Cap (vph)	452	2920	909	169	2931	778	315	370		548	537	240
v/s Ratio Prot	c0.11	0.44		0.02	c0.60		c0.08	0.04		0.02	0.05	
v/s Ratio Perm			0.19			0.03				0.00		c0.11
v/c Ratio	0.82	0.77	0.32	0.38	1.22	0.06	0.84	0.38		0.14	0.30	0.70
Uniform Delay, d1	50.7	19.5	13.4	55.3	30.5	16.0	53.7	49.6		44.1	45.2	48.3
Progression Factor	1.09	0.76	0.59	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	6.5	1.1	0.5	0.5	100.5	0.1	17.6	0.2		0.0	0.1	7.0
Delay (s)	62.0	16.0	8.4	55.8	131.0	16.1	71.3	49.8		44.1	45.3	55.3
Level of Service	E	В	А	E	F	В	E	D		D	D	E
Approach Delay (s)		20.5			126.8			62.2			50.2	
Approach LOS		С			F			E			D	
Intersection Summary												
HCM Average Control Dela			76.0	Н	CM Level	of Servic	e		E			
HCM Volume to Capacity ra	atio		0.99									
Actuated Cycle Length (s)			120.0	S	um of los	time (s)			12.0			
Intersection Capacity Utiliza	ation		83.1%	IC	CU Level	of Service	;		E			
Analysis Period (min)			15									
c Critical Lane Group												

	4	•	Ť	1	1	Ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	1	††	1	۲.	††
Volume (vph)	420	405	1360	725	475	975
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00	0.95	1.00	1.00	0.95
Frt	1.00	0.85	1.00	0.85	1.00	1.00
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00
Satd. Flow (prot)	1770	1583	3539	1583	1770	3539
Flt Permitted	0.95	1.00	1.00	1.00	0.07	1.00
Satd. Flow (perm)	1770	1583	3539	1583	138	3539
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	457	440	1478	788	516	1060
RTOR Reduction (vph)	0	295	0	354	0	0
Lane Group Flow (vph)	457	145	1478	435	516	1060
Turn Type		Perm		Perm	pm+pt	
Protected Phases	8		2		1	6
Permitted Phases		8		2	6	
Actuated Green, G (s)	29.0	29.0	49.0	49.0	81.0	81.0
Effective Green, g (s)	30.0	30.0	50.0	50.0	82.0	82.0
Actuated g/C Ratio	0.25	0.25	0.42	0.42	0.68	0.68
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	443	396	1475	660	475	2418
v/s Ratio Prot	c0.26		0.42		c0.25	0.30
v/s Ratio Perm		0.09		0.27	c0.49	
v/c Ratio	1.03	0.37	1.00	0.66	1.09	0.44
Uniform Delay, d1	45.0	37.2	35.0	28.1	39.2	8.6
Progression Factor	1.00	1.00	1.00	1.00	1.01	0.35
Incremental Delay, d2	51.1	0.6	23.9	5.1	60.0	0.4
Delay (s)	96.1	37.7	58.9	33.2	99.7	3.4
Level of Service	F	D	E	С	F	А
Approach Delay (s)	67.5		50.0			34.9
Approach LOS	E		D			С
Intersection Summary						
HCM Average Control Delay	у		48.3	H	CM Level	of Service
HCM Volume to Capacity ra			1.06			
Actuated Cycle Length (s)			120.0	S	um of lost	t time (s)
Intersection Capacity Utiliza	ation		97.2%			of Service
Analysis Period (min)			15			
c Critical Lane Group						

HCM Signalized Intersection Capacity Analysis 1: E Arapahoe Rd & S Yosemite St

4/29	/200	8(

	٨	-	\mathbf{i}	4	+	•	1	Ť	*	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	ተተተ	1	ሻሻ	ተተተ	1	ሻሻ	<u></u>	1	ሻሻ	≜ ⊅	
Volume (vph)	200	1445	210	555	2005	280	460	980	420	570	865	125
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Lane Util. Factor	0.97	0.91	1.00	0.97	0.91	1.00	0.97	0.95	1.00	0.97	0.95	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3433	5085	1583	3433	5085	1583	3433	3539	1583	3433	3472	
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	3433	5085	1583	3433	5085	1583	3433	3539	1583	3433	3472	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	211	1521	221	584	2111	295	484	1032	442	600	911	132
RTOR Reduction (vph)	0	0	59	0	0	126	0	0	221	0	9	0
Lane Group Flow (vph)	211	1521	162	584	2111	169	484	1032	221	600	1034	0
Turn Type	Prot		Perm	Prot		Perm	Prot		Perm	Prot		
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6			8			
Actuated Green, G (s)	6.0	32.0	32.0	18.0	44.0	44.0	16.0	31.0	31.0	18.0	33.0	
Effective Green, g (s)	7.0	34.0	34.0	19.0	46.0	46.0	17.0	32.0	32.0	19.0	34.0	
Actuated g/C Ratio	0.06	0.28	0.28	0.16	0.38	0.38	0.14	0.27	0.27	0.16	0.28	
Clearance Time (s)	5.0	6.0	6.0	5.0	6.0	6.0	5.0	5.0	5.0	5.0	5.0	
Vehicle Extension (s)	2.0	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	
Lane Grp Cap (vph)	200	1441	449	544	1949	607	486	944	422	544	984	
v/s Ratio Prot	0.06	c0.30		0.17	c0.42		0.14	c0.29		0.17	c0.30	
v/s Ratio Perm			0.10			0.11			0.14			
v/c Ratio	1.06	1.06	0.36	1.07	1.08	0.28	1.00	1.09	0.52	1.10	1.05	
Uniform Delay, d1	56.5	43.0	34.3	50.5	37.0	25.5	51.5	44.0	37.5	50.5	43.0	
Progression Factor	1.00	1.00	1.00	0.86	0.82	0.43	0.71	0.74	0.58	1.00	1.00	
Incremental Delay, d2	78.9	39.9	2.2	52.6	44.0	0.7	35.2	55.5	0.4	69.8	42.9	
Delay (s)	135.4	82.9	36.5	96.1	74.3	11.8	71.9	88.0	22.0	120.3	85.9	
Level of Service	F	F	D	F	E	В	E	F	С	F	F	
Approach Delay (s)		83.3			72.4			69.1			98.5	
Approach LOS		F			Е			E			F	
Intersection Summary												
HCM Average Control Dela	у		79.2	Н	CM Leve	l of Servic	е		E			
HCM Volume to Capacity ra	atio		1.04									
Actuated Cycle Length (s)			120.0	S	um of los	t time (s)			8.0			
Intersection Capacity Utiliza	ation		101.1%	IC	CU Level	of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

	≯	+	Ļ	*	1	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		11111	<u>_</u>		ካካዣ	1		
Volume (vph)	0	2435	2085	0	820	755		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)		4.0	4.0		4.0	4.0		
Lane Util. Factor		0.81	0.91		0.94	0.86		
Frt		1.00	1.00		0.95	0.85		
Flt Protected		1.00	1.00		0.97	1.00		
Satd. Flow (prot)		7544	5085		4839	1362		
Flt Permitted		1.00	1.00		0.97	1.00		
Satd. Flow (perm)		7544	5085		4839	1362		
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94		
Adj. Flow (vph)	0	2590	2218	0	872	803		
RTOR Reduction (vph)	0	0	0	0	2	2		
Lane Group Flow (vph)	0	2590	2218	0	1272	399		
Turn Type						Perm		
Protected Phases		2	6		4			
Permitted Phases						4		
Actuated Green, G (s)		66.7	66.7		43.3	43.3		
Effective Green, g (s)		67.7	67.7		44.3	44.3		
Actuated g/C Ratio		0.56	0.56		0.37	0.37		
Clearance Time (s)		5.0	5.0		5.0	5.0		
Vehicle Extension (s)		3.0	3.0		3.0	3.0		
Lane Grp Cap (vph)		4256	2869		1786	503		
v/s Ratio Prot		0.34	c0.44		0.26			
v/s Ratio Perm						c0.29		
v/c Ratio		0.61	0.77		0.71	0.79		
Uniform Delay, d1		17.4	20.2		32.4	33.8		
Progression Factor		0.28	0.62		1.00	1.00		
Incremental Delay, d2		0.2	1.7		1.4	8.4		
Delay (s)		5.0	14.2		33.8	42.2		
Level of Service		А	В		С	D		
Approach Delay (s)		5.0	14.2		35.8			
Approach LOS		А	В		D			
Intersection Summary								
HCM Average Control Delay			16.1	H	CM Leve	of Service	В	
HCM Volume to Capacity ratio			0.78					
Actuated Cycle Length (s)			120.0	S	um of losi	t time (s)	8.0	
Intersection Capacity Utilization	1		78.1%	IC	CU Level	of Service	D	
Analysis Period (min)			15					
c Critical Lane Group								

