MATHEMATICAL MODELS FOR

TIME SERIES OF MONTHLY PRECIPITATION AND MONTHLY RUNOFF

By

L. A. Roesner and V. M. Yevdjevich

October 1966

HYDROLOGY PAPERS COLORADO STATE UNIVERSITY Fort Collins, Colorado

MATHEMATICAL MODELS FOR TIME SERIES OF MONTHLY PRECIPITATION AND MONTHLY RUNOFF

By
Larry A. Roesner and Vujica M. Yevdjevich

HYDROLOGY PAPERS
COLORADO STATE UNIVERSITY
FORT COLLINS, COLORADO

ACKNOWLEDGMENTS

L. A. Roesner (former Colorado State University graduate research assistant) began the research for this paper while studying towards his Master's degree, under the advice and supervision of Dr. V. M. Yevdjevich, Professor of Civil Engineering, Colorado State University. Afterwards, the study was continued by both writers, and the final results are given in this paper.

The writers wish to acknowledge the financial support of the U. S. National Science Foundation in the research leading to this hydrology paper. In addition, the National Center for Atmospheric Research, Boulder, Colorado, has helped this study by allowing free computer time.

Finally, the writers wish to express their appreciation to Dr. M. M. Siddiqui, Professor of Mathematics and Statistics, for his valuable suggestions in the analytical approach used in this paper.

TABLE OF CONTENTS

Page

Abstract
I Introduction1

1. Significance of study 1
2. Stationarity problems 1
3. Research data and terminology 2
4. Main objectives of the study 2
II Mathematical Methods Used In This Investigation 3
5. Stationarity 3
6. Periodicity 3
7. Serial correlation 5
8. Variance spectrum 6
9. Mathematical models 7
III Data Assembly and Analysis of Results 10
10. Data assembly for researsh 10
11. Explained variance by seasonal periodic components 10
12. Explained variance of the main 12 -month cycle and its significant subharmonics of the monthly precipitation. 13
13. Explained variance of the main 12 -month cycle and its significant harmonics for the monthly runoff. 13
14. Fitting of mathematical models to the monthly precipitation series. 16
15. Fitting of mathematical models to the monthly runoff series. 19
IV Dependence in Stochastic Components of Monthly Precipitation and Monthly Runoff 28
16. Monthly precipitation series 28
17. Monthly runoff series 29
18. Skewness coefficient of stochastic components of monthly precipitation. 32
19. Skewness coefficient of the independent stochastic components of monthly river flows. 33
V Conclusions 34
Bibliography 35
Appendix 1 37
Appendix 2 39
Appendix 3 41
Appendix 4 47

LIST OF FIGURES AND TABLES

Figure Page
1 Effects of removing periods from the time series on the correlogram. 5
2
Effects of removing periods from the time series on the variance spectrum 734monthly precipitation time series14
6
Percent of the total explained variance of the significant seasonal harmonics of the logarithms of the monthly runoff time series 15
7 Results of fitting stochastic Model A to the precipitation stations 17
8 Results of fitting stochastic Model B to the precipitation stations 18
9 Sequence of monthly precipitation amounts for station 29.3775 at Hachita, New Mexico from 1931 through 1960 19
10
Correlogram and variance spectrum for the monthly precipitation series X_{t},
the standardized series Z_{t}, and the fitted series Z_{t}; station 29.3775, Hachita,New Mexico20
11 Results of fitting Markov I Model A and Markov I Log Model A to the runoff stations 22
12
Results of fitting Markov I Model B to the runoff stations 24
13
Sequence of monthly river flows for station 11B.402, Middle Fork of the American River near Auburn, California from 1931 through 1960 2514
Areal distribution of precipitation stations tested. 11
Areal distribution of runoff stations tested 12
5 Percent of the total explained variance of the significant seasonal harmonics of 5
Correlogram and variance spectrum for the time series of the logarithms of themonthly river flows X_{t}, the standardized series Z_{t}, and the fitted series Z_{t};station 11B.402, Middle Fork of the American River near Auburn, California .26
Correlogram and variance spectrum of the stochastic series ϵ_{t} produced from fitting Markov Log I Model A and the stochastic series ϵ_{t} produced from fitting Markov I Log Model B to station 11B.402, Middle Fork of the American River near Auburn, California 27
Areal distribution of the first correlation coefficient of the standardized series Z_{t} for monthly precipitation 28
Frequency distribution of the first correlation coefficient of the standardized series Z_{t} for the precipitation stations tested. 29
Probability distribution of the first correlation coefficient of the standardized series Z_{t} for the precipitation stations tested. 29
Areal distribution of the first correlation coefficient of the standardized series Z_{t} for monthly river flows 30
Frequency distribution of the first correlation coefficient of the standardized series Z_{t} for the runoff stations in the two areas indicated. 31Probability distribution of the first correlation coefficient of the standardizedseries Z_{t} for the runoff stations in the two areas indicated.31
Figure Page
22 Areal distribution of the skewness coefficient of the standardized series Z_{t} for the precipitation stations tested. 32
23 fitting Markov I Log Model A to the runoff stations. 33
Table
Monthly precipitation stations used for the investigation (Appendix 1) 37
Monthly runoff stations used for the investigation (Appendix 2). 39
Main 12-month period, subharmonics, and the explained variance of the signifi- cant harmonics for the monthly precipitation variable (Appendix 3) 41
Main 12-month period, subharmonics, and the explained variance of the signifi- cant harmonics of the monthly runoff variable (Appendix 4) 47
Monthly precipitation stations with introduced harmonics 21
Monthly precipitation stations in which all harmonics were not removed 21
Monthly flow stations in which all harmonics were not removed 23

Abstract

The investigation of the time series structure of monthly precipitation and monthly river flow is the subject of this paper. Problems of time series stationarity, its periodicity and the use of techniques of serial correlation and variance spectrum in the analysis of time series structures are reviewed and summarized in this paper. The series of monthly values are made stationary in two ways: (a) by deducting for each calendar month value its long term mean, and dividing this difference by the standard deviation of that month (series A); and (b) by removing periodicity from the series after fitting a 12 -month period and its significant harmonics (series B). The following mathematical models have been used in approximating the stracture of stochastic component of time series: (1) Independent series model for series A and series B; (2) Markov I Model, or the first order linear Markov Model; and (3) Markov I Log Model, or the first order linear Markov Model applied to the logarithms of monthly values.

The data used in this study consisted of monthly values of 219 precipitation stations and 137 runoff stations. All 356 series were made stationary, either by obtaining series A or series B. The explained variances by the 12-month period and its significant harmonics for precipitation and runoff are shown for the Western United States in several figures. The regional variations in this total explained variance and regions for large differences between runoff and precipitation are discussed. It is shown that the independent series model, in the majority of cases, fits well the stochastic component of monthly precipitation, while the Markov I Model and the Markov I Log Model fit well the dependence in stochastic component of monthly river flows. The storage of water in river basin makes for the difference in the models applied to monthly precipitation and monthly runoff.

The first serial correlation coefficient $\left(r_{1}\right)$ of stochastic component in monthly precipitation and monthly runoff were computed, and its regional distribution is shown with r_{1} for runoff being much greater than r_{1} for precipitation. A similar analysis was carried out for the skewness coefficient of monthly values for both precipitation and runoff. The monthly time series of these two variables can be clearly divided into deterministic (periodic) and stochastic component with the latter being the stationary time series.

MATHEMATICAL MODELS FOR TIME SERIES OF MONTHLY PRECIPITATION AND

MONTHLY RUNOFF

By
Larry A. Roesner* and Vujica M. Yevdjevich**

CHAPTER I

INTRODUCTION

1. Significance of study. Analyses of continuously recorded hydrologic time series are currently performed, for the most part, by transforming the continuous series into discrete time series with time interval Δt. By reporting the continuous series as the average or total cumulative value for the time interval Δt, the discrete series of length $N=T / \Delta t$ are obtained, where T is the period of observation. Daily, monthly, and annual time intervals are widely used in hydrology and the time series of precipitation and runoff are usually published as sequences of values for these intervals. It is legitimate to ask: What time series measure Δt (or time interval, Δt) - in which a continuous series is divided to obtain discrete time series - produced the most statistical information? Two intuitive assumptions are that the continuous series of length T contains the maximum of information, and that for discrete time series, by an increase of Δt, or a decrease of $N=T / \Delta t$, reduces somewhat the information obtainable. The amount of information contained in a discrete series of given Δt value depends on the structure of the time series, or on their stochastic and deterministic components and the parameters which describe the properties of these components.

The smaller Δt is the larger is $N=T / \Delta t$, and the longer is the discrete series. The longer the series is, the more data processing and computation is necessary, in comparison with Δt large and N small. In comparison with annual precipitation and annual runoff, monthly precipitation and monthly river flow have series twelve times longer. The series of monthly values display a cycle like that of a year and its eventual harmonics (especially the 6-month subharmonic of the yearly cycle). However, these properties of continuous series of precipitation intensities and river discharges are masked in discrete series of annual values.

On the other hand, in comparison with daily precipitation and daily river flow, monthly precipitation and monthly river flow have discrete series which are about thirty times shorter. In other words, data processing and computations are only one thirtieth of those incurred in using the daily values. Thus, while the monthly values show the basic structures of precipitation and runoff series, with both deterministic (periodic) and stochastic components, the need for processing extremely large amounts of data, as would be necessary for daily values, is avoided. At the same time, the use of monthly values does not yield
as many details in analysis of the two types of components as does the use of daily values or of the continuous series. The choice of the discrete series of monthly values is, therefore, a compromise. Since the monthly values are extensively used in engineering applications, a systematic analysis of and the search for mathematical models for time series of monthly precipitation and monthly river flow is fully justified.

The best and most complete available data of precipitation and runoff consist of about 30 to 100 years of records. For annual time series, such periods may not be sufficient for determining with accuracy the structure of time series and the probability distribution parameters. Monthly values have in this case $360-$ 1200 values, which can be considered as sufficient for the detection of the properties of both deterministic components and stochastic or non-deterministic components of time series.

In storage problems of flow regulation, the annual values are used for the study of long-range over-year regulation. Due to the fluctuations within the year, the storage needed to regulate the flow within the year should usually be added in the appropriate way to the storage necessary to regulate flow from year to year. The within-the-year regulation is a more current case than the regulation from year to year. The significance of time series of monthly values becomes clearer whenever the problems of within-the-year flow regulation are studied.
2. Stationarity problems. The statistical analysis of the time series of monthly precipitation and monthly river flow involves a consideration of stationarity not generally a problem in annual flow sequences. Each monthly value of a calendar month has its own expected value, variance, skewness, etc. In order to analyze the series accurately, the expected value of each of these parameters must be a constant for all calendar months. Thus, a transformation of the original time series is required to produce the desired stationarity. Once the series has been made stationary, the statistical analysis is performed to establish the structure of the series and to obtain a description by the appropriate mathematical models.

This paper presents methods for transforming the monthly time series to obtain the second order stationarity and shows the results of applying certain mathematical statistical models to these series. Third order stationarity (which involves the third

[^0]statistical moment or the skewness coefficient) is also briefly discussed and was investigated, but it is not incorporated into the analysis in this paper.

The process of establishing second order stationarity involves the use of the monthly means and the standard deviations of each calendar month. It requires two constants for each month, one for the mean and one for the standard deviation, or 24 constants in all. In this paper, a method of harmonic representation of these values is presented whereby the number of constants that must be determined can be substantially reduced, in some cases to as few as 8 , or even fewer.
3. Research data and terminology. This analysis was made with monthly values from 137 runoff stations and 219 precipitation stations in the United States, all west of the Mississippi River.

The term "monthly precipitation" means the cumulative amount of rainfall, in inches, which has fallen during the calendar month in question. 'Monthly river flow" or "monthly runoff" refers to the average daily value of the river flow in cubic feet per second (cfs) for the calendar month in question. Unless otherwise defined, a one-year observational record of precipitation is one calendar year, from January through December. Finally, a one-year observational record for the runoff stations is one water year (from October 1 through September 30).
4. Main objectives of the study. The main objectives of this study were:
(a) To separate the deterministic (periodic) component of time series of monthly precipitation and monthly runoff from the stochastic component.
(b) To use the Fourier series approach in order to approximate the periodic component by a main cycle and its harmonics.
(c) To study the structure of the stochastic component, and approximate the time dependence by an appropriate stochastic model.
(d) To condense the information contained in a time series of monthly values by a mathematical model, including both components, with the estimation of a minimum of parameters (for the deterministic and stochastic components). As the number of parameters decreases, the discrepancy between the observed time series and the mathematical model increases. The objective of the investigation was to find a compromise between the number of parameters to be estimated for the model and the accuracy of the mathematical model in estimating the true population mathematical model of the given time series.
(e) To condense graphs or tables of time series of monthly precipitation and monthly runoff with a mathematical equation that contains most of the information and properties included in the graphs or tables and that provides new time series with approximately the same properties. The new time series obtained from the mathematical model by the data generation method (Monte Carlo method) should have approximately the same properties as those of the series given by the graph or the table data.
(f) To represent time series of monthly values by a mathematical model which can, in the future, be used in studies of flow regulation, water allocation, water system operations, and similar areas of study. With a hydrologic process systemized in the form of a mathematical model, the planning of engineering and economic super-structures in water resource development can then utilize the most advanced mathematical approaches.

CHAPTER II

MATHEMATICAL METHODS USED IN THIS INVESTIGATION

1. Stationarity. The monthly time series of precipitation and runoff are non-stationary. It is obvious that the expected monthly value of January is not generally the same as that of July. It is somewhat more difficult to visualize the variation of the standard deviation of all January values from its mean (i.e., the standard deviation of all January values from the mean January value, etc.). However, observations and computations show that months with higher expected values have greater variances, and hence a greater standard deviation. The higher order moments about the mean also vary through the year depending on the calendar month in question. Thus, it might be expected that each monthly value would be drawn from a population characteristic of the month in question, which would result in 12 different populations - one for each calendar month - being represented in the monthly time series of precipitation and runoff. Thus, stationarity, through the third order, is defined by the following

$$
\begin{align*}
& E\left[X_{t}\right]=\mu=\text { constant } \\
& E\left[X_{t} X_{t+L}\right]=f[(t+L)-t]=\rho_{L} \sigma^{2}+ \\
& \mu^{2}=\text { constant }
\end{aligned} \begin{aligned}
E\left[X_{t} X_{t+L_{1}} X_{t+L_{2}}\right] & =g\left[\left(t+L_{1}\right)-t,\left(t+L_{2}\right)-t\right]= \\
& =g\left(L_{1}, L_{2}\right)=\text { constant }
\end{align*}
$$

where X_{t} is the value of the observed variable at time $t, E[\cdot]$ is the expected value, f and g are function notations, L, L_{1}, L_{2}^{*} are time lags, $\mu=$ population mean, $\rho_{L}=$ population L-lag serial correlation coefficient, and σ^{2} is the population variance of X_{t}. For the purposes of this paper, X is the observed monthly value of the precipitation or runoff, and t is the number of monthly values since the beginning of record-keeping (t for the first month of record is
1). The condition of first order stationarity is given by eq. 2.1; second order stationarity is given by eqs. 2.1 and 2.2; third order stationarity is, in turn, subject to conditions of eqs. 2.1, 2. 2, and 2. 3.

In this paper, it is assumed that the observed monthly value for each of the 12 months in the year is drawn from a different population. In other words, the values of precipitation (or runoff) observed over the number of years of record for the month of January are all drawn from the same population, while the observed values for February to December are each drawn from different populations, respectively. It is further assumed that the observed series for each respective month over the years of record is
stationary of the n-th order. Thus, it is seen that each month has its own probability distribution and its own statistical parameters (mean, standard deviation, skewness coefficient, etc.). The monthly series, X_{t},
are, therefore, composed of values from 12 different populations, which fact accounts for their nonstationarity.

First order stationarity is obtained by the transformation of X_{t} to U_{t} by:

$$
\begin{equation*}
\mathrm{U}_{\mathrm{t}}=\mathrm{X}_{\mathrm{t}}-\mathrm{m}_{\tau} ; \quad \text { with } \tau=1,2,3, \ldots, 12 \tag{2. 4}
\end{equation*}
$$

where

$$
\mathrm{t}=\tau+12 \mathrm{n}, \quad \text { with } \mathrm{n}=0,1,2,3, \ldots,(\mathrm{~N}-1) .
$$

Here m_{τ} is the monthly mean value of the month τ, n may be considered as the number of years since the beginning of record, N is the total number of years of record, and U_{t} is not only a sequence of monthly values with a mean of zero, but the expected value of every monthly observation in the sequence of U_{t} is also zero.
Thus, eq. 2.1 is satisfied and the first order stationarity has been obtained for the series.