HCM Signalized Intersection Capacity Analysis 3: E Arapahoe Rd & I-25 Ramp NB

4/29/2008

	۶	+	\mathbf{F}	4	Ļ	•	•	Ť	*	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		<u> </u>			41111		ሻሻ	\$	1			1
Volume (vph)	0	1640	0	0	3010	40	660	85	590	0	0	150
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0		4.0	4.0	4.0			4.0
Lane Util. Factor		0.91			0.81		0.91	0.86	0.95			1.00
Frt		1.00			1.00		1.00	0.91	0.85			0.86
Flt Protected		1.00			1.00		0.95	0.99	1.00			1.00
Satd. Flow (prot)		5085			7529		3221	1445	1504			1611
Flt Permitted		1.00			1.00		0.95	0.99	1.00			1.00
Satd. Flow (perm)		5085			7529		3221	1445	1504			1611
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	0	1708	0	0	3135	42	688	89	615	0	0	156
RTOR Reduction (vph)	0	0	0	0	2	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	1708	0	0	3175	0	619	398	375	0	0	156
Turn Type							Perm		Perm			custom
Protected Phases		2			6			8				
Permitted Phases							8		8			4
Actuated Green, G (s)		71.4			71.4		38.6	38.6	38.6			38.6
Effective Green, g (s)		72.4			72.4		39.6	39.6	39.6			39.6
Actuated g/C Ratio		0.60			0.60		0.33	0.33	0.33			0.33
Clearance Time (s)		5.0			5.0		5.0	5.0	5.0			5.0
Vehicle Extension (s)		3.0			3.0		1.5	1.5	1.5			3.0
Lane Grp Cap (vph)		3068			4542		1063	477	496			532
v/s Ratio Prot		0.34			c0.42							
v/s Ratio Perm							0.19	0.28	0.25			0.10
v/c Ratio		0.56			0.70		0.58	0.83	0.76			0.29
Uniform Delay, d1		14.2			16.3		33.3	37.2	35.9			29.8
Progression Factor		0.99			0.40		1.00	1.00	1.00			1.00
Incremental Delay, d2		0.6			0.5		0.5	11.4	5.8			0.3
Delay (s)		14.6			7.0		33.9	48.6	41.7			30.1
Level of Service		В			А		С	D	D			С
Approach Delay (s)		14.6			7.0			40.2			30.1	
Approach LOS		В			А			D			С	
Intersection Summary												
HCM Average Control Delay			16.7	F	ICM Level	of Servic	е		В			
HCM Volume to Capacity ratio			0.75									
Actuated Cycle Length (s)			120.0		um of los				8.0			
Intersection Capacity Utilization	1		72.4%	[(CU Level o	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 39: E Arapahoe Rd & S Boston St

	≯	-	\rightarrow	1	-	•	1	†	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	ተተተ	1	ካካ	1111	1	ሻሻ	∱ }		ሻሻ	- † †	1
Volume (vph)	280	1585	365	200	2270	180	540	235	175	105	190	240
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Lane Util. Factor	0.97	0.91	1.00	0.97	*0.80	1.00	0.97	0.95		0.97	0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.94		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	3433	5085	1583	3433	5961	1583	3433	3313		3433	3539	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.50	1.00	1.00
Satd. Flow (perm)	3433	5085	1583	3433	5961	1583	3433	3313		1802	3539	1583
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	298	1686	388	213	2415	191	574	250	186	112	202	255
RTOR Reduction (vph)	0	0	155	0	0	91	0	140	0	0	0	111
Lane Group Flow (vph)	298	1686	233	213	2415	100	574	296	0	112	202	144
Turn Type	Prot		Perm	Prot		Perm	Prot			pm+pt		Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6				4		4
Actuated Green, G (s)	7.0	61.1	61.1	7.0	61.1	61.1	16.0	26.9		18.9	14.9	14.9
Effective Green, g (s)	8.0	63.1	63.1	8.0	63.1	63.1	17.0	27.9		20.9	15.9	15.9
Actuated g/C Ratio	0.07	0.53	0.53	0.07	0.53	0.53	0.14	0.23		0.17	0.13	0.13
Clearance Time (s)	5.0	6.0	6.0	5.0	6.0	6.0	5.0	5.0		5.0	5.0	5.0
Vehicle Extension (s)	1.5	5.0	5.0	1.5	5.0	5.0	1.5	1.5		1.5	1.5	1.5
Lane Grp Cap (vph)	229	2674	832	229	3134	832	486	770		382	469	210
v/s Ratio Prot	c0.09	0.33		0.06	c0.41		c0.17	0.09		0.01	0.06	
v/s Ratio Perm			0.15			0.06				0.04		c0.09
v/c Ratio	1.30	0.63	0.28	0.93	0.77	0.12	1.18	0.38		0.29	0.43	0.69
Uniform Delay, d1	56.0	20.2	15.8	55.7	22.7	14.4	51.5	38.8		42.3	47.9	49.7
Progression Factor	0.98	0.80	0.68	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	159.6	1.0	0.7	40.2	1.9	0.3	101.0	0.1		0.2	0.2	7.2
Delay (s)	214.6	17.1	11.5	95.9	24.6	14.7	152.5	38.9		42.5	48.1	56.8
Level of Service	F	В	В	F	С	В	F	D		D	D	E
Approach Delay (s)		41.0			29.3			103.5			50.9	
Approach LOS		D			С			F			D	
Intersection Summary												
HCM Average Control Delay	1		46.3	Н	CM Level	of Servic	ce		D			
HCM Volume to Capacity ra			0.87									
Actuated Cycle Length (s)			120.0	S	um of los	t time (s)			16.0			
Intersection Capacity Utilization	tion		74.9%		CU Level	. ,	<u>;</u>		D			
Analysis Period (min)			15									
c Critical Lane Group												

	•	•	1	1	1	Ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	٦	1	† †	1	۲.	††
Volume (vph)	710	480	890	690	305	1415
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00	0.95	1.00	1.00	0.95
Frt	1.00	0.85	1.00	0.85	1.00	1.00
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00
Satd. Flow (prot)	1770	1583	3539	1583	1770	3539
Flt Permitted	0.95	1.00	1.00	1.00	0.10	1.00
Satd. Flow (perm)	1770	1583	3539	1583	187	3539
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	772	522	967	750	332	1538
RTOR Reduction (vph)	0	202	0	526	0	0
Lane Group Flow (vph)	772	320	967	224	332	1538
Turn Type		Perm		Perm	pm+pt	
Protected Phases	8		2		1	6
Permitted Phases		8		2	6	
Actuated Green, G (s)	52.8	52.8	34.9	34.9	57.2	57.2
Effective Green, g (s)	53.8	53.8	35.9	35.9	58.2	58.2
Actuated g/C Ratio	0.45	0.45	0.30	0.30	0.49	0.49
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	794	710	1059	474	332	1716
v/s Ratio Prot	c0.44		0.27		c0.15	0.43
v/s Ratio Perm		0.20		0.14	c0.33	
v/c Ratio	0.97	0.45	0.91	0.47	1.00	0.90
Uniform Delay, d1	32.4	22.9	40.5	34.3	37.0	28.2
Progression Factor	1.00	1.00	1.00	1.00	1.38	0.54
Incremental Delay, d2	25.1	0.5	13.3	3.4	31.9	3.5
Delay (s)	57.5	23.3	53.9	37.7	82.9	18.7
Level of Service	E	С	D	D	F	В
Approach Delay (s)	43.7		46.8			30.1
Approach LOS	D		D			С
Intersection Summary						
HCM Average Control Dela	у		39.6	H	CM Level	of Service
HCM Volume to Capacity ra	atio		0.97			
Actuated Cycle Length (s)			120.0	S	um of lost	t time (s)
Intersection Capacity Utiliza	ation		90.8%			of Service
Analysis Period (min)			15			
c Critical Lane Group						

HCM Signalized Intersection Capacity Analysis 1: E Arapahoe Rd & S Yosemite St

4/	2	9/2	20	80

	≯	-	\mathbf{r}	4	+	•	•	Ť	*	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	<u> </u>	1	ሻሻ	ተተተ	1	ሻሻ	<u></u>	1	ካካ	≜ ⊅	
Volume (vph)	265	1605	165	535	2105	700	260	810	190	255	555	110
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Lane Util. Factor	0.97	0.91	1.00	0.97	0.91	1.00	0.97	0.95	1.00	0.97	0.95	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3433	5085	1583	3433	5085	1583	3433	3539	1583	3433	3451	
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	3433	5085	1583	3433	5085	1583	3433	3539	1583	3433	3451	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	279	1689	174	563	2216	737	274	853	200	268	584	116
RTOR Reduction (vph)	0	0	42	0	0	136	0	0	150	0	14	0
Lane Group Flow (vph)	279	1689	132	563	2216	601	274	853	50	268	686	0
Turn Type	Prot		Perm	Prot	-	Perm	Prot		Perm	Prot		
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6			8			
Actuated Green, G (s)	9.0	42.0	42.0	19.0	52.0	52.0	16.0	29.0	29.0	9.0	22.0	
Effective Green, g (s)	10.0	44.0	44.0	20.0	54.0	54.0	17.0	30.0	30.0	10.0	23.0	
Actuated g/C Ratio	0.08	0.37	0.37	0.17	0.45	0.45	0.14	0.25	0.25	0.08	0.19	
Clearance Time (s)	5.0	6.0	6.0	5.0	6.0	6.0	5.0	5.0	5.0	5.0	5.0	
Vehicle Extension (s)	2.0	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	
Lane Grp Cap (vph)	286	1865	580	572	2288	712	486	885	396	286	661	
v/s Ratio Prot	0.08	c0.33		0.16	c0.44		0.08	c0.24		c0.08	c0.20	
v/s Ratio Perm			0.08			0.38			0.03			
v/c Ratio	0.98	0.91	0.23	0.98	0.97	0.84	0.56	0.96	0.13	0.94	1.04	
Uniform Delay, d1	54.9	36.0	26.2	49.8	32.2	29.3	48.0	44.5	34.9	54.7	48.5	
Progression Factor	1.00	1.00	1.00	0.77	0.66	0.46	0.63	0.48	0.38	1.00	1.00	
Incremental Delay, d2	45.9	7.8	0.9	21.7	7.4	5.9	0.3	11.3	0.0	36.0	45.3	
Delay (s)	100.8	43.9	27.2	60.0	28.7	19.3	30.6	32.6	13.1	90.7	93.8	
Level of Service	F	D	С	E	С	В	С	С	В	F	F	
Approach Delay (s)		49.9			31.7			29.2			92.9	
Approach LOS		D			С			С			F	
Intersection Summary												
HCM Average Control Dela	у		43.7	Н	CM Leve	l of Servic	е		D			
HCM Volume to Capacity ra	atio		0.95									
Actuated Cycle Length (s)			120.0	S	um of los	t time (s)			12.0			
Intersection Capacity Utiliza	ation		91.2%			of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 2: E Arapahoe Rd & I-25 Ramps

4/29/2008	
-----------	--

	_#	-	7	۲	+	۲	•	1	1	-	
Vovement	EBL	EBT	EBR2	WBL	WBT	WBR2	NBL	NBR2	SBL	SBR2	
Lane Configurations	ኘኘ	^	1	ሻሻ	†††	1	ኘኘ	11	ኘኘ	1	
Volume (vph)	760	485	805	755	1785	1350	680	910	1485	875	
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
ane Util. Factor	0.97	0.91	1.00	0.97	0.91	1.00	0.97	0.88	0.97	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.85	1.00	0.85	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	0.95	1.00	
Satd. Flow (prot)	3433	5085	1583	3433	5085	1583	3433	2787	3433	1583	
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	0.95	1.00	
Satd. Flow (perm)	3433	5085	1583	3433	5085	1583	3433	2787	3433	1583	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Adj. Flow (vph)	800	511	847	795	1879	1421	716	958	1563	921	
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	
Lane Group Flow (vph)	800	511	847	795	1879	1421	716	958	1563	921	
Turn Type	Prot		Free	Prot		Free	Prot	Free	Prot	Free	
Protected Phases	5	2		1	6		3		7		
Permitted Phases			Free			Free		Free		Free	
Actuated Green, G (s)	19.0	21.0	120.0	33.0	35.0	120.0	42.0	120.0	42.0	120.0	
Effective Green, g (s)	23.0	25.0	120.0	37.0	39.0	120.0	46.0	120.0	46.0	120.0	
Actuated g/C Ratio	0.19	0.21	1.00	0.31	0.32	1.00	0.38	1.00	0.38	1.00	
Clearance Time (s)	8.0	8.0		8.0	8.0		8.0		8.0		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0		3.0		
Lane Grp Cap (vph)	658	1059	1583	1059	1653	1583	1316	2787	1316	1583	
/s Ratio Prot	c0.23	0.10		0.23	c0.37		0.21		c0.46		
//s Ratio Perm			0.53			c0.90		0.34		0.58	
//c Ratio	1.22	0.48	0.54	0.75	1.14	0.90	0.54	0.34	1.19	0.58	
Uniform Delay, d1	48.5	41.8	0.0	37.3	40.5	0.0	28.8	0.0	37.0	0.0	
Progression Factor	0.52	0.45	1.00	0.49	0.53	1.00	1.00	1.00	1.00	1.00	
ncremental Delay, d2	104.1	0.8	0.6	0.3	62.3	0.9	0.5	0.3	92.4	1.6	
Delay (s)	129.1	19.6	0.6	18.5	83.8	0.9	29.3	0.3	129.4	1.6	
Level of Service	F	В	А	В	F	А	С	А	F	А	
Approach Delay (s)		52.7			42.4						
Approach LOS		D			D						
ntersection Summary											
HCM Average Control Delay			49.2	Н	CM Leve	l of Servic	е		D		
HCM Volume to Capacity rat	io		1.15								
Actuated Cycle Length (s)			120.0		um of los				8.0		
ntersection Capacity Utilizati	ion		108.5%	IC	CU Level	of Service			G		
Analysis Period (min) c Critical Lane Group			15								

HCM Signalized Intersection Capacity Analysis 4: E Arapahoe Rd & S Boston St

	٨	-	\mathbf{r}	4	+	•	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	ተተተ	1	ካካ	1111	1	ሻሻ	≜ ⊅		ሻሻ	- † †	1
Volume (vph)	350	2110	420	60	3350	90	250	125	60	70	150	290
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Lane Util. Factor	0.97	0.91	1.00	0.97	*0.80	1.00	0.97	0.95		0.97	0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.95		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	3433	5085	1583	3433	5961	1583	3433	3367		3433	3539	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.63	1.00	1.00
Satd. Flow (perm)	3433	5085	1583	3433	5961	1583	3433	3367		2269	3539	1583
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	372	2245	447	64	3564	96	266	133	64	74	160	309
RTOR Reduction (vph)	0	0	144	0	0	45	0	50	0	0	0	73
Lane Group Flow (vph)	372	2245	303	64	3564	51	266	147	0	74	160	236
Turn Type	Prot		Perm	Prot		Perm	Prot			pm+pt		Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6				4		4
Actuated Green, G (s)	9.0	66.5	66.5	4.0	61.5	61.5	6.0	25.3		25.7	22.5	22.5
Effective Green, g (s)	10.0	68.5	68.5	5.0	63.5	63.5	7.0	26.3		27.7	23.5	23.5
Actuated g/C Ratio	0.08	0.57	0.57	0.04	0.53	0.53	0.06	0.22		0.23	0.20	0.20
Clearance Time (s)	5.0	6.0	6.0	5.0	6.0	6.0	5.0	5.0		5.0	5.0	5.0
Vehicle Extension (s)	1.5	5.0	5.0	1.5	5.0	5.0	1.5	1.5		1.5	1.5	1.5
Lane Grp Cap (vph)	286	2903	904	143	3154	838	200	738		565	693	310
v/s Ratio Prot	c0.11	0.44		0.02	c0.60		c0.08	c0.04		0.00	0.05	
v/s Ratio Perm			0.19			0.03				0.03		c0.15
v/c Ratio	1.30	0.77	0.33	0.45	1.13	0.06	1.33	0.20		0.13	0.23	0.76
Uniform Delay, d1	55.0	19.8	13.7	56.2	28.2	13.7	56.5	38.3		36.3	40.6	45.6
Progression Factor	0.90	0.46	0.15	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	149.6	1.2	0.6	0.8	63.1	0.1	178.7	0.0		0.0	0.1	9.5
Delay (s)	199.0	10.3	2.7	57.0	91.3	13.9	235.2	38.3		36.3	40.7	55.1
Level of Service	F	В	А	E	F	В	F	D		D	D	E
Approach Delay (s)		32.1			88.8			151.4			48.3	
Approach LOS		С			F			F			D	
Intersection Summary												
HCM Average Control Dela	У		67.4	Н	CM Level	of Servic	e		E			
HCM Volume to Capacity ra	atio		1.10									
Actuated Cycle Length (s)			120.0	S	um of losi	time (s)			20.0			
Intersection Capacity Utiliza	ation		83.6%		CU Level)		E			
Analysis Period (min)			15									
c Critical Lane Group												

	4	•	1	1	1	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۲	1	††	1	۲	<u>††</u>
Volume (vph)	420	405	1360	725	475	975
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00	0.95	1.00	1.00	0.95
Frt	1.00	0.85	1.00	0.85	1.00	1.00
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00
Satd. Flow (prot)	1770	1583	3539	1583	1770	3539
Flt Permitted	0.95	1.00	1.00	1.00	0.07	1.00
Satd. Flow (perm)	1770	1583	3539	1583	138	3539
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	457	440	1478	788	516	1060
RTOR Reduction (vph)	0	295	0	354	0	0
Lane Group Flow (vph)	457	145	1478	435	516	1060
Turn Type		Perm		Perm	pm+pt	
Protected Phases	8		2		1	6
Permitted Phases		8		2	6	
Actuated Green, G (s)	29.0	29.0	49.0	49.0	81.0	81.0
Effective Green, g (s)	30.0	30.0	50.0	50.0	82.0	82.0
Actuated g/C Ratio	0.25	0.25	0.42	0.42	0.68	0.68
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	443	396	1475	660	475	2418
v/s Ratio Prot	c0.26		0.42		c0.25	0.30
v/s Ratio Perm		0.09		0.27	c0.49	
v/c Ratio	1.03	0.37	1.00	0.66	1.09	0.44
Uniform Delay, d1	45.0	37.2	35.0	28.1	39.2	8.6
Progression Factor	1.00	1.00	1.00	1.00	0.81	0.30
Incremental Delay, d2	51.1	0.6	23.9	5.1	58.5	0.4
Delay (s)	96.1	37.7	58.9	33.2	90.1	2.9
Level of Service	F	D	E	С	F	А
Approach Delay (s)	67.5		50.0			31.5
Approach LOS	E		D			С
Intersection Summary						
HCM Average Control Delay	у		47.1	H	CM Level	of Service
HCM Volume to Capacity ra			1.06			
Actuated Cycle Length (s)			120.0	S	um of lost	t time (s)
Intersection Capacity Utiliza	tion		97.2%	IC	CU Level o	of Service
Analysis Period (min)			15			
c Critical Lane Group						