A look at eq. 2.2 shows that, if $L=0$, then $E\left[X_{t}^{2}\right]=f(0)=$ constant, or var $X_{t}=$ constant, because $\rho_{\mathrm{O}}=1$, and $\sigma^{2}=$ population constant parameter. Transforming U_{t} of eq. 2.4 by

$$
\begin{equation*}
z_{t}=\frac{U_{t}}{s_{\tau}}=\frac{X_{t}-m_{\tau}}{s_{\tau}}, \tag{2. 5}
\end{equation*}
$$

where s_{τ} is the standard deviation of the month τ, X_{t} has been standardized. The resulting series Z_{t} becomes now distributed with mean zero and standard deviation unity for all monthly values. Moreover, it may be assumed that $E\left[Z_{t} Z_{t+L}\right]=f(L)=\sigma_{z}^{2} \quad \rho_{L}=\rho_{L}$, because $\sigma_{z}^{2}=1$. Thus, the series Z_{t} as defined by eq. 2.5 will be referred to as the "standardized series. "

It would be possible to obtain third order stationarity by a further transformation. However, its discussion is beyond the scope of this paper.
2. Periodicity. Since the monthly time series of X_{t} has a separate expected value μ_{τ}, or mean value $\overline{\mathrm{X}}_{\tau}=\mu_{\tau}$ for each month, experience shows that a plot

[^1]of the expected values of the time series X_{t} over a number of years results in a periodic movement, of which the fundamental period is 12 months. Because each periodic movement may be approximated by the basic cycle and its harmonics, following the Fourier series analysis, the periodic movement of monthly time series may also be described mathematically by harmonics. Fourier analysis suggests that a mathematical representation of monthly means of X_{t} may be expressed as a continuous function m_{t} by the expression:
$$
\mathrm{m}_{\mathrm{t}}=\frac{1}{12} \sum_{\tau=1}^{12} \mathrm{~m}_{\tau}+\sum_{\mathrm{k}=1}^{6} \mathrm{C}_{\mathrm{k}} \sin \left(\frac{2 \pi \mathrm{k}}{12} \mathrm{t}+\mathrm{d}_{\mathrm{k}}\right)
$$
where C_{k} is the amplitude of the k-th harmonic of 12 months, the cycle of 12 months being the firstharmonics, and d_{k} is the phase. By use of the trigonometric identity,
$$
\sin (\theta+d)=\sin d \cos \theta+\cos d \sin \theta
$$
eq. 2.6 can be rewritten as:
\[

$$
\begin{align*}
\mathrm{m}_{\mathrm{t}} & =\frac{1}{12} \sum_{\tau=1}^{12} \mathrm{~m}_{\tau}+\sum_{\mathrm{k}=1}^{6} \mathrm{~A}_{\mathrm{k}} \cos \frac{2 \pi \mathrm{k}}{12} \mathrm{t} \cdot+ \\
& +\sum_{\mathrm{k}=1}^{6} \mathrm{~B}_{\mathrm{k}} \sin \frac{2 \pi \mathrm{k}}{12} \mathrm{t}
\end{align*}
$$
\]

By the same argument, the continuous function of the standard deviation, s_{t}, is given as:

$$
\begin{align*}
\mathrm{s}_{\mathrm{t}} & =\frac{1}{12} \sum_{\tau=1}^{12} \mathrm{~s}_{\tau}+\sum_{\mathrm{k}=1}^{6} \mathrm{~s}^{\mathrm{A}_{\mathrm{k}}} \cos \frac{2 \pi \mathrm{k}}{12} \mathrm{t}+ \\
& +\sum_{\mathrm{k}=1}^{6} \mathrm{~s}^{\mathrm{B}_{\mathrm{k}}} \sin \frac{2 \pi \mathrm{k}}{12} \mathrm{t}
\end{align*}
$$

Likewise, the solution for the constants A_{k} and B_{k} is given by the following equations [3]:

$$
\begin{align*}
& \mathrm{A}_{\mathrm{k}}=\frac{2}{12} \sum_{\tau=1}^{12} \mathrm{~m}_{\tau} \quad \cos \frac{2 \pi \mathrm{k}}{12} \mathrm{t} \tag{2. 10}\\
& \mathrm{~B}_{\mathrm{k}}=\frac{2}{12} \sum_{\tau=1}^{12} \mathrm{~m}_{\tau} \quad \sin \frac{2 \pi \mathrm{k}}{12} \mathrm{t},
\end{align*}
$$

for $k=6, A$ is given as $A_{k} / 2$ and $B_{k}=0$.
In order to describe the monthly periodic movement, 12 constants, A_{k} and $\mathrm{B}_{\mathrm{k}}, \mathrm{s}_{\mathrm{k}}$ and $s^{B} k^{\prime}$, are required for the cycle of 12 months $(k=1)$ and its five subharmonics ($\mathrm{k}=2,3,4,5,6$) as can be seen from eqs. 2.8 and 2.9. The physical considerations of the hydrologic periodicities indicate that there is definitely one cycle per year, that of 12 months. Very often, another cycle, that of 6 months, is also clearly detectable from the observed data. In order to fit the trigonometric functions of the Fourier series to the shape of these two basic periodic movements (12 months and 6 months),
subharmonics are necessary, and usually those of 4, $3,2.4$, and 2 months. The number of subharmonics of the main 12 -month cycle depends on the shape of the periodic movement. If the $12-$ month periodic movement of m_{t} and s_{t} can be approximated well by a simple sine or a cosine function, the 12-month cycle without any of its subharmonics is sufficient. If the 12 -month periodic movement is far from a sine function, say with sharp peaks and long and flat lows of m_{t} and s_{t}, not only is the 6-month harmonic necessary but all other harmonics may be needed.

A point of interest may be raised here. The description of a periodic movement by Fourier series analysis requires the use of trigonometric functions. However, the physical aspects of periodic movement in the form of m_{τ} and s_{τ} may show only one peak and one low in a 12 -month period, or two peaks and two lows in a 12 -month period, at the maximum. Thus, because of asymmetry of peaks and lows (narrow peaks, broad lows), the Fourier series analysis needs many harmonics to approximate this type of m_{t} - and s_{t}-periodic movements. The correlograms of time series of monthly values will demonstrate this point well, and it will also be discussed in detail later in this paper. The need for the 12 -month cycle and its five subharmonics in the description of the periodic movement of m_{t} and s_{t} by Fourier series analysis does not imply that there are 6 cycles in the physical sense: A distinction, therefore, should be made between the number of harmonics in Fourier series analysis of time series of monthly values (which are necessary to describe the periodic movement of monthly mean values and standard deviation of monthly values about their mean) and the physical cycle connected with the astronomical cycle of a year, which sometimes has a physical 6 -month subharmonic, which is due to the usual climatic movement of fall-winter-spring-summer seasons, with two peaks and two lows. Therefore, the lower harmonics (those of 12 and 6 -months) are associated with broad climatological features, while the higher harmonics are attached to the method of analysis of periodic movement. Accordingly, the claims that the higher harmonics ($4,3,2.4$, and 2 months) are associated with the local features [5] should be subject to careful investigation.

If eq. 2.5 is rewritten using the continuous descriptions of m_{τ} and s_{τ} in the form of m_{t} and s_{t} of eqs. 2.8 and 2.9, then

$$
\begin{equation*}
Y_{t}=\frac{X_{t}-m_{t}}{s_{t}} \tag{2. 12}
\end{equation*}
$$

Then Y_{t} can be described by as few as 6 parameters $\left(\bar{m}_{t}, \bar{s}_{t}, A_{1}, B_{1}, A_{1}, s_{1}\right)$, if only the 12-month cycle is needed to describe m_{τ} and s_{τ}, or by as many as 26 parameters, if all six harmonics, $k=1$, $\ldots, 6$, of eqs. 2.8 and 2.9 are used. By contrast, eq. 2.5 always requires 24 parameters.

In the general case, it will be found that if fewer than 6 harmonics are used to describe the series, the periodic function will not pass exactly through the calculated parameters m_{τ} and s_{τ} because of the sampling errors within the observed series. Therefore, the mean of Y_{t} will not be exactly zero nor will s_{y} (the standard deviation of Y) be exactly
unity. One further transformation,

$$
Z_{t}=\frac{Y_{t}-\bar{Y}}{s_{y}}=\frac{x_{t}-\bar{Y} s_{t}-m_{t}}{s_{y} s_{t}}
$$

yields the series Z_{t}, which parallels the series of eq. 2.5, with Z_{t} distributed with mean zero and standard deviation unity. The series Z_{t} described by eq. 2.13 is called here the "standardized fitted series" or simply the "fitted series", as different from the "standardized series" described by eq. 2.5.
3. Serial correlation. Serial correlation analysis has been used very often for the determination of periodicities. The general equation for the serial correlation coefficients is:

$$
\begin{equation*}
R_{L}=\frac{1}{s_{x}^{2}}\left[\frac{1}{(N-L)} \sum_{t=1}^{N-L} X_{t} X_{t+L}-\bar{X}^{2}\right] \tag{2. 14}
\end{equation*}
$$

with $L=0,1,2, \ldots, m$, with $m<N$.
It is well known that if a periodic time series is represented by

$$
\begin{equation*}
X_{t}=C \sin \theta t+Z_{t} \tag{2. 15}
\end{equation*}
$$

where C is the amplitude, θ is the frequency of the cyclic component, and Z_{t} is a stochastic component, then the serial correlation coefficients of the cyclic component are given by

$$
\begin{equation*}
r_{L}=\frac{C^{2}}{2 \sigma_{x}^{2}} \cos \theta L \tag{2. 16}
\end{equation*}
$$

where σ_{x}^{2} is the variance of X_{t}. Thus, if the frequency θ exists, the cycle will persist throughout the correlogram and will not be dampened. In fact, whether the cycle at the correlogram is dampened or not may be used as the criterion for determining whether periodicity is present in the time series [7].

In the case that only one physical cycle exists in the time series, the correlogram exhibits the same period as that of the time series. If more than one cycle exists, the correlogram is a linear combination of these periodic terms. Initially, the high frequency harmonic components, necessary to approximate well the shape of periodic movement, may not be readily discernible. Sometimes, when the large periods are removed, the small periods begin to show themselves. This is especially true in the case of correlograms with narrow peaks and broad lows, with 12-month periodic movement. Figure 1 shows a typical case of the behavior of the correlogram for a time series composed of narrow peaks and broad lows, with a basic period of 12 -months. By Fourier time series analysis, the periodic movement, as expressed in fig. 1, upper graph, is composed of several harmonics, particularly of periods $12,6,4$, and 3 months. As successive larger periods are removed from the time series, the smaller periods become clearly visible on correlograms. Figure 1 is an example of a time series of monthly river flows. The data was taken from the Elk River at Clark, Colorado (USGS station identification number is 9.378). The upper curve is the correlogram of the observed time

Fig. 1 Effects of removing periods from the time series on the correlogram for station 9.378, Elk River at Clark, Colorado: (1) Correlogram with 12-, 6-, 4-, and 3-month periods present; (2) Correlogram with 6-, 4-, and 3-month periods present; (3) Correlogram with 4- and 3 -month periods present; (4) Correlogram with 3 -month period present; and (5) Correlogram after all periods have been removed.
series and the following curves show the correlograms after removal of the $12,6,4$, and 3 month periods, respectively. The correlogram shows all fluctuations with the same periods as the time series except that the fluctuations on the correlograms have all been put into phase. The use of the correlogram in this study was limited to observation of the dampening effect in the persistence of periods and was needed for the verification of existence of periods when they are shown by variance spectrum analysis in the form of a sequence of harmonics.

Figure 1, uppermost graph, shows clearly that there is no dampening effect in the correlogram for the 12 -month cycle. However, it does not show visibly on the lows a secondary cyclicity. Though there is no visible six month cycle on the correlogram, the very fact the correlogram has a broad low and is flattened suggests that the secondary cyclicity may be present. This shape suggests also that the broad low is due to the dominant feature of the 12month cycle. This cycle is dominant to such an extent that the 6 -month cycle peak is completely attenuated. In some cases, the 6 -month cycle is dominant and the 12 -month cycle may be completely absent. Any intermediate position between these two extremes have been experienced. The sharp peaks and long lows on the correlogram imply that the shape of the periodic correlogram of the uppermost graph is far from a cosine function as should be indicated by eq. 2. 16. Furthermore, the conclusion can be reached that the description of the periodic movement of X_{t}, for which fig. 1 - upper graph- is the representative correlo-
gram, cannot be given by a unique cycle, but by the 12 -month cycle and as many of its subharmonics as the Fourier series approach may require for the given shape of the periodic movement. Finally, a distinction should be made between the cycles shown by the correlogram of monthly values of precipitation and runoff, (in fig. 1 only the 12 -month cycle) and the number of harmonics necessary to fit the trigonometric functions by Fourier series analysis in order to describe mathematically the shape of the periodic movement.
4. Variance spectrum. The harmonics necessary to describe the functions m_{t} and s_{t} were determined by variance spectrum analysis of the original time series X_{t}. A complete description of variance spectrum analysis is given by Blackman and Tukey [2] who derive the variance spectrum (or power spectrum) as a Fourier transformation of the autocovariance function. For a time series of equally spaced records, the equation for the spectral density is given as:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{k}}=\mathrm{C}_{\mathrm{o}}+2 \sum_{\mathrm{L}=1}^{\mathrm{m}-1} \mathrm{C}_{\mathrm{L}} \cos \frac{\mathrm{~kL} \pi}{\mathrm{~m}}+\mathrm{C}_{\mathrm{m}} \cos \mathrm{k} \pi \tag{2. 17}
\end{equation*}
$$

with $0 \leq k \leq m$, where C_{L} is the covariance of X with lag L, and m is the number of lags used in calculating C_{L}. If V_{k} is multiplied by $\frac{1}{\mathrm{~m}}$, then

$$
\begin{equation*}
\mathrm{w}_{\mathrm{k}}=\frac{\mathrm{V}_{\mathrm{k}}}{\mathrm{~m}} . \tag{2. 18}
\end{equation*}
$$

For W_{k} plotted versus k, the area under the curve is equal to the variance of X . The value of V_{k} or W_{k} is called the "estimated value of the spectral density", or simply, the "spectral density". The magnitude W_{k} is generally plotted versus the frequency $\mathrm{k} / 2 \mathrm{~m} \Delta \mathrm{t}$.

Neither eq. 2. 17 nor eq. 2. 18 gives the best estimate of the smoothed spectrum function [2]. The best estimate involves the smoothing of values obtained by these equations by one of the two methods discussed by Blackman and Tukey [2]. The first method of smoothing is called "hanning", and for eq. 2. 17 the estimates obtained by this method are:

$$
\begin{gather*}
\mathrm{S}_{\mathrm{o}}=0.5 \mathrm{~V}_{\mathrm{o}}+0.5 \mathrm{~V}_{1} \\
\mathrm{~S}_{\mathrm{k}}=0.25 \mathrm{~V}_{\mathrm{k}-1}+0.5 \mathrm{~V}_{\mathrm{k}}+0.25 \mathrm{~V}_{\mathrm{k}+1}, \text { for } 1 \leq \mathrm{k} \leq \mathrm{m}-1 \\
\text { and } \\
\mathrm{S}_{\mathrm{m}}= \tag{2. 19}\\
0.5 \mathrm{~V}_{\mathrm{m}-1}+0.5 \mathrm{~V}_{\mathrm{m}} .
\end{gather*}
$$

The second smoothing method is called 'hamming", and the estimates obtained by this method are:

$$
\begin{gathered}
\mathrm{S}_{\mathrm{o}}=0.54 \mathrm{~V}_{\mathrm{o}}+0.46 \mathrm{~V}_{1} \\
\mathrm{~S}_{\mathrm{k}}=0.23 \mathrm{~V}_{\mathrm{k}-1}+0.54 \mathrm{~V}_{\mathrm{k}}+0.23 \mathrm{~V}_{\mathrm{k}+1} \text {, for } 1 \leq \mathrm{k} \leq \mathrm{m}-1, \\
\text { and } \\
\mathrm{S}_{\mathrm{m}}=0.46 \mathrm{~V}_{\mathrm{m}-1}+0.54 \mathrm{~V}_{\mathrm{m}} .
\end{gathered}
$$

$$
\text { 2. } 20
$$

The most important differences between these two smoothing methods are: (1) for the "hanning" procedure, the side lobes resulting from the occurrence of a main lobe in the spectrum are larger than for the 'hamming" procedure; and (2) when "hanning", the heights of the side lobes fall off more rapidly with increasing distance from the major lobe than when "hamming".

Blackman and Tukey [2] also give methods for determining the value of m to be used in eq. 2. 17 which are based on the desired resolution of variance spectrum and the required accuracy of the estimate of the spectral density. However, the following procedure for the use of variance spectrum analysis, has been extracted from the articles in literature by E. J. Plate.*

1. The maximum frequency $f_{\max }$ which is to be investigated should be chosen as well as a folding frequency f_{n} such that

$$
\mathrm{f}_{\mathrm{n}} \approx \frac{3}{2} \mathrm{f}_{\max }
$$

2. The time interval required between measurements then becomes

$$
\begin{equation*}
\Delta t=\frac{1}{2 f_{n}}, \tag{2. 21}
\end{equation*}
$$

3. Next, a desired frequency resolution B should be selected, and the greatest time lag T_{m} required for the coefficients should be calculated as

$$
\begin{equation*}
\mathrm{T}_{\mathrm{m}}=\frac{1}{\mathrm{~B}}, \tag{2. 22}
\end{equation*}
$$

4. Since the lag is a multiple of Δt, the number of lags, m, required becomes

$$
\begin{equation*}
\mathrm{m}=\frac{\mathrm{T}_{\mathrm{m}}}{\Delta \mathrm{t}}, \tag{2. 23}
\end{equation*}
$$

5. The number, N, of data points taken at intervals Δt which is required in order to obtain a reasonably accurate estimate of the spectral density should be calculated from the relation

$$
\begin{equation*}
\mathrm{k}=\frac{2 \mathrm{~T}_{\mathrm{N}}}{\mathrm{~T}_{\mathrm{m}}} \tag{2. 24}
\end{equation*}
$$

where $\mathrm{T}^{\prime} \mathrm{N}$ is the "effective length of record," given approximately

$$
T_{N}^{\prime}=T_{N}-\frac{1}{3} T_{\mathrm{m}}
$$

with T_{N} the true length of record. Furthermore, k is the equivalent number of degrees of freedom for the chi-square distribution of the deviation of the estimated spectral density value from the true value. Thus, k can be found for the 95% level of significance approximately as

$$
\begin{equation*}
\mathrm{k}=1+\frac{576}{\left(95 \% \text { range in } \mathrm{db}^{*}\right)^{2}} \tag{2. 26}
\end{equation*}
$$

* $\mathrm{db}=$ decibel; number of $\mathrm{db}=$ $10 \log _{10}$ (estimated variance average variance $)$,
* Associate Professor of Civil Engineering, Colorado State University.

6. After step 5 is completed, T_{N} can be calculated; the number of data points required is $\mathrm{N}=\mathrm{T}_{\mathrm{N}} / \Delta t$; and
7. The elementary frequency bandwith is

$$
\begin{equation*}
\Delta f=\frac{1}{2 m \Delta t} . \tag{2. 27}
\end{equation*}
$$

For this study, the resolution, B, was chosen as 0.02 cycles per month, thus setting m at 50 . The ratio, R, of the observed (estimated) variance to the average variance, on the 95% level, is

$$
\begin{equation*}
R=10^{\frac{2.4}{\sqrt{k-1}}} \tag{2. 28}
\end{equation*}
$$

where k is defined by eq. 2. 24.
Figure 2 shows the power spectrum for the monthly time series of the Elk River at Clark, Colorado, and demonstrates how the spectrum changes with the removal of successive periods. For this case, Δt was 1 month, m was 50 , and N was 360. This is the same time series that was used as an example for fig. 1 .

Fig. 2 Effect of removing periods from the time series on the variance spectrum for station 9.378, Elk River at Clark, Colorado:
(1) Variance spectrum with $12-, 6-, 4-$, and 3 -month periods present; (2) Variance spectrum with 6-, 4-, and 3-month periods present; (3) Variance spectrum with 4- and 3month periods present; (4) Variance spectrum with 3 -month period present; and (5) Variance spectrum with all periods removed.

The upper curve of fig. 2 shows that in the original spectrum, X had only the 12-, 6-, and 4month cycles as significant on the 95% level. However, the third curve shows that, upon removal of the $12-$ and 6 -month harmonics, the 3 -month harmonic becomes significant and must also be eliminated when the periodic component is taken from the time series.

In addition, this figure illustrates the procedure which is necessary for the determination of the harmonics present in the series X_{t}. First, the spectrum analysis is run on the time series X_{t} and
the significant periods are used to define m_{t}. The series

$$
\begin{equation*}
U_{t}=X_{t}-m_{t} \tag{2. 29}
\end{equation*}
$$

is formed and the spectrum analysis of U_{t} is performed. Significant periods in U_{t} are then added to the definition of m_{t} and the process continues until m_{t} is defined in such a way that U_{t} is aperiodic.

The same procedure is followed for obtaining the periods necessary to define s_{t} except that the spectrum analysis is performed on the series Q_{t}, where

$$
\begin{equation*}
Q_{t}=\left(X_{t}-m_{\tau}\right)^{2} \tag{2. 30}
\end{equation*}
$$

The periods found in Q_{t} are then used to define s_{t}.
When a basic cycle and its several subharmonics are necessary in Fourier series analysis to describe mathematically a periodic movement, the general relationship between C_{k} or d_{k} coefficients of various harmonics in eq. 2. 6, and between A_{k} or B_{k} coefficients of various harmonics, could be used to decrease the number of parameters in the mathematical model of the deterministic periodic component. In many cases studied, the peak variance densities of various harmonics were proportional either to $1 / \mathrm{k}$ or $1 / \mathrm{k}^{\mathrm{n}}$, with $\mathrm{n} \neq 1$. In log-scales, the peak densities of harmonics follow the straight line either of the slope of -1 or of $-n$. Figure 2 is a good example. The variance density for the 12 -month cycle at the fig. 1 is 51,000 . For the $1 / \mathrm{k}$ model, the 6 -month harmonic should be 25,500 , the 4 -month harmonic 17, 000, and the 3 -month harmonic 12, 750 . Figure 2, upper graph, shows that the density of the 6 -month harmonics is close to the above theoretical relationship of $1 / \mathrm{k}$ model, while the densities of the other two are below that relationship line. Similarly, the second and third graphs from the top in fig. 2 show a close relationship between the densities of the 6 -month, 4 -month and 3 -month harmonics. As the variance densities are related to C_{k} coefficients, the above relationship is only valid for them. Experience shows that $d_{k}, A_{k}, B_{k}, s_{k}$ and ${ }_{s} B_{k}$ have both positive and negative values, and do not follow a monotonically decreasing positive function like C_{k}. More complex mathematical relationships are then needed for these coefficients.

In order to decrease the number of parameters in eqs. 2.8 and 2.9, the coefficients A_{k}, B_{k}, s_{k}, and ${ }_{s} B_{k}$ could be expressed as functions of k, A_{1}, $B_{1},{ }_{s} A_{1}$, and ${ }_{s} B_{1}$, respectively. This procedure \cdot may prove to be very appropriate when several values of k are involved (say more than 3). In such cases, the total number of parameters to be estimated in describing the deterministic periodic component would be reduced.
5. Mathematical models. After the transformation of non-stationary time series X_{t} to the second order stationary series Z_{t}, three models were tested for the description of the time series Z_{t}. These three models were: (1) The Independent Series, (2) The

Markov First Order Linear Model, and (3) The Markov First Order Log Model. The model to be used was determined by the shape of the correlogram of the series Z_{t}.
(a) Independent series. If, on a given level of significance, it can be said that:

$$
\begin{equation*}
E\left[r_{L}\right]=\rho_{L}=0 \tag{2. 31}
\end{equation*}
$$

where r_{L} and ρ_{L} are the L-th order serial correlation coefficients of sample Z_{t}, and the population from which Z_{t} was drawn, respectively, then the time series Z_{t} may be considered as a sequence of stochastic variables which are independent among themselves. As described previously, Z_{t} is distributed with mean zero and variance unity.

Upon the determination of the probability distribution of Z_{t}, this distribution may be used to generate independent sequences of Z_{t}. The series Z_{t} may then be generated in any sample size as:

$$
\begin{equation*}
X_{t}=m_{\tau}+s_{\tau} Z_{t} \tag{2. 32}
\end{equation*}
$$

with m_{τ} and s_{τ} the mean monthly values and monthly standard deviations, respectively. If the mathematical representations of m_{t} and s_{t} of eq. 2. 13 are used, X_{t} is defined as:

$$
\begin{equation*}
X_{t}=m_{t}+\bar{Y} s_{t}+s_{y} s_{t} z_{t} \tag{2. 33}
\end{equation*}
$$

Equations 2. 32 and 2.33 are called here "Independent Series A" and 'Independent Series B, "respectively.

To ascertain whether the Independent Series is an appropriate model, the correlogram of Z_{t} is tested for $\rho_{L}=0$ at the given level of significance α. Anderson [1] gives the confidence limits $\mathrm{L}(\alpha)$ as:

$$
\begin{equation*}
L(\alpha)=\frac{-1 \pm n_{\alpha} \sqrt{N-L-2}}{N-L-1} \tag{2. 34}
\end{equation*}
$$

where N is the number of observed values in the time series Z_{t}, L is the lag, and n_{α} is the normal standard deviate from the standard normal distribution for a two tail test at the significance level α. Common values of α and the corresponding value of n_{α} are

$$
\begin{array}{rlrl}
\alpha & =80 \%, n_{\alpha} & =1.28 \\
& =90 \%, & & =1.64 \\
& =95 \%, & & =1.96
\end{array}
$$

(b) Markov I Model. When the series Z_{t} can be fitted by a "first order linear autoregressive scheme" (Markov first order linear model), the correlogram of the population of Z_{t} is represented by the equation:

$$
\begin{equation*}
\rho_{L}=\rho_{1}{ }^{L} \tag{2. 35}
\end{equation*}
$$

The autoregressive scheme is given by:

$$
\begin{equation*}
z_{t}=\rho_{1} z_{t-1}+\epsilon_{t} \tag{2. 36}
\end{equation*}
$$

where ϵ_{t} is independent of Z_{t-1}, Z_{t-2}, \ldots, and other ϵ 's. If $\epsilon_{\mathrm{t}}=\beta_{\mathrm{o}} \eta_{\mathrm{t}}$, where $1 / \beta_{\mathrm{o}}$ is the standard deviation of $\epsilon_{\mathrm{t}}, \eta_{\mathrm{t}}$ will be a standardized independent stochastic variable. Furthermore, determining the distribution of η_{t}, one can use a generating function to produce ϵ_{t} in eq. 2.36. Since, var $Z_{t}=1$ for all t, it follows from eq. 2. 36 that:

$$
\begin{equation*}
\beta_{0}=\sqrt{1-\rho_{1}^{2}} . \tag{2. 37}
\end{equation*}
$$

By combining the expression

$$
\begin{equation*}
z_{t}=\frac{x_{t}-m_{\tau}}{s_{\tau}} \tag{2. 38}
\end{equation*}
$$

with eq. 2. 36, one can see that:

$$
\begin{equation*}
\frac{\mathrm{X}_{\mathrm{t}}-\mathrm{m}_{\tau}}{\mathrm{s}_{\tau}}=\rho_{1} \frac{\mathrm{X}_{\mathrm{t}-1}-\mathrm{m}_{\tau-1}}{\mathrm{~s}_{\tau-1}}+\epsilon_{\mathrm{t}} \tag{2. 39}
\end{equation*}
$$

Revising and simplifying eq. 2. 39, one arrives at the "Markov I Model A" given as:

$$
\begin{equation*}
\mathrm{X}_{\mathrm{t}}=\frac{\rho_{1} \mathrm{~s}_{\tau}}{\mathrm{s}_{\tau-1}} \mathrm{X}_{\mathrm{t}-1}-\frac{\rho_{1} \mathrm{~s}_{\tau}}{\mathrm{s}_{\tau-1}} \mathrm{~m}_{\tau-1}+\mathrm{m}_{\tau}+\mathrm{s}_{\tau} \epsilon_{\mathrm{t}} \tag{2. 40}
\end{equation*}
$$

If m_{t} and s_{t} are used in the equation defining Z_{t}, eq. 2. 36 will appear as

$$
\frac{\frac{x_{t}-m_{t}}{s_{t}}-\bar{Y}}{s_{y}}=\rho_{1} \frac{\frac{x_{t-1}-m_{t-1}}{s_{t-1}}-\bar{Y}}{s_{y}}+\epsilon_{t}
$$

One can define the "Markov I Model B" by solving for X_{t} as

$$
\begin{align*}
X_{t} & =\frac{\rho_{1} s_{t}}{s_{t-1}} X_{t-1}-\frac{\rho_{1} s_{t}}{s_{t-1}} m_{t-1}+m_{t}+ \\
& +\left(1-\rho_{1}\right) \bar{Y} s_{t}+s_{y} s_{t} \epsilon_{t} \tag{2. 42}
\end{align*}
$$

In order to test for the Markov I Model, the series ϵ_{t} of eq. 2.36 was produced as

$$
\epsilon_{t}=z_{t}-r_{1} z_{t-1}
$$

where r_{1} was taken as the best estimate of ρ_{1}. The series ϵ_{t} was tested for independence by eq. 2. 34. When ϵ_{t} is shown to be an independent stochastic variable, the model is accepted.
(c) Markov I Log Model. This model was exactly the same as the Markov I Model except that, in the original time series, X_{t} was replaced by $\ln X_{t}$. If X_{t} had a value of zero, it was replaced by
ln 0.001 . Thus, eqs. 2.40 and 2.42 may be used to
describe the "Markov I Log Model A" and the "Markov I Log Model B", respectively (with A model for "standardized Z_{t} " and with B model for "fitted Z_{t} " series), keeping in mind that X_{t} is now $\ln X_{t}$ and that $m_{\tau}, m_{t}, s_{\tau}, s_{t}, \rho_{1}, \epsilon_{t}, \bar{Y}$, and s_{y} were all obtained by performing operations on $\ln X_{t}$ rather than X_{t}.

Once again it must be emphasized that these models are not exactly correct because they only account for second order stationarity in X_{t}.
Therefore, one cannot simply determine the frequency distribution of Z_{t} for the independent series or the frequency distribution of ϵ_{t} for the Markov models because the expected values of the central moments whose order is greater than two are not constant.

The approach in this study was to use the simple stochastic models, either the independent
model or the first order Markov linear model. However, the second order Markov linear model is a likely and attractive model for the stochastic components of monthly values of precipitation and runoff. Also, the general moving average schemes may be shown to fit better the time dependence of stochastic components in some monthly series than do the simple Markov linear models. By restricting the analyses in this study to simpler models, the intention was to separate the deterministic (periodic seasonal) components of time series from their stochastic components and to assess the general order of magnifude and the general type of dependence in time series of these stochastic components. Through use of the more complex mathematical models in describing the dependence in stechastic component time series, a further improvement in the analysis of time series of monthly precipitation and monthly runoff may be obtained. On the other hand, this approach would inevitably require more parameters to be estimated than the simple approach used in this paper necessitated.

CHAPTER III

DATA ASSEMBLY AND ANALYSIS OF RESULTS

1. Data assembly for research. The monthly data used in this study consists of data of 219 precipitation stations and 137 runoff stations in the United States. These stations are distributed over the states west of the Mississippi River.

Primarily, precipitation monthly values were taken from data published by the United States Weather Bureau, but supplemented by data publications of various states. The stations were selected in such a way that their data were homogeneous (no significant change in station position, elevation, or environment during the observation period). The length of records of the precipitation data varied from 30 to 110 years of continuous observations. The area distribution of the precipitation stations is given in fig. 3.

Runoff data was taken from the United States Geological Survey publications, "Surface Waters of the United States. " Again, stations were selected if their data was homogeneous and consistent. Those stations which had sufficient upstream diversion to cause a noticeable effect on the downstream discharge were rejected. Unfortunately, the rejection of stations because of diversion made it difficult to obtain a uniform area distribution of stations over the continental region studied. As a result, there is a scarcity of stations in the mid-western states due mostly to rejections on the basis of diversion and runoff depletion with time. Of those selected, the runoff stations varied in catchment area from 3 to 9100 square miles, and had continuous observations from 30 to 57 years. Figure 4 shows the area distribution of these stations.