HCM Signalized Intersection Capacity Analysis 1: E Arapahoe Rd & S Yosemite St

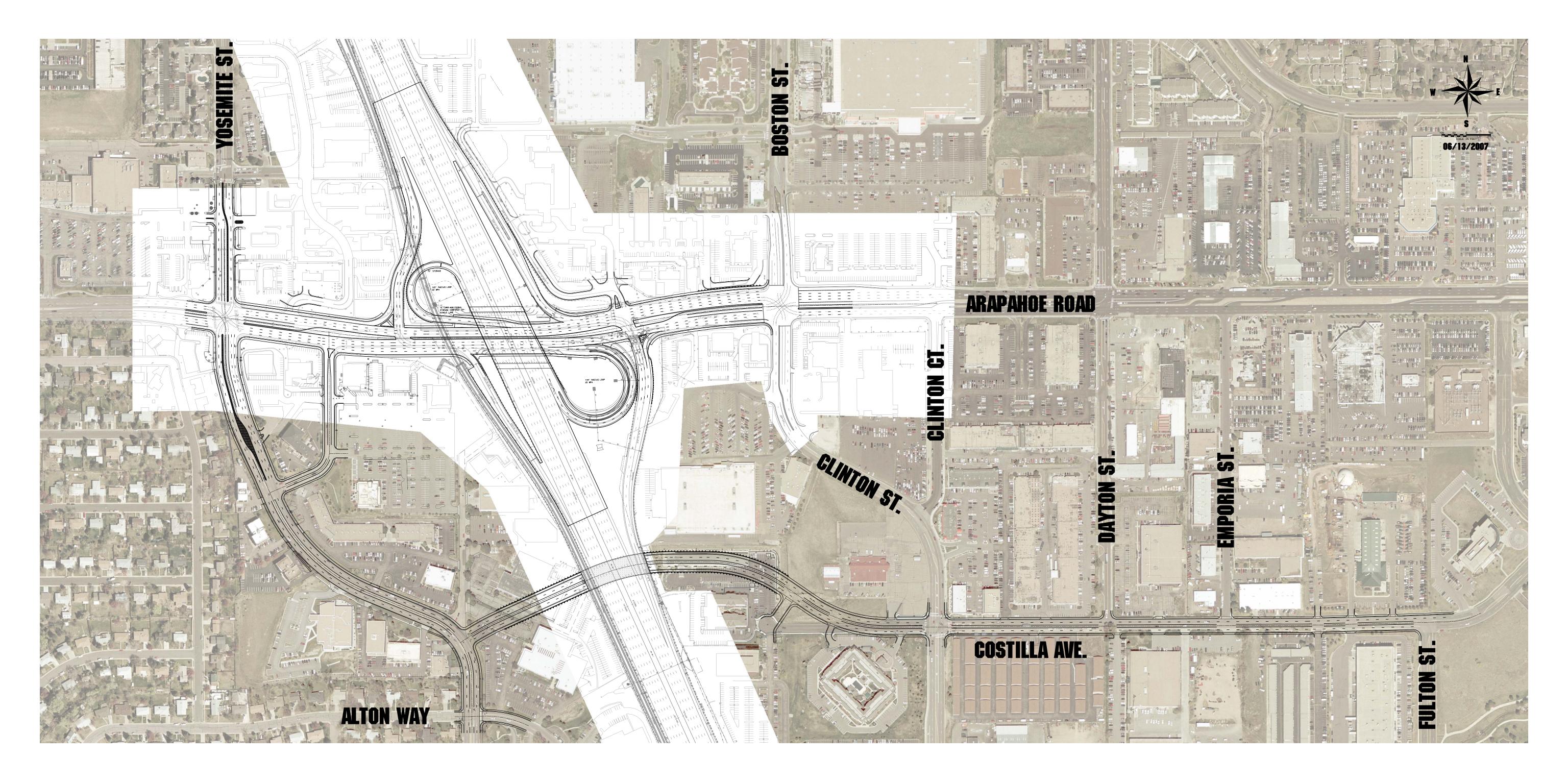
	٦	-	\mathbf{F}	4	+	•	1	Ť	*	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ካካ	ተተተ	1	ካካ	ተተተ	1	ሻሻ	<u></u>	1	ሻሻ	≜ ⊅	
Volume (vph)	200	1475	210	555	1975	200	460	980	420	570	865	125
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Lane Util. Factor	0.97	0.91	1.00	0.97	0.91	1.00	0.97	0.95	1.00	0.97	0.95	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3433	5085	1583	3433	5085	1583	3433	3539	1583	3433	3472	
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	3433	5085	1583	3433	5085	1583	3433	3539	1583	3433	3472	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	211	1553	221	584	2079	211	484	1032	442	600	911	132
RTOR Reduction (vph)	0	0	58	0	0	91	0	0	234	0	9	0
Lane Group Flow (vph)	211	1553	163	584	2079	120	484	1032	208	600	1034	0
Turn Type	Prot		Perm	Prot		Perm	Prot		Perm	Prot		
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6			8			
Actuated Green, G (s)	6.0	32.0	32.0	18.0	44.0	44.0	16.0	31.0	31.0	18.0	33.0	
Effective Green, g (s)	7.0	34.0	34.0	19.0	46.0	46.0	17.0	32.0	32.0	19.0	34.0	
Actuated g/C Ratio	0.06	0.28	0.28	0.16	0.38	0.38	0.14	0.27	0.27	0.16	0.28	
Clearance Time (s)	5.0	6.0	6.0	5.0	6.0	6.0	5.0	5.0	5.0	5.0	5.0	
Vehicle Extension (s)	2.0	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	
Lane Grp Cap (vph)	200	1441	449	544	1949	607	486	944	422	544	984	
v/s Ratio Prot	0.06	c0.31		0.17	c0.41		0.14	c0.29		0.17	c0.30	
v/s Ratio Perm			0.10			0.08			0.13			
v/c Ratio	1.06	1.08	0.36	1.07	1.07	0.20	1.00	1.09	0.49	1.10	1.05	
Uniform Delay, d1	56.5	43.0	34.3	50.5	37.0	24.7	51.5	44.0	37.2	50.5	43.0	
Progression Factor	1.00	1.00	1.00	0.84	0.65	0.37	0.67	0.71	0.42	1.00	1.00	
Incremental Delay, d2	78.9	47.7	2.3	53.8	38.1	0.5	35.2	55.5	0.3	69.8	42.9	
Delay (s)	135.4	90.7	36.6	96.2	62.2	9.7	69.9	86.8	15.7	120.3	85.9	
Level of Service	F	F	D	F	E	А	E	F	В	F	F	
Approach Delay (s)		89.4			65.2			66.6			98.5	
Approach LOS		F			E			E			F	
Intersection Summary												
HCM Average Control Dela	у		77.7	Н	CM Level	of Servic	е		E			
HCM Volume to Capacity ra			1.04									
Actuated Cycle Length (s)			120.0	S	um of los	t time (s)			8.0			
Intersection Capacity Utiliza	ition		101.0%			of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 2: E Arapahoe Rd & I-25 Ramps

4/29/2008	
-----------	--

	_#	-	\mathbf{F}	F	+	۲	•	۲	1	1
Movement	EBL	EBT	EBR2	WBL	WBT	WBR2	NBL	NBR2	SBL	SBR2
Lane Configurations	ሻሻ	ተተተ	1	ካካ	ተተተ	1	ሻሻ	77	ካካ	1
Volume (vph)	810	995	660	1085	1315	650	660	590	820	755
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	0.97	0.91	1.00	0.97	0.91	1.00	0.97	0.88	0.97	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.85	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	0.95	1.00
Satd. Flow (prot)	3433	5085	1583	3433	5085	1583	3433	2787	3433	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	0.95	1.00
Satd. Flow (perm)	3433	5085	1583	3433	5085	1583	3433	2787	3433	1583
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	853	1047	695	1142	1384	684	695	621	863	795
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	853	1047	695	1142	1384	684	695	621	863	795
Turn Type	Prot		Free	Prot		Free	Prot	Free	Prot	Free
Protected Phases	5	2		1	6		3		7	
Permitted Phases			Free			Free		Free		Free
Actuated Green, G (s)	29.8	26.3	120.0	39.8	36.3	120.0	29.9	120.0	29.9	120.0
Effective Green, g (s)	33.8	30.3	120.0	43.8	40.3	120.0	33.9	120.0	33.9	120.0
Actuated g/C Ratio	0.28	0.25	1.00	0.36	0.34	1.00	0.28	1.00	0.28	1.00
Clearance Time (s)	8.0	8.0		8.0	8.0		8.0		8.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0		3.0	
Lane Grp Cap (vph)	967	1284	1583	1253	1708	1583	970	2787	970	1583
v/s Ratio Prot	0.25	0.21		c0.33	c0.27		0.20		c0.25	
v/s Ratio Perm			0.44			0.43		0.22		0.50
v/c Ratio	0.88	0.82	0.44	0.91	0.81	0.43	0.72	0.22	0.89	0.50
Uniform Delay, d1	41.2	42.2	0.0	36.3	36.4	0.0	38.7	0.0	41.3	0.0
Progression Factor	0.63	1.03	1.00	0.68	0.67	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	1.0	0.6	0.1	3.8	1.5	0.3	2.5	0.2	10.1	1.1
Delay (s)	26.8	44.2	0.1	28.3	25.7	0.3	41.3	0.2	51.3	1.1
Level of Service	С	D	А	С	С	А	D	А	D	А
Approach Delay (s)		26.7			21.2					
Approach LOS		С			С					
Intersection Summary			.						-	
HCM Average Control Delay			24.1	Н	CM Leve	l of Servic	е		С	
HCM Volume to Capacity ratio)		0.86							
Actuated Cycle Length (s)			120.0			t time (s)			8.0	
Intersection Capacity Utilizatio	n		83.6%	IC	CU Level	of Service			E	
Analysis Period (min)			15							
c Critical Lane Group										