Tables 1 and 2 in Appendix 1 and Appendix 2, are lists of the monthly precipitation and monthly runoff stations, respectively, which were used in this study. The monthly data for stations was stored on a magnetic tape and all computations were done on the CDC 3600 digital computer of the National Center for Atmospheric Research, Boulder, Colorado. For each station, the name, the coordinates, and the number of years of continuous record are listed. The last year of record is 1960 for both precipitation and runoff.

The precipitation stations are listed by their U. S. Weather Bureau identification number. The runoff stations include in their listings the size of the catchment area and their U. S. Geological Survey identification number. In the following text, reference to stations will be made by station identification number only.
2. Explained variance by seasonal periodic components. As described in Chapter II, the first step in analyzing the time series of monthly values is to detect the periodic movement inside the series, and to approximate it by the Fourier series analysis in specifying the coefficients for the main cycle and its various subharmonics. For periodic movement, the mean value for each calendar month shows how the expected mean changes with τ, where $\tau=1,2, \ldots 12$
(January through December for precipitation series and October through September for runoff series). The mean monthly values are computed by the expression

$$
\mathrm{m}_{\tau}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{t}=0}^{\mathrm{N}-1} \mathrm{X}_{12 \mathrm{t}+\tau^{\prime}}
$$

where $X_{12 t+\tau}$ are all monthly values for a given month τ (for example, $\tau=3$ is the month of March for precipitation series, and is the month of December for runoff series) and $\mathrm{N}=$ number of years.

The variation of monthly values for given τ, around m_{τ}, is measured by the standard deviation, s_{τ}, or by the expression

$$
\begin{equation*}
\mathrm{s}_{\tau}=\left[\frac{1}{\mathrm{~N}} \sum_{\mathrm{t}=0}^{\mathrm{N}-1}\left(\mathrm{X}_{12 \mathrm{t}+\tau^{-}} \mathrm{m}_{\tau}\right)^{2}\right]^{1 / 2} \tag{3. 2}
\end{equation*}
$$

where $\mathrm{X}_{12 t+\tau}$ and m_{τ} are defined as above. In the majority of cases of monthly precipitation and monthly runoff, experience shows that m_{τ} and s_{τ} follow a clear periodic movement, with sampling deviations of m_{τ} and s_{τ} about an assumed smooth curve of periodic movement of μ_{τ} and σ_{τ} of the population time series. To fit these two periodic movements by the appropriate mathematical models, the variance spectrum analysis was used to detect the significant harmonics, and the simple Fourier series analysis of the basic cycle and its k -harmonics was used.

For a given monthly time series of precipitation or river flows, the mean monthly values (for each of 12 -months) were computed. Also, the standard deviations, s_{τ}, of monthly values about the mean monthly value were obtained. For the significantharmonics of the series determined by the variance spectrum analysis, the k-harmonic values A_{k} and B_{k} of eqs. 2. 10 and 2. 11 were computed, and $\left(\mathrm{A}_{\mathrm{k}}{ }^{2}+\mathrm{B}_{\mathrm{k}}{ }^{2}\right) / 2$ represented that portion of the total variance of the monthly time series which is explained by the k -th harmonic. In other words, if the summation of the explained variances is made for all the significant harmonics of the time series, the difference between the variance of the time series of X_{t} and the total explained variance by these harmonics is the variance attributed to the stochastic component of the time series.

The total explained variance of the 12 -month cycle and of all its significant harmonics may, therefore, be used to indicate the degree to which precipitation and runoff are influenced by the seasonal climatic variations of the year. Thus, the larger this explained variance, the more seasonal is the character of monthly precipitation and monthly runoff. However, if the explained variance is only a very

Fig. 3 Areal distribution of precipitation stations tested

Fig. 4 Areal distribution of runoff stations tested
small fraction of the total variance, it may be assumed that the time series has small seasonal variation. Listed in table 3, Appendix 3, are the main 12-month period and those of its subharmonics found to be significant on the 95% level by the variance spectrum analysis of the precipitation stations. Periods are listed for both the monthly means of the time series and the standard deviation for each month. The explained variance of these significant harmonics is also listed in table 3. Table 4, Appendix 4, gives the same data for the stations of monthly runoff. Finally, the significance of each column of these two tables is given in tables 3 and 4, Appendices 3 and 4, respectively, and the short versions of column descriptions are given at the end of each of these tables.
3. Explained variance of the main 12-month cycle and its significant subharmonics of the monthly precipitation. Some remarks in this section may be supported by reference to the article by L. W. Horn and H. A. Bryson [5]. This article presents a technique for describing the time and area distributions of precipitation by analysis of the phase angles and amplitudes of the harmonics of the 12 -month period.

Figure 5 shows the distribution of the explained variance of the 12 -month period and its significant subharmonics over that portion of the United States which is covered by the precipitation station network. It is obvious that the seasonal effect on the fluctuation of monthly precipitation varies over the area. The detailed reasons and explanations for these variations were not studied in this paper.

It is interesting to note that in the southernmiddle portion of the United States, the monthly precipitation is almost entirely free of seasonal variations. Precipitation within a large portion of the Colorado River Basin and the Great Basin is also affected very little by seasonal variations. In addition, a large part of Texas and a large part of Louisiana have a very small explained variance ($0-10 \%$) according to the periodic variations of monthly precipitation. These areas are to be contrasted with the Olympic Peninsula in Washington and the small area on the coast of California, north of San Francisco, where 50 to 60% of the variance of the monthly precipitation series is explained by seasonal variations. Over the rest of the area studied, the explained variance varies from 10 to 40%, except on the western coastal area from Canada to San Francisco, which has an explained variance of 40 to 50%.

It appears that one may begin at a point in the middle of Utah and, upon moving in any direction from that point, notice the increasing effect of seasons on the variations of monthly precipitation. However, moving in a south-eastern direction, c.ee encounters a dividing line which runs in a north-easterly direction diagonally cutting through New Mexico, Southern Kansas, and Northern Missouri. Crossing this line in the direction of the Gulf of Mexico, one finds a decreasing seasonal effect on monthly precipitation.

Looking only to the west part of fig. 5, one may be tempted to conclude that the effect of seasonal variations on monthly precipitation may be highly correlated with the total annual precipitation. Seemingly, the greater the annual precipitation (coastal areas of Washington and California), the greater is the explained variance of seasonal variation in monthly precipitation, and vice versa, the smaller the annual precipitation (Colorado River Basin and the Great Basin), the smaller is that explained variance. However, the south-eastern part of fig. 5 shows the
opposite trend. If one goes from New Mexico and north-western Texas, with smaller annual precipitation, to south-eastern Texas and Louisiana, with greater annual precipitation, the explained variance decreases which is opposite from what is experienced in the western part of fig. 5. The physical explanations for these differences, as well as the search for basic causal factors which affect the degree of seasonal variations in monthly precipitation series, were outside the scope of this paper.
4. Explained variance of the main 12-month cycle and its significant harmonics for the monthly runoff. Because of the uneven distribution of runoff stations, the areal distribution by isolines of the explained variance of the 12 -month period and its significant harmonics is made only for the Pacific Northwest region and for the southeast corner of the area studied. Figure 6 shows the areal distribution of the explained variance for these two regions, as well as individual values of explained variance for stations located inbetween these two regions.

It should be noted that the explained variance plotted in fig. 6 is that for the fitting of the 12 -month period and its harmonics to logarithms of monthly flows. The reason for using the log series is explained in the section on fitting models to the runoff series of this chapter.

In the Pacific Northwest, the explained variance of the 12 -month period and its subharmonics, within the logarithmic flow series, is very high. It ranges from 50 to 90% of the total variance of the series of log of monthly runoff. This means that the stochastic variation in time series ranges only from 50% to as little as 10% of the total variation. Thus, over most of this area, the fluctuation of river flows within the year can be predicted with relatively sufficient accuracy. The main contributing factor to the high percentage explained variance by the periodic components is undoubtedly the winter accumulation and the spring runoff of snow melt which account for much of the runoff in the general area. A second reason would be the fact that over most of the area, the explained variance by seasonal fluctuations in monthly precipitation is the highest of any area studied, a fact reflected directly in the runoff. The third reason, which is likely responsible for greater explained variance of monthly runoff ($50-90 \%$) in comparison with the explained variance in monthly precipitation ($20-50 \%$) by periodic components in the same region of the northwest, is the annual climatic cycle of temperature and evaporation. The next reason is likely to be the smoothing effect of the water storage in river basins, which is much greater for the stochastic component of effective precipitation input into the river basin, then for the periodic component.

The southeast portion of the area studied has a much lower percentage of explained variance by seasonal variation of monthly runoff than the Pacific Northwest. It can be seen in fig. 6 that the values range from 0 to 50%. Comparing the explained variance of the runoff with that of precipitation over this same area, there seems to be little noticeable correlation except over the southern and central portions of Texas where the explained variance for runoff is about the same as that for precipitation (this might indicate the complete lack of snowmelt contribution to the flow in this region and a limited effect of climatic cycle of temperature and evaporation).

Comparison of figs. 5 and 6 leads to the

Fig. 5 Percent of the total explained variance of the significant seasonal harmonics
of monthly precipitation time series

Fig. 6 Percent of the total explained variance of the significant seasonal harmonics of the logarithms of the monthly runoff time series
conclusion that the seasonal variations, measured by the explained variance of the periodic components of time series of monthly values, are much greater in the time series of monthly river flow than in the time series of monthly precipitation. The monthly precipitation contains the seasonal variations which are induced by the seasonal factors of general atmospheric circulation. The monthly river flow Q_{t} can be expressed as

$$
\begin{equation*}
Q_{t}=P_{t}-E_{t} \pm \Delta W_{t} \tag{3. 3}
\end{equation*}
$$

with $P_{t}=$ monthly precipitation on the river basin, $E_{t}=$ monthly evaporation from the river basin, and $\Delta W_{t}=$ change in the total water carryover in a river basin. The last two factors (E_{t} and ΔW_{t}) in eq. 3. 3, must be responsible for an increase in the seasonal variation of monthly river flows. Since the evaporation has a 12 -month cycle (with its subharmonics), it must be partly responsible for the increased seasonal variations. By the storage of water in the form of snow in cold season and release in the warm season the periodic movement is greatly enhanced. The study of physical factors affecting the seasonal variation in monthly runoff, and the relationships of explained variances of seasonal variation in each variable of eq. 3. 3 are subjects of interest for further research. It is outside the scope of this paper.

The complexity of the relationship of seasonal variations of monthly runoff and monthly precipitation is also clearly illustrated by stating that in the northwest the seasonal variation for monthly precipitation decreases from the ocean to the mountains on the West-East line in fig. 5, while the opposite is true for the monthly runoff (Fig. 4). The seasonal variation of monthly precipitation decreases from the North-West to South-East, while for the monthly runoff it increases from the South-West to the North-East.

A factor should be stressed, however, in the above comparison and the interpretations for figs. 5 and 6 . Figure 5 shows the properties of monthly precipitation on points where it was measured. Figure 6 shows the properties of monthly runoff of a river basin at the river gaging station. If the centers of river basins were used for isoline plotting instead of the gaging station points, a somewhat different picture would result from that in fig. 5. However, the general patterns would not be changed drastically. Also, the logarithms of monthly runoff as used for the study of seasonal variations may have affected somewhat the above results.
5. Fitting of mathematical models to the monthly precipitation series. A tabulated summary of the fitting of the mathematical models is given in table 3 for the precipitation stations. Testing of the monthly precipitation series showed that out of 219 stations tested, 167 stations could be described on the 95% confidence level by Independent Series Model A, eq. 2. 32, or, in other words, the stochastic component is an independent time series. Of the 52 stations which could not be described in this manner, none could be described by one of the Markov models. The areal distribution of the stations fitted by Independent Series Model A is shown in fig. 7. It is interesting to note that for the most part, those stations which could not be described by this model occur in groups or clusters. Four groups stand out and they have been enclosed by dotted lines. The reasons for this occurrence have not been inve stigated.

Figure 8 shows the areal distribution of the results of fitting Independent Series Model B, eq. 2. 33. Under this scheme, 149 stations were accepted and 70 stations were rejected on the 95% level. A comparison between figs. 7 and 8 show that not all the stations which could be fitted with model A can be fitted with model B. The underscore bar under 56 of the stations in fig. 8 indicates that the results of fitting Independent Series Model B to precipitation time series produced results opposite to those obtained by fitting Independent Series Model A.

Of the 56 stations producing opposite results upon fitting Independent Series Models A and B, 29 of these stations were found to display aperiodic series, Z_{t}, by variance spectrum analysis, but at the same time the correlogram of Z_{t} showed that the series could not be considered as independent on the 95% level of significance. The other 27 stations, it was found, contained periodicity in the fitted series Z_{t}.
This periodicity was made up of the same periods as those removed from the series X_{t} plus subharmonics of the removed periods. In all these cases, no indication of these introduced periods in Z_{t} was observed in the spectrum analysis of X_{t}, even at low significant level. These stations are listed in table 5. By far the largest grouping of rejected stations appears in California; thus, it appears there may be some regional factor which makes curve fitting by harmonics inappropriate.

In a few of the stations (these stations are not included in table 5), all harmonics in X_{t} were not removed. This occurrence was a case where, upon removal of the significant harmonics in the variance spectrum, the smaller harmonics become significant in the spectrum of the series Z_{t}. In some cases, the remaining harmonic had such a small effect on the series that it did not influence the independendence of the correlogram; in other cases, it did. In the cases where a harmonic remained and Independent Series Model B was rejected, this harmonic could have been removed to see if this was the cause of rejection. Stations in which enough harmonics were not removed are listed in table 6.

An example of fitting the Independent Models to the Hachita precipitation station in southwestern New Mexico (station number 29.3775) is illustrated in figs. 9 and 10. The period of record for this station is 51 years. Figure 9 shows the monthly precipitation record (X_{t}) from 1931 through 1960. The two graphs on the left hand side of fig. 10 show the correlogram and variance spectrum of X_{t}. The variance spectrum shows the 12 -month period and its 6- and 4-month harmonics to be significant on the 95% level. The $12-$ and 6 month cycles are also easily discernible from the correlogram. However, the presence of a 4 -month harmonic is not obvious from an analysis of the correlogram and it should be explained that it is needed only to apply the Fourier series analysis to periodic component of series. Using the same type of curves for the series
$\left(X_{t}-m_{\tau}\right)^{2}$, the standard deviation was found to contain the cycles of 12- and 6-months. The middle pair of figures illustrates the correlogram and variance spectrum of Z_{t}, obtained by standardizing the series X_{t} according to eq. 2.5. The confidence

Fig. 7 Results of fitting stochastic Model A to the precipitation stations

Fig. 8 Results of fitting stochastic Model B to the precipitation stations

Fig. 9 Sequence of monthly precipitation amounts for station 29. 3775 at Hachita, New Mexico from 1931 through 1960
limits on the 95% level are also included. The correlogram and variance spectrum on the far right of the figure are for the series Z_{t} obtained by fitting and removing harmonics to X_{t} by eq. 2.13. From fig. 10 it can easily be seen that both Independent Series Model A and Independent Series Model B may be used in the description of X_{t}. However, Independent Series Model A requires 24 constants as mentioned previously (12 constants for m_{τ} and 12 constants for s_{τ}), while for this station Independent
Series Model B requires only 14 constants, or slight ly more than one-half those required for Model A. The constants for Model B are: $\overline{\mathrm{X}}=0.845$; the coefficients of harmonic components of $m_{t}, A_{1}=-0.238$, $B_{1}=-0.621, A_{2}=-0.158, B_{2}=0.556, A_{3}=0.238$, and $B_{3}=0.233$; the average value of $s_{t}=0.787$; the coefficients of harmonic components of s_{t}, $s_{1}=$ $-0.102, \mathrm{~s}^{\mathrm{B}_{1}}=-0.395 ; \mathrm{s}_{2}=-0.093$, and $\mathrm{s}^{\mathrm{B}_{2}}=0.299$; $\bar{Y}=0.007$; and $s_{y}=1.061$. Substituting these values into eq. 2. 33 for Model B, X_{t} is given as:

$$
X_{t}=m_{t}+s_{t}\left(0.007+1.061 Z_{t}\right)
$$

where

$$
m_{t}=0.845-0.238 \cos \frac{2 \pi}{12} t-0.621 \sin \frac{2 \pi}{12} t-
$$

$$
\begin{aligned}
-0.158 \cos \frac{4 \pi}{12} & +0.556 \sin \frac{4 \pi}{12} t+0.238 \cos \frac{6 \pi}{12} t- \\
& -0.233 \sin \frac{6 \pi}{12} t
\end{aligned}
$$

and

$$
\begin{align*}
s_{t}=0.787 & -0.102 \cos \frac{2 \pi}{12} t-0.395 \sin \frac{2 \pi}{12} t- \\
& -0.093 \cos \frac{4 \pi}{12} t-0.299 \sin \frac{4 \pi}{12} t
\end{align*}
$$

where Z_{t} is an independent stochastic variable, with given characteristics. Although eqs. 3.5 and 3.6 may look long and difficult to handle, it should be noted that X_{t} is completely described mathematically and it is therefore much easier to work with this equation ${ }^{\circ}$ than to use Model A, with all 24 constants for m_{τ} and s_{τ}. A listing of the constants for those precipitation stations which may be described by Independent Series Model B is given in table 3, appendix 3.
6. Fitting of mathematical models to the monthly runoff series. A tabulated summary of the fitting of mathematical models to monthly runoff series is given in table 4, appendix 4 . The fitting of only the 12 -month period to the monthly runoff series was unsuccessful. It was found that, in the majority of cases, a good fit could not be obtained with fewer than five or six harmonics. Thus, there was no

Correlogrom of Standardized Series Z_{1}

Variance Spectrum of Standardized Series Z_{1}
Variance Spectrum of Fitted Series Z_{1}

Fig. 10 Correlogram and variance spectrum for the monthly precipitation series X_{t}, the standardized series Z_{t}, and the fitted series Z_{t}; Station 29. 3775, Hachita, New Mexico

Table 5
MONTHLY PRECIPITATION STATIONS WITH INTRODUCED HARMONICS

Station	Periods Removed		Periods in Z_{t}
	X_{t}	Standard Deviation	
4.0227 (California)	12	12	12, 6, 4, 3, 2. 4,
4.0383	12	12	4, 3, 2.4, 2
4.0755	12	12	$12,6,4$
4.0790	12	12	4, 3, 2. 4, 2
4. 3161	12	12	$12,6,4$
4. 3191	12	12	12, 6, 4, 3, 2. 4
4.4022	12	12	$12,6,4,3,2.4$
4. 5215	12	12	$12,6,4,3,2.4$
4. 6175	12	12	$12,6,4,3,2.4,2$
4.6399	12	12	$12,4,3$
4. 7740	12	12	$12,6,4,3,2.4$
4. 7851	12	12	12, 6, 4, 3, 2. 4, 2
4. 8045	12	12	12, 6, 4, 3, 2.4
4.8353	12	12	$12,6,4,3,2.4,2$
4.8967	12	12	$6,4,3$
4. 9087	12	12	12, 6, 4, 3
4. 9490	12	12	12, 6
4.9699	12	12	12, 6, 4, 3, 2.4, 2
24. 2689 (Montana)	12	12	12, 6
24.5285	12	12	12, 6, 4
32. 2188 (North Dakota)	12	12	12, 6
35.3445 (Oregon)	12	12	12, 6
45.7038 (Washington)	12	12	12, 6, 4

Table 6
MONTHLY PRECIPITATION STATIONS IN WHICH ALL HARMONICS WERE NOT REMOVED

Fig. 11 Results of fitting Markov I Model A and Markov I Log Model A to the runoff stations
advantage in trying to use the Markov I Model B rather than the Markov I Model A because of the large number of constants involved.

The difficulty in fitting a harmonic function to the monthly flow series was due to the great variation of the flows for periods of peaks and periods of low. A major factor is the influence of spring runoff due to snowmelt which causes many rivers to run high for three or four months out of the year, while for the remainder of the year, the flow is low with only small variations. Such behavior does not adapt itself to harmonic analysis unless the sum of all the harmonics of 12 -months is used, in which case the use of the standardized series is a simpler solution. Therefore, only the results of fitting the Markov I Model A are presented here for the monthly flow series. However, the procedure described in the previous text, in which C_{k} coefficients may be fitted by simple mathematical relationship of a small number of parameters (C_{k}, k and n) both for m_{t} and s_{t}, may give practical meaning also to the use of the Markov I Model B for which the Fourier series coefficients of a large number of harmonics is determined.

The above discussion suggests that better results might be obtained if the logarithm of the monthly runoff values was taken. This procedure serves a two-fold purpose. First, the range of values could be compressed or reduced, and second, on a log scale, the variation of the low flows would be magnified with respect to the high flow variations. The combination of these two features makes possible the description of the periodic components of logarithms of the monthly flows with fewer harmonics than is possible by use of the monthly flows themselves.

The results of fitting the Markov I Model A and the Markov I Log Model A were good. It was found that out of the 137 stations tested, 110 of them could be described by the Markov I Model A and/or the Markovi Log Model A. The number of stations described by each of the two models was 92 and 96 stations, respectively. The number of stations described well by both models was 78 . The fact that only 27 stations could not be described by one of the two models indicates that, in general, the monthly streamflows are time dependent and this dependence can be described by a first order Markov Model. Figure 11 shows the areal distribution of the stations fitted by the two models.

Results of fitting the 12-month period and its harmonics to logarithms of monthly flow series showed that 75 stations of the 137 tested could be described by the Markov I Log Model B. It was also found that 97 of the stations tested gave the same results for this model as they did for the Markov I Log Model A. Of those 40 giving different results, 29 were accepted by Model A, but rejected by Model B. Included in these 29 stations were 7 stations which still had one significant harmonic in Z_{t}, after removing the 12 -month period and some of its harmonics. These 7 stations are indicated in table 4, appendix 4, by a check mark beside the station number.

Besides the 7 stations mentioned, there are 8 other stations which produced the same results upon fitting the Markov I Log Model A and Model B, but which still contained some periodicity in the fitted series. These 8 stations (along with the 7 stations mentioned above) are listed in table 7, and the remaining harmonics should be removed from these series in

Table 7
MONTHLY FLOW STATIONS IN WHICH ALL HARMONICS WERE NOT REMOVED

Station	$\begin{array}{c}\text { Periods }\end{array}$		$\begin{array}{c}\text { Removed } \\ \text { Standard Deviation }\end{array}$	$\begin{array}{c}\text { Periods } \\ \text { in } Z_{t}\end{array}$	$\begin{array}{c}\text { Independent Model } \\ \text { Accepted (A), or rejected (R) } \\ \text { Model A }\end{array}$
Model B					

order to fit these models better. It should be noted here that the problem of "introduced" harmonics in the series Z_{t} by the process of removal of periodicity from X_{t} was not experienced in dealing with logarith-
mic runoff series as it was in dealing with the precipitation series. The only runoff station in which this result was encountered was station 6 B. 155 (see table 7). Figure 12 shows the result of fitting Markov I Log Model B and the comparison of the results with those fitting Markov I Log Model A.

Fig. 12 Results of fitting Markov I Log Model B to the runoff stations

As an example of fitting the Markov I Log Models A and B, station 11B. 402 located on the Middle Fork of the American River near Auburn, California, was chosen. The length of record was 49 years. Figure 13 shows the sequence of monthly flows from 1931 through 1960.

The pair of graphs on the left hand side of fig. 14 are the correlogram and variance spectrum of the logarithm of the monthly river flow sequence, respectively. It is obvious from both figures that the 12 -month cycle is dominant. A 6-month harmonic is shown in the variance spectrum but it is not significant on the 95% level. However, upon removal of the 12 -month cycle it was found that the 6 -month harmonic became significant and consequently also had to be removed. The same two periods were also found in the spectrum of the square of the deviations of the logarithms of the monthly flows deviations, which squares of the deviations are defined as: [\log (monthly flow) - monthly mean of the \log (monthly flow)] ${ }^{2}$. The correlogram and variance spectrum of Z_{t}, produced by standardizing the logarithmic series
(Model A), are shown in the middle two figures while the correlogram and variance spectrum of the fitted series Z_{t} are shown in the right hand pair of figures, respectively. It is seen that the results of the two methods are nearly identical. However, Z_{t} of the
fitted series can be described with 12 constants while the standardized series requires 24. The first-order Markov Model is clearly indicated in the correlograms of both series of Z_{t} and the effect of this time de-
pendence is observed to be present in the low frequency range of the variance spectra.

Upon removal of the Markov first-order time dependence from the series Z_{t}, the series ϵ_{t} is produced as given by eq. 2.43. The correlogram and variance spectrum for ϵ_{t} computed from the standardized series are shown on the left hand side of fig. 15 while the same results for ϵ_{t} computed from the fitted series are shown in the right hand pair of graphs. It can be seen that both the correlogram and the variance spectrum exhibit the same behavior in both cases and it can be further observed that ϵ_{t} is independent on the 95% level, inferred from both the correlogram and the variance spectrum.

The Markov I Log Model B may be used to describe the series X_{t} by using the notation described in Chapter II, under Markov I Log Model. The constants are $\rho_{1}=r_{1}=0.659, \bar{X}=6.307$; the harmonic components of $m_{t}, A_{1}=-1.722, B_{1}=-0.489$, $A_{2}=-0.383, B_{2}=0.275 ; \bar{s}_{t}=0.708$; the harmonic components of $s_{t}, s^{A_{1}}=-0.049, s_{1}=0.164$, $s^{A_{2}}=-0.245, s^{B_{2}}=-0.100 ; \quad \bar{Y}=-0.002 ; s_{y}=1.006$. In all, 13 constants are required to describe X_{t} as given by eq. 2.42 for the Markov I Log Model B. Tabulated results for the stations tested and the constants required for the Markov I Log Model B are given in table 4, appendix 4.

Fig. 13 Sequence of monthly river flows for Station 11B.402, Middle Fork of the American River near Auburn, California from 1931 through 1960

Correlogram of Logarithms of Monthly Flow Series X_{t}

Correlogram of Standardized Series Z_{i}

N

Variance Spectrum of Logarithms of Monthly Flow Series X_{t}

Fig. 14 Correlogram and variance spectrum for the time series of the logarithms of the monthly river flows X_{t}, the standardized series Z_{t}, and the fitted series Z_{t}; Station 11B.402, Middle Fork of the American River near Auburn, California

Variance spectrum of ϵ_{f} from fitting Markov I Log Model B

Fig. 15 Correlogram and variance spectrum of the stochastic series ϵ_{t} produced from fitting Markov I Model A and the stochastic series ϵ_{t} produced from fitting Markov I Log Model B to Station 11B.402, Middle Fork of the American River near Auburn, California

CHAPTER IV

DEPENDENCE IN STOCHASTIC COMPONENTS

OF MONTHLY PRECIPITATION AND MONTHLY RUNOFF

1. Monthly precipitation series. The dependence in the stochastic component of monthly precipitation is measured in this study by r_{1}, the first serial correlation coefficient. The areal distribution of the first
serial correlation coefficient, r_{1}, has been plotted in fig. 16 for the standardized series Z_{t} of monthly precipitation. The minimum value of r_{1} obtained

Fig. 16 Areal distribution of the first correlation coefficient of the standardized series Z_{t}
for monthly precipitation
was -0.06 while the maximum value obtained was 0.20 . From a statistical point of view, these correlation coefficients are too small to be considered significant on the 95% level. Figure 16 indicates that there is no orderly distribution of the magnitude of r_{1} over the area studied. The occurrence of the highs and lows of r_{1} bears no resemblance to the explained variance by the seasonal variations.

The frequency distribution of r_{1} has been plotted in fig. 17 for the stations tested (total of 219) and the probability curve of r_{1} is shown in fig. 18.
From these two curves, it appears that r_{1} is approximately normally distributed (although theoretically the distribution is bounded at ± 1.0), with a mean of 0.053 and the standard deviation $s\left(r_{1}\right)$ of 0.041 .

It is interesting to note that the average first serial correlation coefficient of annual precipitation for 1141 stations in Western North America [9] and for the period of observations of 30 years (1931-1960) is $\bar{r}_{1}=0.028$, which is very close to the average first serial correlation coefficient of monthly precipitation of $r_{1}=0.053$ for 219 stations in the same area. The
series of the stochastic component Z_{t} of monthly precipitation was $\mathrm{N} \geq 360$ months (but $\mathrm{m}=219$ stations). It is shown [$\overline{9}$] that $s\left(r_{1}\right)=0.136$ for annual precipitation and $s\left(r_{1}\right)=0.041$ for monthly precipitation. Neglecting the influence of the number of stations (or specifically of the effective number of independent stations for annual and monthly precipitation), and taking only $\mathrm{N}=360$ and $\mathrm{N}=30$, the ratio of variances of first serial correlation coefficients of annual and monthly precipitation should be 12 . The ratio is $0.136^{2} / 0.041^{2}=11$, or very close to the theoretical value. It can be concluded that the stochastic components of monthly precipitation series have a very small time dependence, of the same order of magnitude as the annual precipitation, or the average first serial correlation coefficient for a large number of stations of about 0.05 . For many practical applications, the stochastic component of monthly precipitation series may be considered as independent in sequence.
2. Monthly runoff series. Because of the distribution of the runoff stations, the regional distribution of r_{1} for the stochastic component of monthly flow series had to be limited to the two areas: the

Fig. 17 Frequency distribution of the first correlation coefficient of the standardized series Z_{t} for the precipitation stations tested

Fig. 18 Probability distribution of the first correlation coefficient of the standardized series Z_{t} for the precipitation stations tested

Washington-Oregon-Idaho area and the MissouriEastern Kansas area. The areal distribution of r_{1} for these two regions is shown in fig. 19. The frequency distribution of r_{1} is different for the two regions as can be seen in fig. 20, with the Missouri-

Kansas area experiencing smaller values of r_{1} than the Washington-Idaho-Oregon area. A plot of the coefficients r_{1} on normal probability paper, in fig. 21, shows that both distributions may be approximated by normal functions. From the probability plots, the mean

Fig. 19 Areal distribution of the first correlation coefficient of the standardized series Z_{t} for monthly river flows

Fig. 20 Frequency distribution of the first correlation coefficient of the standardized series Z_{t} for the runoff stations in the two areas indicated
for the Washington-Idaho-Oregon area, \bar{r}_{1}, is 0.54 with a standard deviation of 0.16 , while the mean for the Missouri-Kansas area, \bar{r}_{1}, is 0.38 with a standard deviation of 0.09 . The maximum value of r_{1} in both areas is 0.8 and there is no occurrence of r_{1} less than zero.

Figures 19 through 21 show that the time dependence of the stochastic component of the monthly time series, measured by the first serial correlation coefficient, r_{1}, is very large and much larger than in the case of stochastic components of monthly precipitation. The two values $\bar{r}_{1}=0.54$ and $\bar{r}_{1}=0.38$ are much greater than $\bar{r}_{1}=0.05$ for monthly precipitation. The average first serial correlation coefficient of annual flows for very large number of stations have been given in Hydrology Paper No. 4 [9], as $\bar{r}_{1}=$
0.175 for the sample of 140 stations from many parts of the world (with the average length of annual values per station of 55), and as $\mathrm{r}_{1}=0.197$ for the sample
of 446 stations in Western North America (with the average length of annual values per station of 37). Therefore, these two values give $\bar{r}_{1}=0.18-0.20$ and are much smaller than the above values $\bar{r}_{1}=0.54$ and $\bar{r}_{1}=0.38$ for the stochastic component of monthly flows. The water carryover in river basin from month to month is much greater than the water carryover from year to year. It is an intuitive assumption that the smaller time series measure of a hydrologic continuous time series (with time measures usually used in hydrology, 12-month, 3month, month, 15 days, 5 -days and 1-day, or similar units), the greater is the dependence in the stochastic

Fig. 21 Probability distribution of the first correlation coefficient of the standard series Z_{t} for the runoff stations in the two areas indicated
component. The \bar{r}_{1}-values increase with a decrease of the time series measure. The water carryover from one time unit to the other, because of the water storage in river basins in various forms, the snow and ice accumulation and melting included, is relatively greater for the small time units than for the large time units.
3. Skewness coefficient of stochastic components of monthly precipitation. The areal distribution of the skewness coefficient for the standardized series, Z_{t}, or of the stochastic component of monthly precipitation, is plotted in fig. 22. It can be observed that
C_{S} is greater on the California coast and that its magnitude decreases as one progresses inland. In the interior portion of the country, C_{s} is positive and varies between 0.80 and 1.90 . The general analysis of results in fig. 22 shows that the Z_{t} stochastic components of monthly precipitation have highly skewed distributions. This is the case with monthly precipitation, in general, and with its stochastic component in particular. It is a known fact that the positive values of Z_{t} have smaller frequency densities than the negative values.