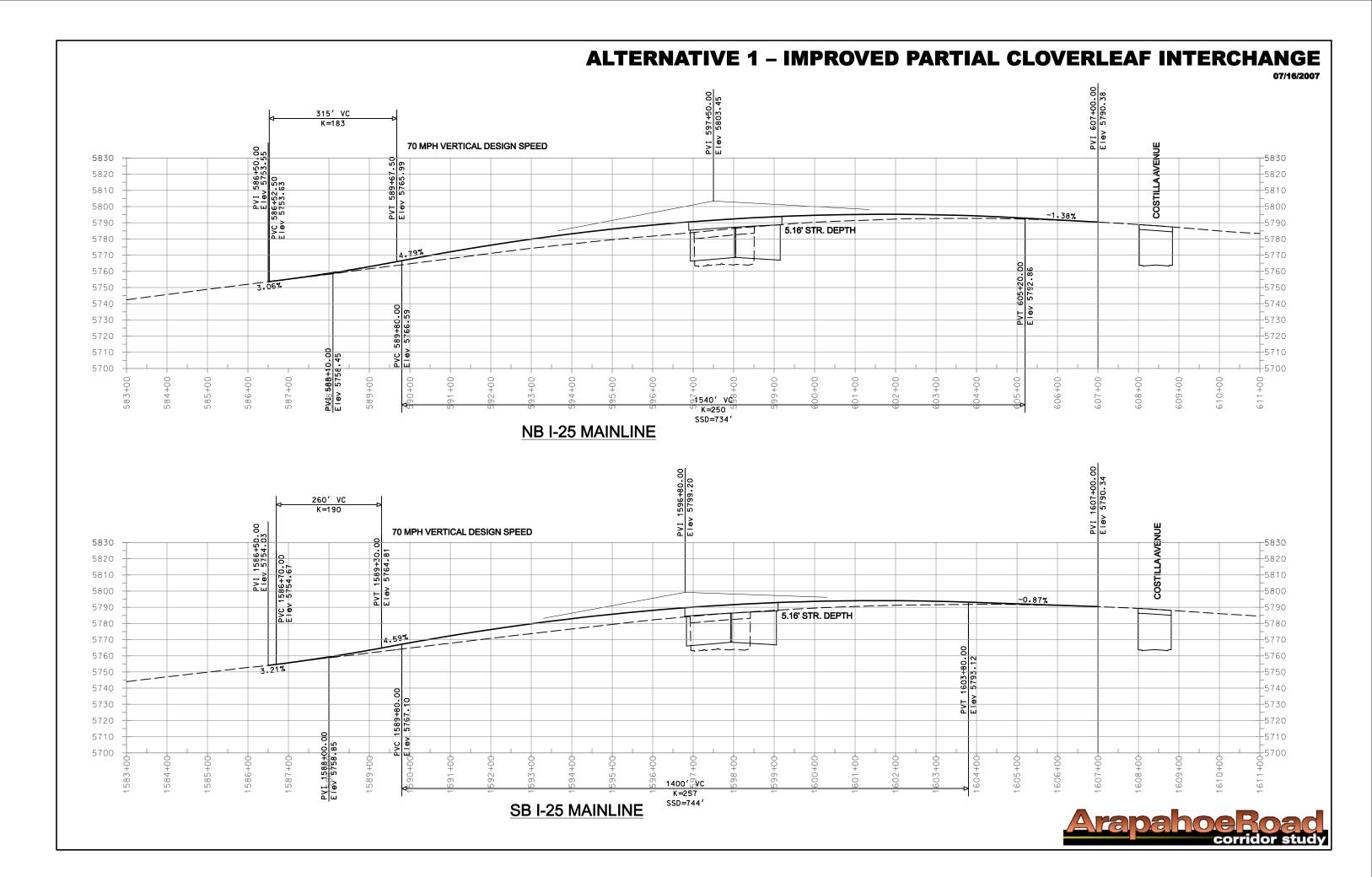
HCM Signalized Intersection Capacity Analysis 4: E Arapahoe Rd & S Boston St

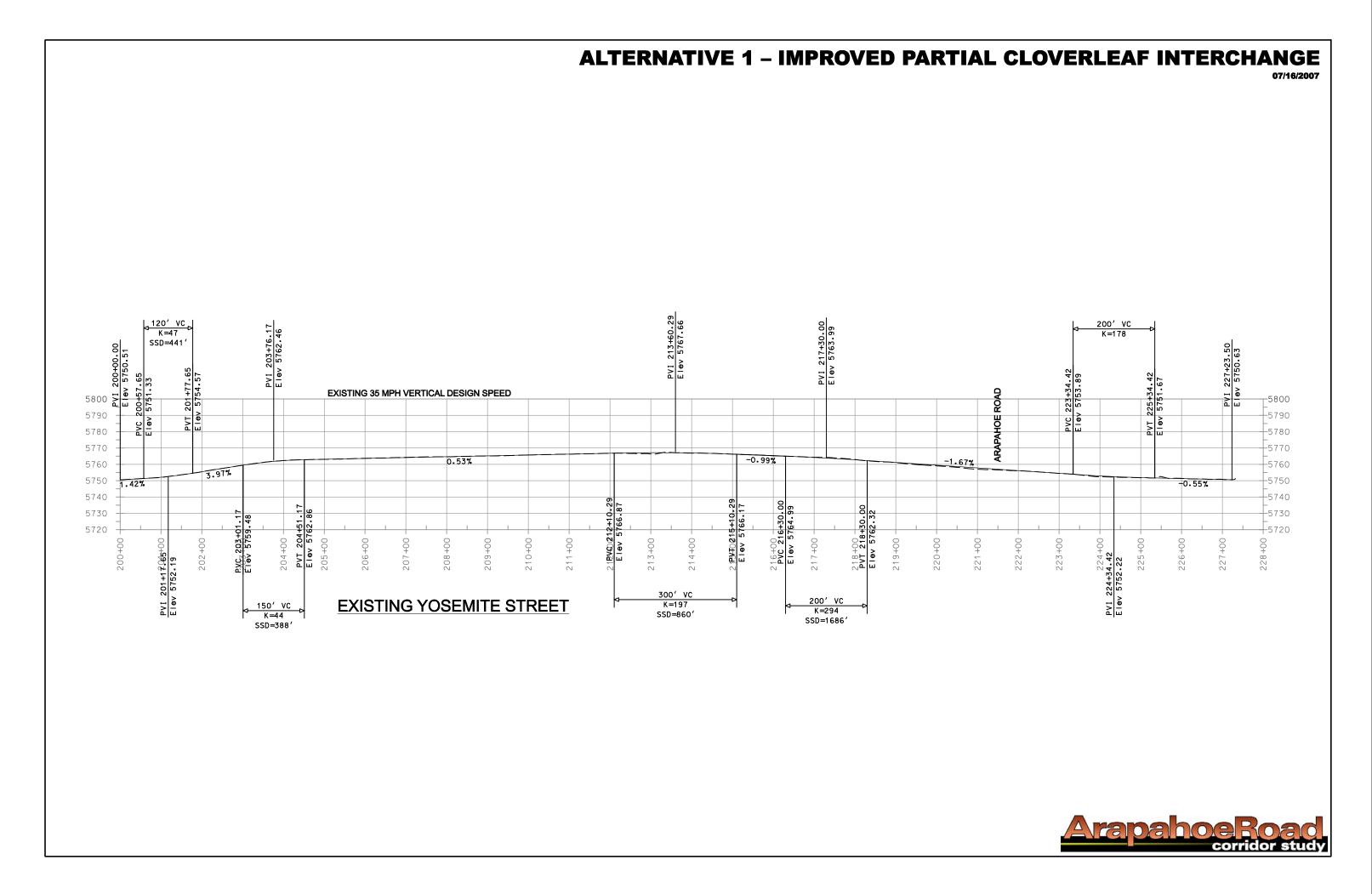

4/29	/200	8(

	۶	-	\mathbf{F}	4	+	•	•	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	ተተተ	1	ሻሻ	1111	1	ሻሻ	≜ ⊅		ሻሻ	- † †	1
Volume (vph)	280	1760	365	200	2270	180	540	235	175	105	190	240
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Lane Util. Factor	0.97	0.91	1.00	0.97	*0.80	1.00	0.97	0.95		0.97	0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.94		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	3433	5085	1583	3433	5961	1583	3433	3313		3433	3539	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.50	1.00	1.00
Satd. Flow (perm)	3433	5085	1583	3433	5961	1583	3433	3313		1802	3539	1583
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	298	1872	388	213	2415	191	574	250	186	112	202	255
RTOR Reduction (vph)	0	0	137	0	0	109	0	125	0	0	0	124
Lane Group Flow (vph)	298	1872	251	213	2415	82	574	311	0	112	202	131
Turn Type	Prot		Perm	Prot		Perm	Prot			pm+pt		Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6				4		4
Actuated Green, G (s)	19.2	62.9	62.9	6.0	49.7	49.7	16.0	26.1		18.1	14.1	14.1
Effective Green, g (s)	20.2	64.9	64.9	7.0	51.7	51.7	17.0	27.1		20.1	15.1	15.1
Actuated g/C Ratio	0.17	0.54	0.54	0.06	0.43	0.43	0.14	0.23		0.17	0.13	0.13
Clearance Time (s)	5.0	6.0	6.0	5.0	6.0	6.0	5.0	5.0		5.0	5.0	5.0
Vehicle Extension (s)	1.5	5.0	5.0	1.5	5.0	5.0	1.5	1.5		1.5	1.5	1.5
Lane Grp Cap (vph)	578	2750	856	200	2568	682	486	748		370	445	199
v/s Ratio Prot	0.09	c0.37		0.06	c0.41		c0.17	0.09		0.01	0.06	
v/s Ratio Perm			0.16			0.05				0.04		c0.08
v/c Ratio	0.52	0.68	0.29	1.06	0.94	0.12	1.18	0.42		0.30	0.45	0.66
Uniform Delay, d1	45.4	20.0	15.0	56.5	32.7	20.5	51.5	39.7		43.0	48.6	50.0
Progression Factor	0.93	0.33	0.13	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	0.2	1.0	0.6	81.9	8.4	0.4	101.0	0.1		0.2	0.3	5.9
Delay (s)	42.6	7.5	2.6	138.4	41.1	20.9	152.5	39.8		43.2	48.9	55.8
Level of Service	D	А	А	F	D	С	F	D		D	D	E
Approach Delay (s)		10.9			47.1			103.8			50.9	
Approach LOS		В			D			F			D	
Intersection Summary												
HCM Average Control Delay			42.3	Н	CM Level	of Servic	e		D			
HCM Volume to Capacity ratio	1		0.90									
Actuated Cycle Length (s)			120.0	S	um of lost	t time (s)			16.0			
Intersection Capacity Utilizatio	n		74.9%		U Level o		<u>;</u>		D			
Analysis Period (min)			15									
c Critical Lane Group												

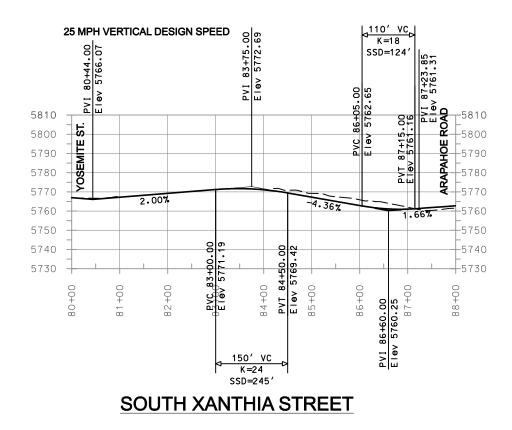

	4	•	Ť	1	1	Ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	٦	1	††	1	٦	††
Volume (vph)	710	480	890	690	305	1415
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00	0.95	1.00	1.00	0.95
Frt	1.00	0.85	1.00	0.85	1.00	1.00
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00
Satd. Flow (prot)	1770	1583	3539	1583	1770	3539
Flt Permitted	0.95	1.00	1.00	1.00	0.10	1.00
Satd. Flow (perm)	1770	1583	3539	1583	186	3539
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	772	522	967	750	332	1538
RTOR Reduction (vph)	0	202	0	525	0	0
Lane Group Flow (vph)	772	320	967	225	332	1538
Turn Type		Perm		Perm	pm+pt	
Protected Phases	8		2		1	6
Permitted Phases		8		2	6	
Actuated Green, G (s)	52.8	52.8	35.0	35.0	57.2	57.2
Effective Green, g (s)	53.8	53.8	36.0	36.0	58.2	58.2
Actuated g/C Ratio	0.45	0.45	0.30	0.30	0.49	0.49
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	794	710	1062	475	330	1716
v/s Ratio Prot	c0.44		0.27		c0.15	0.43
v/s Ratio Perm		0.20		0.14	c0.33	
v/c Ratio	0.97	0.45	0.91	0.47	1.01	0.90
Uniform Delay, d1	32.4	22.9	40.4	34.3	44.6	28.2
Progression Factor	1.00	1.00	1.00	1.00	0.60	0.38
Incremental Delay, d2	25.1	0.5	13.0	3.4	33.5	3.5
Delay (s)	57.5	23.3	53.5	37.6	60.3	14.3
Level of Service	E	С	D	D	E	В
Approach Delay (s)	43.7		46.6			22.5
Approach LOS	D		D			С
Intersection Summary						
HCM Average Control Dela	у		36.6	H	CM Level	of Service
HCM Volume to Capacity ra	atio		0.97			
Actuated Cycle Length (s)			120.0	S	um of lost	time (s)
Intersection Capacity Utiliza	ation		90.8%			of Service
Analysis Period (min)			15			
c Critical Lane Group						

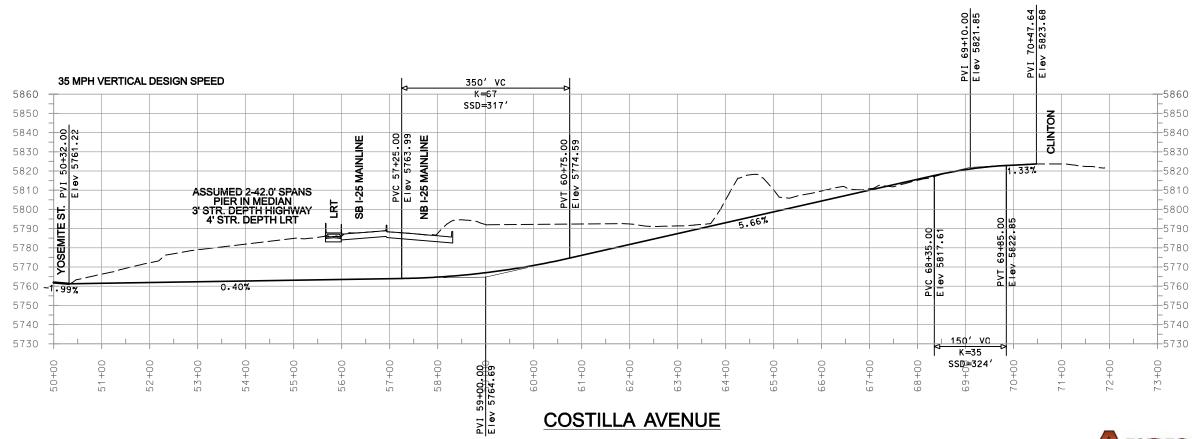
Appendix E Recommended Alternative Profiles