Fig. 22 Areal distribution of the skewness coefficient of the standardized series Z_{t} for the precipitation stations tested
4. Skewness coefficients of the independent stochastic components of monthly river flows. The areal distribution of the skewness coefficient for the independent stochastic component, ϵ_{t}, of monthly
runoff, as produced by fitting the Markov I Log Model A to the dependent stochastic component of monthly
flows, is shown in fig. 23. Because of the use of logarithms of flows instead of their original values, the skewness coefficients are much smaller for ϵ_{t} than they are for Z_{t} of monthly precipitation.
Finally, the C_{S} variation of ϵ_{t} is very high, as shown in fig. 23, and can also be negative.

Fig. 23 Areal distribution of the skewness coefficient of the series ϵ_{t}, produced by fitting Markov I Log Model A to the runoff stations

CHAPTER V

CONCLUSIONS

The results and discussion of the analysis of structure for time series of monthly precipitation and monthly river flows, as given in previous chapters, may be summarized in the following conclusions:
(1) The monthly precipitation series is composed of a deterministic component of periodic movement and a nearly independent stochastic component.
(2) The periodic component in monthly precipitation series may be described by Fourier series, with the 12 -month cycle and its harmonics.
(3) To avoid too many parameters in Fourier series approach in describing the periodic component, the Fourier C_{k} coefficient of the cycle and its successive harmonics may be approximated by a decreasing function of the order k of harmonics.
(4) The ratio of variance explained by the periodic component to the total variance of monthly precipitation, varies highly, across a large continental region, somewhere between 0 and 0.60 .
(5) The average first serial correlation coefficient for the stochastic component of a large number of stations (219) of monthly precipitation is very small, approximately 0.05 . Therefore, this stochastic component is very close to being independent.
(6) The time dependence of the stochastic component of monthly precipitation series is approximately the same as the time dependence of the annual precipitation series. It seems that the same factors which create a very small time dependence in annual precipitation series are responsible for the small time dependence of stochastic component of monthly precipitation series.
(7) The skewness coefficients of stochastic component of monthly precipitation are very high, ranging from about 0.80 to 3.50 .
(8) The monthly runoff series is composed of a deterministic component of periodic movement and a highly time dependent stochastic cor.mponent. The time dependence of the stochastic component can be described in most cases by a Markov first-order chain.
(9) The periodic component in monthly runoff series may be described by Fourier series, with 12 -month cycle and its harmonics. This component
usually requires more harmonics for its description than is the case with the same component in monthly precipitation series.
(10) Because the periodic component in monthly runoff series requires more harmonics for its description, the fitting of a decreasing function to C_{k} Fourier coefficient (coefficient decreasing with the k of higher order harmonics) reduces the number of parameters necessary for the description of this deterministic component.
(11) The ratio of variance, explained by the periodic component in monthly runoff series, to the total variance of monthly runoff varies highly across a continental region; but, on the average, it is much greater than the same ratio for the monthly precipitation. The ratio for monthly runoff ranges for two areas in Western North America between 0 and 0.90 , while it ranges, for monthly precipitation, between 0 and 0.60 . Because of the periodic movements in evaporation and in snow and ice storage and melting and the storage effect in attenuating the stochastic variations, in river basins, the seasonal periodic variations are greater in monthly runoff than in monthly precipitation.
(12) The average first serial correlation coefficient of the stochastic components for a large number of stations (137) of monthly runoff is very high, around $0.45-0.48$. For the Northwest part of the region, it is 0.54 and for the Southeast part of the region it is 0.38 . The water carryover from month to month makes the time dependence in the stochastic component of monthly runoff much greater (2 to 2.5 times greater) than the average first serial correlation coefficient of annual runoff series. The water carryover in river basins from month to month is mainly responsible for a large difference in \bar{r}_{1} between the stochastic components of monthly runoff and monthly precipitation.
(13) Both the correlograms and variance spectra of monthly precipitation and monthly runoff are useful and should be used simultaneously. While the correlogram shows the physical cycles detectable in these series, the variance spectra show the number and significance of various harmonics to be used in Fourier series description of periodic component of time series. Both of these techniques show well the types of dependence of stochastic components of these two variables.

1. Anderson, R. L. , Distribution of the serial correlation coefficient: Annals of Mathematical Statistics, Vol. 13, 1941, pp. 1-13.
2. Blackman, R. B., and Tukey, J. W., The measurement of power spectra. New York, Dover Publications, Inc., 1958, 190 p.
3. Brooks, C. E. P., and Carruthers, N., Handbook of statistical methods in meteorology: (Great Britain Meteorological Office, publication no. 538), Her Majesty's Stationery Office, London, $1953,412 \mathrm{p}$.
4. Grenander, U., and Rosenblatt, M., Statistical analysis of stationary time series: New York Wiley Publications, 1957, 300 p.
5. Horn, L. H., and Bryson, R. A., Harmonic analysis of the annual march of precipitation over the United States: Association of American Geographers Annals, Vol. 50, 1960, pp. 157-171.
6. Panofsky, H. A., and Brier, G. W., Some applications of statistics to meteorology: University Park, Pennsylvania, Mineral Industries Extension Services, Pennsylvania State University, 1958, 224 p.
7. Roesner, L. A., Analysis of time series of monthly precipitation and monthly river flows: (M. S. thesis presented to Colorado State University) Colorado State University, 1965, 59 p.
8. Wold, H., A study in the analysis of stationary time series: Almquist and Widsell, 2nd ed., Stockholm, 1954, 236 p.
9. Yevdjevich, V. M. Fluctuations of wet and dry years, Part II: Analysis by serial correlation: Colorado State University Hydrology Paper No. 4, June 1964, 50 p.

APPENDICES
1 through 4

APPENDIX 1
TABLE 1
MONTHLY PRECIPITATION STATIONS USED FOR THE INVESTIGATIONS

ST. ID.	STATION NAME	LAT.	LONG.	AREA	NO. YRS RECORD
14.003	NORTH FORK WALLA WALLA RIVER MR MILTUN ORE	45.90	116. 28	42.000	30
14.049	STRAHHERRY CREEK AB SLIDE CREEK NR PRAIRIE CITY OREG	44.33	118.65	7.200	30
14.059	MIDDLE FORK JOHN DAY RIVER AT RITTER ORFG	44.88	119.13	515.000	31
14.063	NORTH FORK JOHM Jay river at monument oreg	44.82	119.43	2520.000	35
14.064	JOHN DAY RIVER AT SERVICE CREEK OREG	44.80	120.00	5090.000	31
14.067	JOHN DAY RIVER AT MC DONALD FERRY ORES	45.58	120.42	7580.009	55
14.141	LAKE CREEK NR SISTERS OREG	44.43	121.73	22.200	45
14.181	KLICKITAT RIVER AR GLENWOOD WASH	46.08	121.27	360.000	51
14.227	SALMOV RIVEF NR GOVERINMFNT CAMP OREG	45.27	122.72	8.700	34
14.241	LITTLE SANDY RIVER NR BULL RUN OREG	45.42	122.17	22.300	41
14.278	MCKENZIE RIVER NH VIDA OREG	44.13	122.47	930.000	36
14.320	SOUTH SANTIAM RIVER AT WATERLOO OREG	44.50	122.82	640.000	37
14.359 14.363		45.02 45.25	121.92 122.27	136.000 657.00	40
14.382	EAST FOHK LIFWIS MIVER NR HETSSOH WASH	45.25 45.83	122.27 122.47	637.000 125.000	52 31
14.390	COWLITZ RIVEK AT PACKHOOD WASH	46.62	121.68	287.000	31
14.419	TOUTLE RIVER NR SILVER LAKE WASH	46.33	122.73	474.000	31
14.438	WILSON RIVER NR TILLAMOOK OREG	45.48	123.72	159.000	30
14.467	UMPQUA RIVER NR ELKTON OREG	43.58	123.55	3683.000	55
13.141	TRAPPER CREEK NR OAKLEY 1DAHO	42.17	123.98	32.000	41
13.332	boise river nr twin springs idaho	43.67	115.73	830.000	49
13.518	Valley Creek at stanley idaho	44.22	114.93	176.000	39
13.549	SOUTH FORK SALMM	44.65	115.70	92.000	32
13.581	HURRICANE CREFK NR JOSEPH OREG	45.33	117.30	31.000	36
13.593	SELWAY RIVER NR L.OWELL IDAHO	46.08	115.52	1910.000	31
13.594	LOCHSA RIVER NK LOWELL IDAHO	46.15	11558	1180.000	31
13.598	CLEARWATER RIVER AT KAMIAH IDAHO	46.23	116.02	4850.000	50
13.602	NORTH FORK CLEARWATER RIVER NR AHSAHKA TDAHO	46.52	116.30	2440.600	34
13.605	CLEARWATEK RIVER AT SPALDING IDAHD	46.42	116.85	9570.000	34
12.001	NASELLE RIVFR NR NASELLE WASH	46.37	123.75	55.300	31
12.006	NORTH RIVER NR RAYMOND WASH	46.82	123.85	219.000	33
12.040	SATSOP RIVER NR SATSOP WASH	47.00	123.50	290.000	31
12.047 12.050	QUINAULT HIVER AT QUINAULT LAKE WASH	47.47 47.80	123.90	264.000 208.000	49
12.050 12.127	HOH RIVER NR SPRUCE WASH CARGON RIVER NQ GAIRFAX WASH	47.80 47.03	124.10	208.000 78.900	34
12.127 12.172	CARBON RIVER NQ FAIRFAX WASH CEDAR RIVER NR LANDSBURG WASH	47.03 47.40	122.03 121.95	78.900 125.000	31 65
12.198	SOUTH FORK SKYKOMISH RIVER NR INDEX WASH	47.80	121.55	355.000	52
12.261	NORTH FORK STILLAGUAMISH RIVER NR ARLINGTON HASH	48.27	122.05	269.000	32
12.290	CASCADE RIVFH AT MARBLEMOUNT WASH	48.52	121.38	171.000	32
12.297	SaUk RIVER AB WHITECHUCK RIVER NR DARRINGTUN WASH	48.17	121.47	152.000	37
12.348	KOOTENAY RIVEP AT NEWGATE AR COLUMBIA	49.02	115.17	7660.000	30
12.353	KOOTENAI RIVER AT LIBEY MONT	48.30	115.55	1024.000	90
12.357	BOULDER CREEK NR I.EONIA IDAHO	48.60	110.10	53.000	32
12.359	MOYIE RIVER AT EASTPORT IDAHO	49.00	110.18	570.000	31
12.379	SMITH CREEK NR PURTHILL IDAHO	48.97	116.55	70.000	30
12.466	SWAN RIVER NR GIGFORK MONT	48.03	113.98	671.000	38
12.512	PRIEST RIVER NR PRIEST RIVER IDAHO	48.22	116.92	902.000	31
12.521	KETTLE RIVER NR FERRY WASH	48.98	118.77	2220.000	32
12.538	COEUR D ALENE RIVEK NR CATALDO 1 daho	47.57	116.30	1220.000	40
12.540	ST JOE RIVER AT CALDER IDAHO	47.27	116.18	1030.000	40
12.541	ST MARIES RIVER AT LOTUS IDAHO	47.25	116.63	431.000	40
12.610	WENATEHEE RIVFR AT PLAIN WASH	47.77	120.87	591.000	50
12.667	NORTH FORK AHTANUM CREEK NR TAMPICO WASH	46.57	120.92	68.900	30
112.001	KERN-RIVER NR KERNVILLE CALIF	35.93	118.48	865.000	48
112.032	north fork kaweah river at kaweah calif	36.48	118.92	128.000	49
112.066	MONO CREEK NK VErMILION VALLEY CALIF	37.37	118.98	92.000	39
112.112	CHOWCHILLA PIVER AT BUCHANAN DAM SITE CALTF	37.22	119.98	238.000	30
112.120	MERCED KIVER AT HAPPY ISLES BRIDGE NR YOSEMITE CALIF	37.73	119.55	181.000	45
112.137	FALLS CREEK NR HETCH HETCHY CALIF	37.97	119.77	45.200	45
112.259	HAT CKEEK NF HAT CREEK CALIF	40.68	121.42	122.000	30
112.304	MILI CREEK NR LOS MOLINOS CALIF	40.05	[22.02	134.000	32
112.308	THOMES CREEK AT PASKENTA CALIF	39.88	122.55	188.000	40
112.402	MIDDLE FORK AMERICAN RIVER NR AUBURN CALTF	38.92	121.00	616.000	49
111.059	MURRIETA CRFEK AT TEMECULA CALIF	33.48	117.15	220.000	36
111.066 111.083	arrovo trabuco ni san juan captstrant calif	33.53 34.27	117.67 117.47	36.900 40.900	30
111.063 111.153	Santa anita creek nr sierra madre calit	34.20	118.02	10.900	44
111.238	ARROYU SECO NR SOLEDAD CALIF	36.28	121.32	241.000	58
111.393	salmon river at somesbar calif	41.38	123.47	746.000	37
111.411	SMITH RIVER NR CRESEENT CITY CALIF	41.78	124.05	613.000	30
10.165	AMERICAN FORK NR AMERICAN FORK UTAH	40.45	111.68	55.000	33
10.275	BIG RUCK CREEK NR VALYERNO CALIF	34.42	117.83	23.000	37
10.278	CONVICT CREEK NR MAMMOTH LAKES CALIF	37.62	198.85	18.700	35
10.387	MARTIN CREEK NR PARADISE VALLEY NEV	41.53	117.43	172.000	39
9.378	ELK RIVER AT CLARK COLO	40.72	106.92	206.000	30
9.485	WHITE RIVER NR WATSON UTAH	39.97	109.17	4020.000	37
9.623	FRIGHT ANGEL CREEK NR GRAND CANYON ARIZ NORTH FORK VIRGIN RIVER NR SPRINGDALE UTAH	36.10	112.10	100.005	37
9.624 9.662	NORTH FORK VIRGIN RIVER NR SPRINGDALE UTAH GILA RIVER NR GILA NEW MEX	37.22 33.07	112.98 118.53	336.090 5870.007	35 32
9.764	SALT HIVER NH ROUSEVELT ARIZ	33.62	110.92	$43_{10.000}$	47
8.032	heches river nr rockland tex	31.03	94.40	3539.000	57
8.107	brazos river at seymour tex	33.57	99.27	1449.000	36
8.132	LEON RIVER NR BELTON TEX	31.07	97.45	3513.000	37
8.143	YEGUA CREEK MR SUMERVILLE TEX	30.32	96.50	990.000	36
8.144 8.165	Navasota river nk easterly tex men	51.17	96.30	949.000	36
8.165 8.166	MIDDLE CONCHO RIVER NR TANKERSLY TEX	31.22 31.38	100.50 100.62	434.000 1280.000	30
8.212	GUADALUPE RIVER NR SPRING BRANCH TEX	29.87	100.62	1280.000 1282.000	38
8.217	BLANCO RIVEF AT WIMBERLEY TEX	29.98	98.07	364.000	32
8.220	plum creek nh luling tex	29.70	97.62	356.000	30
8.517	PECOS RIVER NR PECOS NEW MEX	35.70	105.08	189.009	\$1
7.006	MERAMEC RIVER NR STEELVILILE MO	38.00	91.37	781.000	38
7.012	EIG RIVER AT BYRNESVILLE MO	38.37	90.85	917.350	39
7.015	CASTOH RIVER AT ZALMA MO	37.15	90.08	423.000	40
7.023	SOUTH FORK FORKED DEER RIVER AT JACKSON TENN	35.60	88.82	574.008	31
7.028	WOLF HIVER AT ROSSVILLE TENN	35.05	89.55	503.000	31

APPENDIX 3
TABLE 3
MAIN $12-$ MONTH PERIOD, SUB-HARMONICS, AND THE EXPLAINED VARIANCE OF THE
SIGNIFICANT HARMONICS FOR THE MONTHLY PRECIPITATION VARIABLE (Explanations of the columns are given at the

Station	Periods used to\qquad		Periods Explained vari- found in Z_{t} ance of periods, \%					Total explained variance	Fit of stochastic mode		CONSTANTS REQUIRED TO DESCRIBE STOCHASTIC MODEL B									
	m_{t}	s_{t}	STD. serie	itted	12	hs	4				A_{1}	B_{1}	A_{2}	B_{2},	A_{3}	B_{3}	$\overline{\mathrm{X}} \quad \bar{s}_{t}$	$\overline{\mathrm{Y}}$	$s^{\text {y }}$	Total
2. 1849	12,6,4		60	60	-14	16	3	33	R	R										
2. 3591		12,6			${ }^{46}$	33		79												
	12							12	A		-0. 285	0.453					1. 257	0.000	0.938	5
2. 5744		NONE															$\mathrm{S}_{\mathrm{t}}=1.105$			
	6					9		9	A	A	0.00	0.00	-0.179	0.405			1. 041	0.000	0.956	5
2.6320	6, 4	NONE				16	3	19	A	A	0.00	0.00	-0.354	0.847	0.332	-0.191	$\mathrm{S}_{5}=1.067$		0. 901	7
2. 6561		NONE														-0.181	$S_{t}=1.623$.	0.901	7
	12, 6, 4				5	13	3	21	A	A	0.672	-0.129	0.230	1. 064	0. 490	-0.266	2. 056	0.006	1. 012	14
		12, 6			68	24		92			0.825	0.148	-0.081	0.491			1. 759			
2.6796	6, 4				17	4		21	A	A	0.00	0.00	-0.281	0.924	0.428	-0.242	1.619	0.00	0.884	7
2.8815	12, 6, 4	NONE	30		9	14	6	29	A	R							$S_{t}=1.643$			
		NONE																		
2. 9652	NONE							0	A	A							0.267			2
3.0234		NONE															$\mathrm{S}_{+}=0.541$			
	12	NONE			8			8	A		0.223	1. 152					4. 262 $S_{t}=2.840$	0.00	0.956	5
3. 0460	NONE							0	A	A							4. 019			2
3.1596	12	NONE			5			5	R	A	-0. 109	0.819					$S_{t}=2.496$			
		NONE															4. $\mathrm{S}_{\mathrm{t}}=2.697$	0.00	0.976	5
3. 2444	12				9			9	A		-1. 107	0.082					3. 725	0.00	0.954	5
		NONE															$\mathrm{S}_{\mathrm{t}}=2.609$			
3.4756	NONE							0	R	A							4. 440			2
		NONE															$\mathrm{S}_{\mathrm{t}}=2.920$			
3.5036	12				5			5	R	A	-0.766	0.339					3. 694	0.00	0.972	5
		NONE															$\mathrm{S}_{\mathrm{t}}=2.544$			
3. 5820	NONE		16					0	R	A							4.028			2
		NONE															$\mathrm{S}_{t}=2.570$			
3.6928	12				4			4	R		-0. 541	0.438					3.795	0.00	0.980	5
		NONE															$S_{t}=2.432$			
4.0227	12			$\begin{aligned} & 12,6,4 \\ & 3,2.4 \end{aligned}$	38			38	A	-										
		12			94			94												
4. 0383	12			$\begin{aligned} & 4,3, \\ & 2.4,2 \end{aligned}$	45			45	A	-										
		12			98			98												
4.0755	12			12, 6, 4	37			37	A	-										
		12			93			93												
4.0790	12			$\begin{aligned} & 4,3 . \\ & 2.4,2 \end{aligned}$	44			44	A	-										
		12			96			96												
4. 1700	12, 6			30	40	1		41	A	A	2. 145	1.594	0.383	0.319			2. 539	-0.025	1. 153	10
		12			94			94			1. 421	0.862					1.910			
4.3161	12			12, 6, 4	50			50	A	-										
		12			97			97												
4.3191	12			$\begin{aligned} & 12,6,4, \\ & 3,4 \end{aligned}$	41			41	R	-										
		12			97			97												
4. 4022	12			$\begin{aligned} & 12,6,4 \\ & 3,2,4 \end{aligned}$	39			39	A	-										
		12			95			95												
4. 5215	12			$\begin{aligned} & 12,6,4 \\ & 3,2,4 \end{aligned}$	33			33	A	-										
		12			91			91												
4. 5449	12.6				38	1		39	A	A	3. 323	2. 410	0.565	0.358			3. 998	-0.014	1. 083	10
		12			96	1		96			2. 324	1.167					3. 131			
4.6118	NONE							0	A	R										
	12	NONE																		
4.6175	12			12, 6, 4,	32			32	A	-										
4.6399	12	12		12, 4, ${ }^{\text {3, }}$	95			95												
		12			92			92	A	.										
4.7740	12			12, 6, 4,	31			31	A	-										
		12		3, 2. 4	94			94												
4. 7851	12			$\begin{aligned} & 12,6,4, \\ & 3,2,4,2 \end{aligned}$	36			36	A	-										
		12			98			98												
4.8045	12			12, 6, 4,																
				3, 2.4	51			51	A	-										
		12			94			94												
4.8353	12		3.6	12, 6, 4,	43			43	A	-										
		12		3, 2. 4, 2	98			98												
4.8967	12			6, 4, 3	32			32	A	-										
		12			92			92												
4.9035	12,6				18	2		20	A	A	0.273	0.201	0.002	0.121			0.327	-0.010	1. 048	10
		12			86			86			0. 260	0.168					0. 447			
4.9087	12			12, 6, 4,	31			31	A	-										
		12		3	96			96												
4.9105	12,6				43	1		44	A	A	2. 773	2.730	0.177	0.634			3. 674	0.003	1.121	10
		12			91			91			1. 831	1. 353					2.637			
4.9452	12, 6				34	1		35	R	A	0.338	0.477	-0.069	0. 091			0.518	0.002	1.017	10
		12			95			95			0.298	0.330					0.510			
4.9490	12			12,6	44			44	A											
		12			94			94												

TABLE 3 - Continued

Station	Periods used to define		Periods Explained vari-found in Z_{t} ance of periods, $\%$						Total explained variance \%	Fit of stochas tic mode A B		CONSTANTS REQUIRED TO DESCRIBE STOCHASTIC MODEL B									
	m_{t}	$s_{\text {t }}$	$\begin{aligned} & \text { STD. } \\ & \text { series } \end{aligned}$	Fitted series	$12^{\frac{\mathrm{M}}{2}}$	$\frac{\text { nths }}{6}$		3				A_{1}	B_{1}	A_{2}	B_{2}	A_{3}	B_{3}	$\overline{\mathrm{X}} \quad \bar{s}_{\mathrm{t}}$	$\overline{\mathrm{Y}}$	s_{y}	Total
29.1813	12,3				28			1	29	A	A -	-0.896	-0.438			$A_{4}=-0.224$	$\mathrm{B}_{4}=-0.006$	1. 294	0.000	0.838	7
		NONE							0									$\mathrm{S}_{\text {}}=1.323$			
29. 1939	12		5.4		24				24	R	A -	-1. 060	-0.731					1.496	0.000	0.870	5
		NONE							0									$\mathrm{S}_{\mathrm{t}}=1.852$			
29. 2854	12				27				27	A	A -	-0.839	-0.720					1. 230	0.000	0.853	5
		NONE							0									$\mathrm{S}_{\mathrm{t}}=1.498$			
29. 3265	12, 6, 4		733	733	22	16	3		41	R	R										
		12,6			61	25			86												
29. 3775	12, 6, 4				18	13	4		35	A		-0. 238	-0.621	-0.158	0.556	0,238	-0.233	0.845	0.007	1. 061	14
		12,6			55	32			87			-0. 102	-0. 395	-0.093	0. 299			0.787			
29.4736	12				14				14	A		-0. 509	-0.512					0.966	0.000	0.928	5
	12, 6, 4	NONE			28	8	2		0 38	ρ	A	-0, 703	-0.617	-0. 189	0.477	0. 242	-0,082	$\mathrm{S}_{\text {S }}=1.364$	-0, 001		14
29.6676		12,6			73	11			84			-0.295	-0. 246	-0.150	-0.004			1. 0.889			
29.8535	12, 6		750		20	8			28	A	A -	-0. 221	-0. 507	-0.129	0.333			0.695	0.000	0.847	7
	$12,6,4,3$	NONE	733	48	9	11	3	2	${ }^{0} 5$	R	R							$\mathrm{s}_{\mathrm{t}}=0.870$			
29.9897		12,6			50	23			73												
32.2188	12			12,6	36				36	A	R										
		12			88				88												
32. 3621	12, 6				37	2			39	A	A -	-1. 259	-0.515	0.283	0.061			1. 652	0.005	1. 019	10
		12			95				9ε			-0. 668	-0. 387					1.090			
32. 4481	12,6				38	3			41	A	A	-1. 286	-0.343	0.367	0.029			1. 578	-0.002	1. 021	10
		12			90				90			-0.661	-0.236					1.045			
32. 5638	12, 6				43	7			50	A	A	-1.315	-0.340	0.509	0.145			1. 406	-0.026	1.121	10
		12			92				92			-0. 620	-0.257					0.869			
32.6025	12,6			4	35	3			38	A	A	-1.143	-0.393	0.360	0.067			1. 320	-0.009	1. 061	10
		12			81				81			-0.657	-0. 265					0.938			
34.3497	12,6				16	4			20	A	A	-1. 199	-0.244	0.063	-0.602			2. 366	0.015	1. 054	12
		12, 6			60	14			74			-0.654	-0.351	0.119	-0.338			1.769			
34. 4451	12,6		6.8	6.8	6	4			10	A		-0.310	0.869	0.276	-0.714			3.930	0.000	0.952	7
		NONE							0									$\mathrm{S}_{\mathrm{t}}=2.763$			
34. 4766	12				25				25	R	A -	-1. 026	-0.345					1. 390	0.000	0.868	5
		NONE							,									$S_{t}=1.545$			
34.6926	12,6				11	5			16	A	A	-1. 215	-0.118	0.115	-0.828			2. 957	0.000	0.914	7
		NONE							0									$\mathrm{S}_{\mathrm{t}}=2.579$			
34.7012	12				17				17	A	A -	-1. 405	-0.181					2. 653	0.000	0.911	5
		NONE							0									$\mathrm{S}=2.427$			
34. 9445	12, 6				9	4			13	R	A -	-1. 103	0.083	0.178	-0.700			3. 582	0.000	0.936	7
		NONE							0									$S_{t}=2.653$			
34.9629	12,6			4	15	5			20	A	A -	-1. 200	-0. 194	0.089	-0.669			2. 466	0.000	0.896	7
		NONE							0									$S_{t}=2.208$			
35.0197	12,6				13	8			21	A	A	0.362	0.247	0.253	-0.224			1. 036	0.000	0.889	7
		NONE							0									$S_{t}=0.855$			
35. 0694	12,6				11	8			19	A	A	0.411	0.223	0.394	-0.041			1. 011	0.000	0.898	7
		NONE							0									$\mathrm{S}_{\mathrm{t}}=0.983$			
35. 1897	12,6				49	2			51	A	A	2.948	1. 408	0.546	-0.458			3. 762	0.003	1. 071	10
		12			84				84			1. 282	0.344					2. 057			
35. 2135	12,6				12	8			20	A	A	0.202	0.319	0.192	-0. 229			0.919	0.000	0.392	7
		NONE							0									$S_{t}=0.753$			
35.2693	12, 6				44	3			47	A	A	3.102	1.516	0.583	-0.730			4. 704	0.003	1. 051	10
		12			85				85			1. 348	0.336					2. 405			
35.3445	12			12, 6	43				43	A	-										
		12			91				91												
35.3827	12, 6				10	7			17	A	A	0.225	0.287	0.135	-0.274			1. 091	0.000	0.908	7
		NONE							0									$\mathrm{S}_{\mathrm{t}}=0.803$			
35. 4670	12,6				18	4			22	R	R										
		NONE							0												
35. 5610	12, 6		7100		24	4			28	R	R										
		12, 6			53	17			70												
35.6907	12,6				42	3			45	A	A	2. 525	1. 249	0.647	-0.389			3. 318	0.002	1. 064	10
		12			81				81			1. 256	0.311					2. 016			
35.7250	12, 6				21	6			27	A	A	0.620	0.521	0.429	-0.120			1. 691	0.000	0.849	7
		NONE							0									$\mathrm{S}_{\mathrm{t}}=1.237$			
35.9046	12, 6, 4				7	5	5		17	A	A	0.120	0.216	0.197	-0.041	-0.149	0.133	0.683	0.000	0.910	9
		NONE							0									$S_{t}=0.642$			
39.0296	12,6				40	1			41	A	A	-1. 442	-0.329	0.191	-0.091			1. 832	0.005	1. 023	10
		12			97				97			-0.612	-0.322					1.146			
39.1972	12, 6			4	34	4			38	A	A	-1.112	-0.044	0.286	-0.211			1. 260	0.003	1. 057	10
		12			92				92			-0. 584	-0.118					0.944			
39.2797	12, 6				45	2			47	A	A	-1. 299	-0.387	0.321	0.034			1. 402	0.006	1.037	10
		12			93				93			-0. 555	-0.241					0.907			
39.3832	12,6				38	2			40	A	A	-1. 240	-0.215	0.266	-0.137			1. 495	0.001	1. 041	10
		12			92				92			-0.620	-0.174					0.994			
39.4007	12, 6				35	3			38	R	R										
		12			90				90												
39. 4661	12,6				40	1			41	R	A	-1. 551	-0.455	0.298	-0.089			1. 857	0.006	1. 036	10
		12			88				88			-0.690	-0.365					1. 235			
39.4864	12,6			4	33	4			37	A	R										
		12, 6			69	7			76												
39.5536	12		12	12	34				34	R	R										
		12			84				84												
39.7667	12				39				39	A	A	-1.624	-0.397					2. 125	0.010	1. 028	8
		12			94				94			-0.708	-0. 291					1. 340			

\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Station} \& \multicolumn{2}{|l|}{Periods used to
\qquad} \& \multicolumn{2}{|l|}{Periods found in Z_{t}} \& \multicolumn{3}{|l|}{Explained variance of periods, $\%$} \& \multirow[t]{2}{*}{Total explained variance \%} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Fit of stochas tic mode A B}} \& \multicolumn{10}{|l|}{CONSTANTS REQUIRED TO DESCRIBE STOCHASTIC MODEL. B}

\hline \& m_{t} \& ${ }_{\text {st }}$ \& $$
\begin{aligned}
& \text { STD. } \\
& \text { serie }
\end{aligned}
$$ \& Fitted series \& 12 \& ${ }^{\text {ths }}$ \& 3 \& \& \& \& ${ }^{\text {A }}$ \& B_{1} \& A_{2} \& B_{2} \& A_{3} \& B_{3} \& $\overline{\mathrm{X}} \quad \bar{s}_{\mathrm{t}}$ \& $\overline{\mathrm{Y}}$ \& $s^{\text {y }}$ \& Total

\hline \multirow[t]{2}{*}{39.8552} \& 12,6 \& \& \& 4 \& 30 \& 4 \& \& 34 \& A \& R \& \& \& \& \& \& \& \& \& \&

\hline \& \& 12 \& \& \& 81 \& \& \& 81 \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{39.9442} \& 12 \& \& \& 6.7 \& 34 \& \& \& 34 \& A \& R \& \& \& \& \& \& \& \& \& \&

\hline \& \& 12 \& \& \& 85 \& \& \& 85 \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{41.0120} \& 12 \& \& 50 \& 50 \& 9 \& \& \& 9 \& R \& R \& \& \& \& \& \& \& \& \& \&

\hline \& \& NONE: \& \& \& \& \& \& 0 \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{41.0498} \& 12 \& \& \& \& 14 \& \& \& 14 \& A \& A \& -0.419 \& -0. 532 \& \& \& \& \& \& 0.000 \& 0.928 \& 5

\hline \& \& NONE \& \& \& \& \& \& 0 \& \& \& \& \& \& \& \& \& $$
S_{t}=1.282
$$ \& \& \&

\hline \multirow[t]{2}{*}{41.0611} \& NONE \& \& 7100 \& \& \& \& \& 0 \& R \& R \& \& \& \& \& \& \& \& \& \&