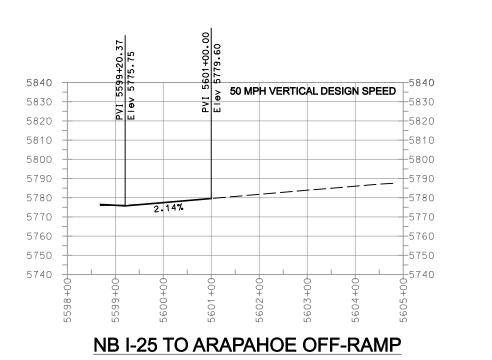


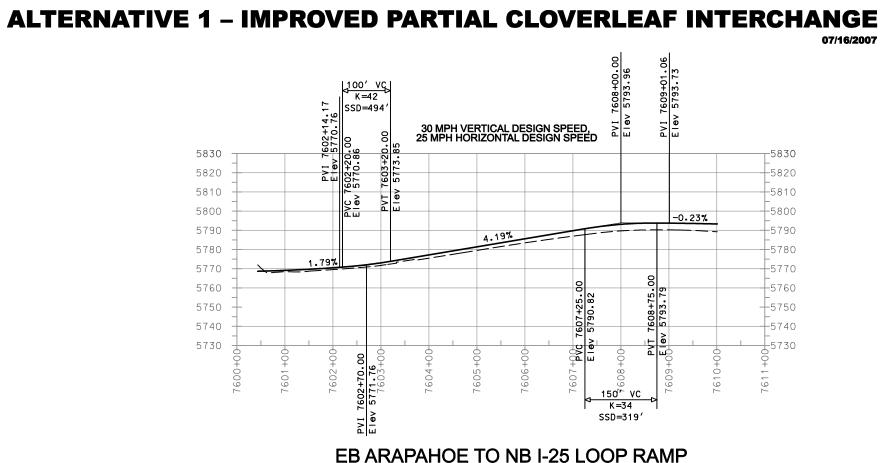


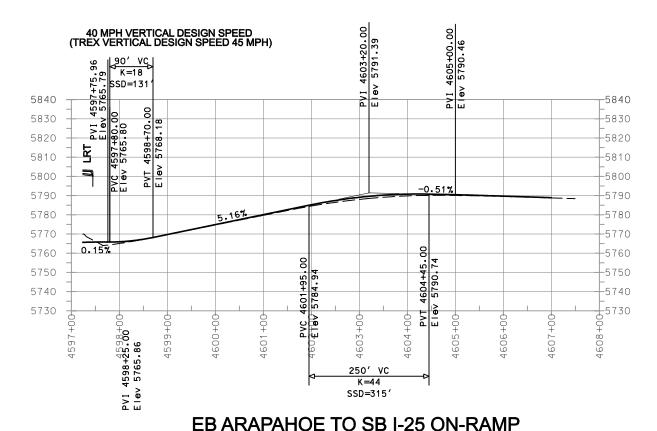
ALTERNATIVE 1 – IMPROVED PARTIAL CLOVERLEAF INTERCHANGE

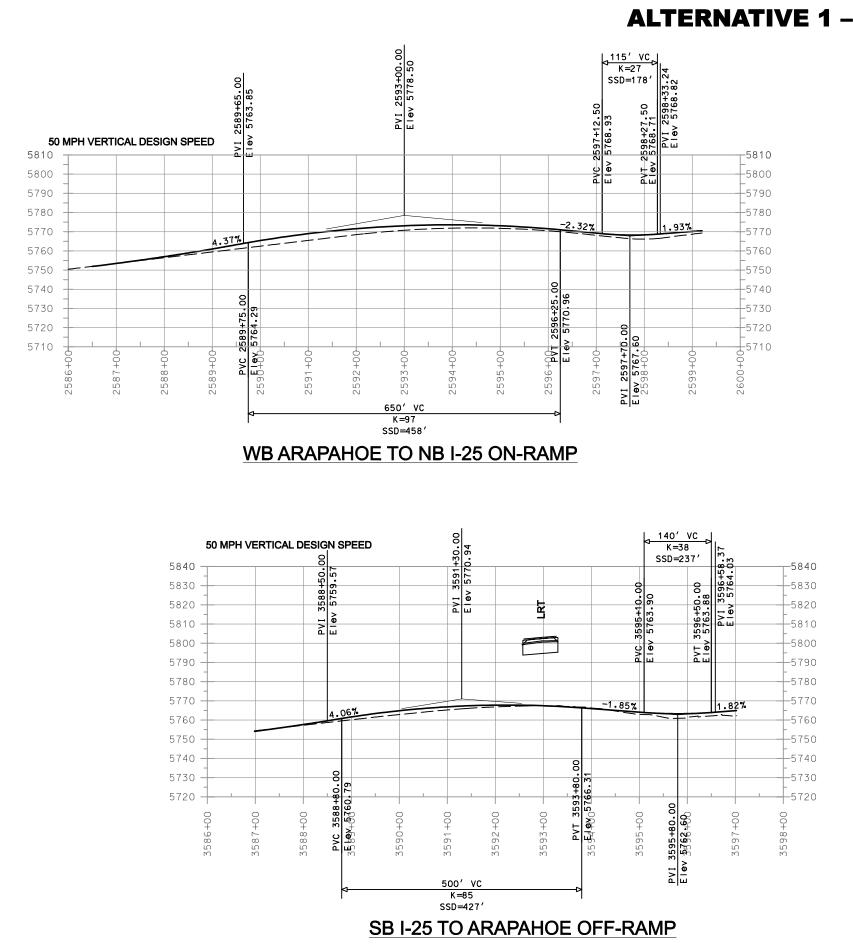


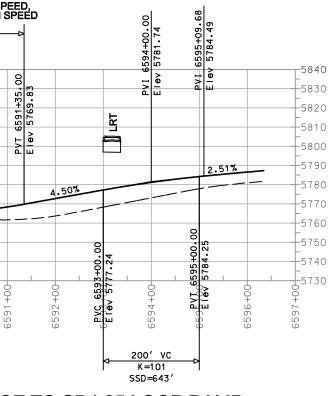





ALTERNATIVE 1 – IMPROVED PARTIAL CLOVERLEAF INTERCHANGE







50 MPH VERTICAL DESIGN SPEED, 22 MPH HORIZONTAL DESIGN SPEED 220' VC K=40 SSD=216' 5840 <u>۳</u> 5830 6589+15. / 5765,94 5820 LRT 5810 -25 P 5800 SB 5790 5780 5770 -0.96% 5760 5750 5740 5730 PVI 6588+66.97 Elev 5766.40 00+ PVI 6590+25.00⁺¹ Elev 5764.88 6588+

ALTERNATIVE 1 – IMPROVED PARTIAL CLOVERLEAF INTERCHANGE 07/16/2007

Appendix F Estimate of Probable Construction Cost

	System Level Feasibility	Study Cost Estima	ite	
	in 2006 ye			
Project No:	I-25 / Arapahoe Road Interchange			
Target Construction Begin Yr: All Cos Description: (Arapahoe Road / I-25 In		2000		
Description: (Arapanoe Road / 1-25 in	terchange) Partial Clovenear Intercr	lange		
	% Range	% Used	Cost	
Project Construction Bid Items	Project Dependent	N/A	\$14,556,719.07	(A)
Contingencies	(15% - 30%) of (A)	30.00%	\$4,367,015.72	(B)
ITS	(6-10%) of (A+B) Default = 6%	10.00%	\$1,892,373.48	(C)
Drainage/Utilities	(3-10%)of (A+B) Default = 6%	10.00%	\$1,892,373.48	(D)
Signing and Striping	(1-5%) of (A+B+C+D) Default = 5%	5.00%	\$1,135,424.09	(E)
Construction Signing & Traffic Control	5 to 25% of (A+B+C+D+E) Default = 20%	25.00%	\$5,960,976.46	(F)
Mobilization	(4 to 10%) of (A+B+C+D+E+F) Default = 7%	10.00%	\$2,980,488.23	(G)
Total of Construction Bid Items	(A+B+C+D+E+F+G)		\$32,785,370.52	(H)
Force Account - Utilities	(1 to 2%) of (H) Default = 2%	2.00%	\$655,707.41	(I)
Force Account - Misc.	(10 to 15%) of (H) Default = 12%	15.00%	\$4,917,805.58	(J)
Subtotal of Construction Cost	(H+I+J)		\$38,358,883.51	(K)
Total Construction Engineering	21% of (K)	21.00%	\$8,055,365.54	(L)
Total Preliminary Engineering	15% of (K)	15.00%	\$5,753,832.53	(M)
Right of Way	Project Dependent	N/A	Not Included	
Utilities	Project Dependent	N/A	\$1,000,000.00	(N)
Total Project Cost			\$53,168,081.57	(P)
Date Prepared:	September 21, 2006 (QUANTITIES	REVISED JUNE 20, 2007	HARTWIG & ASSOCIA	TES)
Prepared By:	Steve Long (DEA) / JK Allen			

c)	in 2006 year \$\$				+ +	
Project No:	I-25 / Arapahoe Road	Interchange			+	
Target Construction Begin Yr: All Costs Assume 2006 Prices	-257 Arapanoe Roau	Interchange			+	
Description: (Arapahoe Road / I-25 Interchange) Partial Clover	leaf Interchange				+	
Description. (Arapanoe Road / 1-20 interchange) i artiar olover	ical interchange					
Estimate Worksheet					-	
	% Range			% Used	-	
Project Construction Items						
Item Description	0		D. 11 % O. 4			
Removals / Demolition of Existing Structures	Quantity	Item Unit Lump Sum	Per Unit Cost \$1,000,000.00			Cost \$1,000,000.00
Pavement -HMA	1 59,918	Tons	\$1,000,000.00		+	\$4,793,476.84
Unclassified Excavation (CIP)	190,553	Cubic Yard	\$20.00		-	\$3,811,053.33
Curb and Gutter Type 2 (Section I-B)	4,917	Linear Feet	\$15.00			\$73,755.00
Curb and Gutter Type 2 (Section II-B)	8,359	Linear Feet	\$20.00			\$167,180.00
Median Cover Material	32,538	Square Feet	\$10.00			\$325,380.00
Concrete Sidewalk	4,422	Square Yard	\$40.00			\$176,888.89
Structures	46,375	Square Feet	\$90.00		\perp	\$4,173,750.00
Retaining Walls	783	Square Feet	\$45.00			\$35,235.00
Total accounted construciton items						\$14,556,719.07
Contingencies	(15% - 30%) of (A)			30.00%	Carried	d to Sheet One
Established as a percentage				00.0070	Camea	
ITS	(6-10%) of (a+b) Default = 6%			10.00%	Carried	d to Sheet One
	Delault = 0 %					
Drainage/Water/Sewer	(3-10%)of (a+b)			10.00%	Carried	d to Sheet One
	Default = 6%					
Ciaping and Ottining	(1, 50) of (a, b, a, d)			E 00%	0	the Oheest One
Signing and Striping	(1-5%) of (a+b+c+d) Default = 5%			5.00%	Carried	d to Sheet One
	Deladit = 576				-	
Construction Signing & Traffic Control	5 to 25% of (a+b+c+d+	-е)		25.00%	Carried	d to Sheet One
	Default = 20%					
Mobilization	(4 to 10%) of (a+b+c+c	drort)		10.00%	Carrier	d to Sheet One
MODIFIZATION	Default = 7%			10.00 %	Carrieu	Tto Sheet One
Total of Construction Items	(a+b+c+d+e+f+g)					
	(arbrendrenng)					
Force Account - Utilities	(1 to 2%) of (h) Default = 2%			2.00%	Carried	d to Sheet One
	Delault = 2 %					
Force Account - Misc.	(10 to 15%) of (h)			15.00%	Carried	d to Sheet One
	Default = 12%					
Subtotal of Construction Cost	(h+i+j)				+	
	(,,,,,)				+	
Total Construction Engineering	21% of (k)			21.00%	Carried	d to Sheet One
					+	
Total Preliminary Engineering	15% of (k)			15.00%	Carried	d to Sheet One
					+ - +	
					+	
Right of Way	Not Included	Square Feet	\$25.00		+ +	Not Included