\hline \& \& NONE \& \& \& \& \& \& 0 \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{41.1138} \& 12, 6 \& \& 50 \& \& 4 \& 6 \& \& 10 \& R \& A \& -0.618 \& 0.014 \& -0.003 \& -0.724 \& \& \& 2. 221 \& 0.000 \& 0. 944 \& 7

\hline \& \& NONE \& \& \& \& \& \& 0 \& \& \& \& \& \& \& \& \& $S_{t}=2.047$ \& \& \&

\hline \multirow[t]{2}{*}{41. 2019} \& 6 \& \& \& \& \& 6 \& \& 6 \& A \& A \& \& \& 0.164 \& -0.771 \& \& \& 3. 038 \& 0.000 \& 0. 971 \& 5

\hline \& \& NONE: \& \& \& \& \& \& 0 \& \& \& \& \& \& \& \& \& $\mathrm{S}_{\mathrm{t}}=2.349$ \& \& \&

\hline \multirow[t]{2}{*}{41.3183} \& NONE \& \& 40 \& 50 \& \& \& \& 0 \& A \& A \& \& \& \& \& \& \& $$
3.001
$$ \& \& \& 2

\hline \& \& NONE: \& \& \& \& \& \& $$
0
$$ \& \& \& \& \& \& \& \& \& $$
S_{t}=2.652
$$ \& \& \&

\hline \multirow[t]{2}{*}{41.3430} \& 12 \& \& 36 \& 36 \& 4 \& \& \& 4 \& R \& R \& \& \& \& \& \& \& \& \& \&

\hline \& \& 12 \& \& \& 86 \& \& \& 86 \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{41.3508} \& NONE \& \& \& \& \& \& \& 0 \& A \& A \& \& \& \& \& \& \& 2. 228 \& \& \& 2

\hline \& \& NONE \& \& \& \& \& \& 0 \& \& \& \& \& \& \& \& \& $\mathrm{S}_{\mathrm{t}}=2.235$ \& \& \&

\hline \multirow[t]{2}{*}{41.3734} \& 12,6 \& \& \& \& 4 \& 4 \& \& 8 \& A \& A \& -0.557 \& 0.463 \& 0.236 \& -0.754 \& \& \& 3. 353 \& 0.000 \& 0.958 \& 7

\hline \& \& NONE \& \& \& \& \& \& 0 \& \& \& \& \& \& \& \& \& $$
S_{t}=2.668
$$ \& \& \&

\hline \multirow[t]{2}{*}{41. 4081} \& 12 \& \& \& \& 4 \& \& \& 4 \& A \& A \& 0. 177 \& 0.714 \& \& \& \& \& 3. 723 \& 0.000 \& 0. 979 \& 5

\hline \& \& NONE \& \& \& \& \& \& 0 \& \& \& \& \& \& \& \& \& $S_{t}=2.549$ \& \& \&

\hline \multirow[t]{2}{*}{41.4780} \& 12 \& \& 48 \& 50 \& 4 \& \& \& 4 \& A \& R \& \& \& \& \& \& \& \& \& \&

\hline \& \& NONE \& \& \& \& \& \& 0 \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{41.5018} \& 6, 4 \& \& \& \& \& 7 \& 2 \& 9 \& R \& R \& \& \& \& \& \& \& \& \& \&

\hline \& \& 4 \& \& \& \& \& 12 \& 12 \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{41.5972} \& 12,4 \& \& \& \& 5 \& \& 5 \& 10 \& A \& A \& -0.368 \& -0.449 \& \& \& -0.182 \& -0.561 \& 1. 641 \& 0.000 \& 0. 951 \& 7

\hline \& \& NONE \& \& \& \& \& \& 0 \& \& \& \& \& \& \& \& \& $S_{t}=1.899$ \& \& \&

\hline \multirow[t]{2}{*}{41.6950} \& 12 \& \& 7 \& \& 30 \& \& \& 30 \& A \& A \& -1. 234 \& -0.383 \& \& \& \& \& 1.702 \& -0.005 \& 1. 036 \& 10

\hline \& \& 12,6 \& \& \& 74 \& 4 \& \& 78 \& \& \& -0.611 \& -0. 267 \& 0.124 \& -0.103 \& \& \& 1. 248 \& \& \&

\hline \multirow[t]{2}{*}{41.7206} \& 12 \& \& 36 \& \& 14 \& \& \& 14 \& A \& A \& -0.822 \& -0. 469 \& \& \& \& \& 1. 594 \& 0.000 \& 0.928 \& 5

\hline \& \& NONE \& \& \& \& \& \& 0 \& \& \& \& \& \& \& \& \& $\mathrm{S}_{\mathrm{t}}=1.803$ \& \& \&

\hline \multirow[t]{2}{*}{41.7262} \& 12 \& \& \& \& 16 \& \& \& $$
16
$$ \& R \& R \& \& \& \& \& \& \& \& \& \&

\hline \& \& 12, 6 \& \& \& 65 \& 2 \& \& $$
67
$$ \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{41.7651} \& 12 \& \& \& \& 2 \& \& \& 2 \& A \& A \& -0.026 \& 0.604 \& \& \& \& \& 3. 667 \& 0.000 \& 0. 988 \& 5

\hline \& \& NONE \& \& \& \& \& \& 0 \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{41.8630} \& 12 \& \& \& \& 8 \& \& \& $$
8
$$ \& R \& A \& -0.670 \& -0.320 \& \& \& \& \& $$
1.625
$$ \& 0.000 \& 0.958 \& 5

\hline \& \& NONE \& \& \& \& \& \& $$
0
$$ \& \& \& \& \& \& \& \& \& $$
S_{t}=1.821
$$ \& \& \&

\hline \multirow[t]{2}{*}{41.9280} \& 6 \& \& 50 \& 50 \& \& 5 \& \& 5 \& A \& A \& \& \& 0.225 \& -0.774 \& \& \& 2.971 \& 0.002 \& 1. 019 \& 8

\hline \& \& 6 \& \& \& \& 79 \& \& 79 \& \& \& \& \& 0.191 \& -0.578 \& \& \& 2.338 \& \& \&

\hline \multirow[t]{2}{*}{41.9330} \& 12 \& \& \& \& 23 \& \& \& 23
0 \& R \& A \& -1.025 \& -0.454 \& \& \& \& \& $$
\text { 1. } 580
$$ \& 0.000 \& 0.879 \& 5

\hline \& \& NONE \& \& \& \& \& \& 0 \& \& \& \& \& \& \& \& \& $$
S_{t}=1.664
$$ \& \& \&

\hline \multirow[t]{2}{*}{41.9532} \& 12, 6, 4 \& \& \& \& 6 \& 6 \& 3 \& 15 \& A \& A \& -0.758 \& 0.274 \& 0.119 \& -0.788 \& '0.014 \& 0.529 \& \& 0.000 \& 0.924 \& 9

\hline \& \& NONE \& \& \& \& \& \& 0 \& \& \& \& \& \& \& \& \& $$
S_{t}=2,310
$$ \& \& \&

\hline \multirow[t]{2}{*}{42.2101} \& 6 \& \& \& \& \& 3 \& \& 3 \& A \& A \& \& \& -0.085 \& -0.125 \& \& \& $$
0.613
$$ \& 0.000 \& 0.982 \& 5

\hline \& \& NONE \& \& \& \& \& \& 0 \& \& \& \& \& \& \& \& \& $$
S_{t}=0.573
$$ \& \& \&

\hline \multirow[t]{2}{*}{42. 2996} \& NONE \& \& 5.3 \& \& \& \& \& 0 \& R \& R \& \& \& \& \& \& \& \& \& \&

\hline \& \& NONE \& \& \& \& 3 \& \& 0 \& R \& A \& \& \& -0.161 \& 0.146 \& \& \& \& 0.000 \& 0.986 \& 5

\hline 42. 3896 \& 6 \& NONE \& 33 \& 33 \& \& 3 \& \& 0 \& \& A \& \& \& -0.161 \& \& \& \& $$
S_{t}=0.934
$$ \& \& \&

\hline \multirow[t]{2}{*}{42. 4508} \& 6 \& \& \& \& \& 6 \& \& 6 \& A \& A \& \& \& -0.195 \& 0.284 \& \& \& 1. 028 \& 0.000 \& 0.970 \& 5

\hline \& \& NONE \& \& \& \& \& \& 0 \& \& \& \& \& \& \& \& \& $\mathrm{S}_{\mathrm{t}}=1.001$ \& \& \&

\hline \multirow[t]{2}{*}{42.5148} \& 12,6 \& \& 40 \& 40 \& 14 \& 5 \& \& 19 \& R \& A \& -0. 204 \& -0.267 \& -0.087 \& 0.173 \& \& \& $$
0.622
$$ \& -0.002 \& 1. 041 \& 10

\hline \& \& 12 \& \& \& 77 \& \& \& - 77 \& \& \& -0.111 \& -0.190 \& \& \& \& \& $$
0.520
$$ \& \& \&

\hline 42.5654 \& 6, 2. 4 \& NONE \& 6.5 \& \& \& 1 \& \& $6 *$

0 \& A \& A \& \& \& -0.092 \& 0.001 \& $A_{5}=0.122$ \& $\mathrm{B}_{5}=0.156$ \& $$
\begin{aligned}
& 0.666 \\
& S_{+}=0.581
\end{aligned}
$$ \& 0.000 \& 0. 974 \& 7

\hline \multirow[t]{2}{*}{42.7271} \& 12, 6 \& \& \& \& 12 \& 6 \& \& 18 \& A \& A \& 0.234 \& 0.481 \& -0.044 \& -0.377 \& \& \& 1. 589 \& 0.000 \& 0.900 \& 7

\hline \& \& NONE \& \& \& \& \& \& 0 \& \& \& \& \& \& \& \& \& $$
S_{t}=1.070
$$ \& \& \&

\hline \multirow[t]{2}{*}{42.8119} \& 12,6 \& \& \& \& 13 \& 3 \& \& 16 \& A \& R \& \& \& \& \& \& \& \& \& \&

\hline \& \& NONE \& \& \& \& \& \& 0 \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{42.8771} \& 12,6 \& \& \& \& 10 \& 7 \& \& 17 \& A \& A \& 0.124 \& 0.422 \& -0.145 \& $$
-0.344
$$ \& \& \& \[

1. 363
\] \& 0.002 \& 1. 014 \& 12

\hline \& \& 12,6 \& \& \& 18 \& 64 \& \& 82 \& \& \& -0.070 \& 0.091 \& -0.058 \& -0.205 \& \& \& 0.880 \& \& \&

\hline \multirow[t]{2}{*}{45.0917} \& 12,6 \& \& \& \& 55 \& , \& \& 57 \& A \& A \& 5. 173 \& 1.939 \& 0.810 \& -0.491 \& \& \& $$
6.401
$$ \& 0.009 \& 1. 061 \& 10

\hline \& \& 12 \& \& \& 94 \& \& \& 94 \& \& \& $$
2.011
$$ \& \[

0.520

\] \& \& \& \& \& \[

3. 062
\] \& \& \&

\hline \multirow[t]{2}{*}{45.1223} \& 12, 6 \& \& \& \& 45 \& 4 \& \& 49 \& A \& A \& 5. 479 \& 2. 056 \& 1.038 \& -1.413 \& \& \& $$
8.665
$$ \& 0.001 \& 1. 037 \& 10

\hline \& \& 12 \& \& \& 81 \& \& \& 81 \& \& \& 1.924 \& 0.419 \& \& \& \& \& $$
4.047
$$ \& \& \&

\hline \multirow[t]{2}{*}{45.1350} \& 12,6 \& \& \& 8 \& 17 \& 6 \& \& 23 \& R \& R \& \& \& \& \& \& \& \& \& \&

\hline \& \& NONE \& \& \& \& \& \& 0 \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{45.1586} \& 12,6 \& \& 45 \& 45 \& 25 \& 5 \& \& 30 \& R \& R \& \& \& \& \& \& \& \& \& \&

\hline \& \& NONE \& \& \& \& \& \& 0 \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{45.3222} \& 12, 6 \& \& 3.8 \& \& 40 \& 4 \& \& 44 \& A \& A \& 1. 195 \& 0.385 \& 0.422 \& -0.031 \& \& \& $$
\text { 1. } 396
$$ \& 0.000 \& 1. 094 \& 10

\hline \& \& 12 \& \& \& 88 \& \& \& 88 \& \& \& 0.596 \& 0.123 \& \& \& \& \& $$
0.946
$$ \& \& \&

\hline \multirow[t]{2}{*}{45. 3546} \& 12,6 \& \& 33 \& \& 17 \& 6 \& \& 23 \& A \& A \& 0.368 \& 0.143 \& 0.186 \& -0.141 \& \& \& \& 0.000 \& 0.878 \& 7

\hline \& \& NONE \& \& \& \& \& \& 0 \& \& \& \& \& \& \& \& \& $$
S_{t}=0.676
$$ \& \& \&

\hline \multirow[t]{2}{*}{45.4769} \& 12,6 \& \& \& \& 45 \& 3 \& \& 48 \& A \& A \& 2. 542 \& 0.872 \& 0.557 \& -0.415 \& \& \& 3. 623 \& 0.002 \& 1. 074 \& 10

\hline \& \& 12 \& \& \& 82 \& \& \& 82 \& \& \& 1. 013 \& 0.167 \& \& \& \& \& 1. 860 \& \& \&

\hline \multirow[t]{2}{*}{45.5840} \& 12, 6 \& \& \& \& 53 \& 2 \& \& 55 \& A \& A \& 5. 096 \& 1. 123 \& 0.795 \& -0.635 \& \& \& 6.322 \& 0.012 \& 1. 061 \& 10

\hline \& \& 12 \& \& \& 94 \& \& \& 94 \& \& \& 2. 042 \& 0.365 \& \& \& \& \& 3. 014 \& \& \&

\hline \multirow[t]{2}{*}{45.7038} \& 12 \& \& \& 12, 6, 4 \& 38 \& \& \& 38 \& A \& - \& \& \& \& \& \& \& \& \& \&

\hline \& \& 12 \& \& \& 80 \& \& \& 80 \& \& \& \& \& \& \& \& \& \& \& \&

\hline 45.7507 \& 12,6 \& \& \& \& 37 \& 4 \& \& 41 \& \& R \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

Column

Explanation

Station identification number
Periods or harmonics (in months), as obtained from the variance spectrum of X_{t} and used in the mathematical model for m_{τ}

Periods or harmonics (in months) obtained from the spectrum of $\left(\mathrm{X}_{\mathrm{t}}-\mathrm{m}_{\tau}\right)^{2}$ and used in the mathematical model for s_{τ}
4 Periods (in months) found in Z_{t}, when the variance spectrum was computed for the standardized series and fitted standardized series, respectively.

5-8 Variance of X_{t} explained by the indicated harmonic
$9 \quad$ Total explained variance of X_{t} by the harmonics of $m_{\tau^{\prime}}$, and of s_{τ} by the harmonics fitted.
10 Results of model fitting of the Stochastic Model A (independent series) and model B (Markov I Model), respectively; A means the model was accepted on the 95 per cent level, R means the model was rejected on the 95 per cent level.

11-12 For monthly precipitation which are well fitted by Model B, the parameters required to describe the model are given

21 Total number of constants required to define the Stochastic Model B

APPENDIX 4
TABLE 4
MAIN 12 -MONTH PERIOD, SUB-HARMONICS, AND THE EXPLAINED VARIANCE OF THE SIGNIFICANT HARMONICS OF THE MONTHLY RUNOFF VARIA BLE
(Explanations of the columns are given at the end of the table)

TABLE 4 -Continued

TABLE 4-Continued

TABLE 4 - Continued

Column	Explanation
1-3	Same as Table 3, except that X_{t} is equal to logarithms of monthly flows
4	Same as Table 3 except that the series e_{t} is resulting from removal of Markov first order dependence
5-8	Same as Table 3
9	Same as Table 3
10	Results of fitting Markov I Log Models, and Models A and B respectively; A means model is accepted on 95 per cent level and R means model is rejected on 95 per cent level
11-20	Same as Table 3 except constants are for Markov I Log Model B
21	First correlation coefficient, r_{1} used as best estimates of P_{1} for Markov Model
22	Number of constants used to fit Model B

[^0]: * Former graduate student at Colorado State University. ** Professor-in-Charge of the Hydrology Program, Civil Engr. Dept., Colorado State University.

[^1]: * The use of k as the symvol for lags (as denoted in other studies) is replaced here by the symbol L, leaving the symbol k for the subharmonics of the main cycle.