	el Feasibility Study in 2006 year \$\$			
Project No:	I-25 / Arapahoe Road	Interchange		
Target Construction Begin Yr: All Costs Assume 2006 Prices	1-237 Arapanoe Road	interchange		
Description: (Arapahoe Road / I-25 Interchange) Partial Cloverl	eaf Interchange			
	our moronango			
Quantity Worksheet				
Project Construction Items				
Item Description				
Pavement - HMA	SF	SY	Thickness (inch)	Tons
I-25	349030	38781	13	27728
Ramps	139578	15509	11	9383
Arapahoe	339281	37698	11	22807
Total	827889	91988		59918
	SF			
Median Cover Material	32538			
	SF	SY		
Concrete Sidewalk	39800	4422		
	LF			
Curb and Gutter Type 2 (Section II-B)	8359			
Curb and Gutter Type 2 (Section I-B)	4917			
	SF			_
Structures	46375			
	LF	SF		
Retaining Wall	261	783		
	LS			
Removal of Existing Structures	1			
Unclassified Excavation (CIP)	CF	CY		
I-25 and Ramps	4466360	165421		
Arapahoe	678562	25132		
Total		190553		

	System Level Feasibility	v Study Cost Estima	te	
	in 2006 y	-		
Project No:	I-25 / Arapahoe Road Interchang			
Target Construction Begin Yr: All Cos		-		
Description: (Arapahoe Road / I-25 In	terchange) Costilla / Yosemite Con	nection		
	% Range	% Used	Cost	
Project Construction Bid Items	Project Dependent	N/A	\$5,831,607.14	(A)
Contingencies	(15% - 30%) of (A)	30.00%	\$1,749,482.14	(B)
ITS	(6-10%) of (A+B) Default = 6%	10.00%	\$758,108.93	(C)
Drainage/Utilities	(3-10%)of (A+B) Default = 6%	10.00%	\$758,108.93	(D)
Signing and Striping	(1-5%) of (A+B+C+D) Default = 5%	5.00%	\$454,865.36	(E)
Construction Signing & Traffic Control	5 to 25% of (A+B+C+D+E) Default = 20%	25.00%	\$2,388,043.12	(F)
Mobilization	(4 to 10%) of (A+B+C+D+E+F) Default = 7%	10.00%	\$1,194,021.56	(G)
Total of Construction Bid Items	(A+B+C+D+E+F+G)		\$13,134,237.18	(H)
Force Account - Utilities	(1 to 2%) of (H) Default = 2%	2.00%	\$262,684.74 	(I)
Force Account - Misc.	(10 to 15%) of (H) Default = 12%	15.00%	\$1,970,135.58	(J)
Subtotal of Construction Cost	(H+I+J)		\$15,367,057.50	(K)
Total Construction Engineering	21% of (K)	21.00%	\$3,227,082.08	(L)
Total Preliminary Engineering	15% of (K)	15.00%	\$2,305,058.63	(M)
Right of Way	Project Dependent	N/A	Not Included	
Utilities	Project Dependent	N/A	\$500,000.00	(N)
Total Project Cost			\$21,399,198.21	(P)
Date Prepared:	September 21, 2006 (QUANTITIE	S REVISED JUNE 20, 2007	HARTWIG & ASSOCIAT	ΓES)
Prepared By:	Steve Long (DEA) / JK Allen			

System Leve	el Feasibility Study	Cost Estimate				
Cystem Leve	in 2006 year \$\$	COSt Estimate				
Project No:	I-25 / Arapahoe Road	Interchange				
Target Construction Begin Yr: All Costs Assume 2006 Prices	-257 Arapanoe Road	Interchange				
Description: (Arapahoe Road / I-25 Interchange) Costilla / Yose	mite Connection					
Description. (Arapanoe Road / 1-25 interchange) Costina / 10se						
Estimate Worksheet						
	% Range			% Used		
Designet Construction Home				_		
Project Construction Items				_		
Item Description	Quantity	Item Unit	Per Unit Cost	_		Cost
Removals / Demolition of Existing Structures	1	Lump Sum	\$500.000.00	-		\$500,000.00
Pavement - HMA	18,024	Tons	\$80.00	-		\$1,441,911.29
Unclassified Excavation (CIP)	19,861	Cubic Yard	\$20.00	-		\$397,220.74
Curb and Gutter Type 2 (Section I-B)	0	Linear Feet	\$15.00	-		\$0.00
Curb and Gutter Type 2 (Section II-B)	8,687	Linear Feet	\$20.00	-		\$173,744.00
Median Cover Material	0	Square Feet	\$10.00	-		\$0.00
Concrete Sidewalk	7,930	Square Yard	\$40.00	-		\$317,208.89
Concrete Driveway	1,486	Square Yard	\$40.00	-		\$59,422.22
Structures	21,350	Square Feet	\$90.00	-		\$1,921,500.00
Retaining Walls	22,680	Square Feet	\$45.00	-		\$1,020,600.00
g · · • · · ·	,		•••••			÷:,==;====
Total accounted construciton items						\$5,831,607.14
				_		· · / · · / · ·
Contingencies	(15% - 30%) of (A)			30.00%	Carrie	d to Sheet One
Established as a percentage				_		
	(_		
ITS	(6-10%) of (a+b)			10.00%	Carrie	d to Sheet One
	Default = 6%			_		
Drainage/Water/Sewer	(3-10%)of (a+b)			10.00%	Carria	d to Sheet One
Diamage/water/Sewer	Default = 6%			10.00 %	Came	d to Sneet One
	Delault = 0 %			-		
Signing and Striping	(1-5%) of (a+b+c+d)			5.00%	Carrie	d to Sheet One
	Default = 5%			0.0070	oume	
	Doldan = 070			-		
Construction Signing & Traffic Control	5 to 25% of (a+b+c+d-	re)		25.00%	Carrie	d to Sheet One
	Default = 20%					
Mobilization	(4 to 10%) of (a+b+c+c	d+e+f)		10.00%	Carrie	d to Sheet One
	Default = 7%					
				_		
				_		
Total of Construction Items	(a+b+c+d+e+f+g)			_		
				_		
- · · · · · · · · · · · · · · · · · · ·				_		
Force Account - Utilities	(1 to 2%) of (h)			2.00%	Carrie	d to Sheet One
	Default = 2%			_		
Free Arrent Mire	(40 + 450) + (1)			45.0000		
Force Account - Misc.	(10 to 15%) of (h)			15.00%	Carrie	d to Sheet One
	Default = 12%			_		
Subtotal of Construction Cost	(h+i+j)			-		
	()/			_		
Total Construction Engineering	21% of (k)			21.00%	Carrie	d to Sheet One
				20070	came	
Total Preliminary Engineering	15% of (k)			15.00%	Carrie	d to Sheet One
			A AE	-		
Right of Way	Not Included	Square Feet	\$25.00	N/A		Not Included

	System Leve	el Feasibility Stud	y Cost Estimate	
		in 2006 year \$\$		
Project No:		I-25 / Arapahoe Roa	d Interchange	
Description: (Arapahoe Road / I-25 Interchange) Costilla / Yosemit	e Connection			
Quantity Worksheet				
Project Construction Items				
Item Description				
	SF	SY	Thickness (inch)	Tons
Pavement - HMA	268124	29792	11	18024
	SF			
Median Cover Material	0			
	SF	SY		
Concrete Sidewalk	71372	7930		
	LF			
Curb and Gutter Type 2 (Section II-B)	8687			
Curb and Gutter Type 2 (Section I-B)	0			
	SF			
Structures	21350			
-	LF	SF		
Retaining Wall	1890	22680		
	LS			
Removal of Existing Structures	1			
	CF	CY		
Unclassified Excavation (CIP)	536248	19861		
Assumes 2 ft of earthwork for the surface area of roadway				
	SF	SY		
Concrete Driveways	13370	1486		