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ABSTRACT 

The design of waste treatment facilities and the establishment of environmentally-acceptable effluent 
standards for rivers require that the dilution attributabl e to natural turbulence be estimated for particular 
rivers and particular disposal sites. Dilution of neutrally-buoyant liquid wastes is achieved by an interaction 
between turbulent diffusion and differential convection; the overall process is referred to as dispersion. The 
primary objective of this research is to develop an efficient computational model for the prediction of time
dependent mass dispersion in natural streams; a secondary objective is experimentally to investigate the varia
tion of transverse diffusivity in a triangular laboratory channel. 

The basis of the computational model is a partial differential equation expressing conservation of 
pollut ant mass i n a control volume . Analytical solutions to this so-called dispersion equation are limited to 
idealized river geometries and simplified pollutant source configurations. The computational model developed in 
this study is based on a finite-difference solution to the depth-averaged dispersion equation; the model may be 
used to predict depth-averaged concentrations r esulting from a pollutant source of arbitrary time and space con
figuration in a stream of arbitrary geometry and nonuniform but steady flow. Probl ems of numerical instabi l ity 
and damping in the convective stage of the computation are avoided through the use of a half- implicit and half
explicit second order differencing scheme for the space derivative; numerical dispersion cannot be eliminated, 
but may be minimized by judicious choice of time and distance steps. Transverse and longitudinal turbulent dif
fusion are computed by a second order space-centered implicit scheme . The overal l result is a computational 
model which is unconditionally stable and whose accuracy is not critically dependent on the magnitudes of time 
and distance steps . 

The computational model requires a priori knowledge of the river geometr y, velocity distributions, and 
turbulent diffusivities. The river geometry is generally known, and velocities are either known or can be esti
mated . But at the present time there is little theoretical or experimental basis for the estimation of the mag
nitude and distribution of diffusivities in natural channels; yet knowledge of the transverse diffusivity in an 
essential requirement in predicting dispersion . The triangular-channel tests performed in this study indicate 
that the transverse diffusivity is constant within a cross section; this suggests an interaction between bed 
shear and transverse shear, the relative contributions of whi ch cannot yet be determined . 

The applicability of the computational model is demonstrated through simulation of dispersion experiments 
reported for the Missouri River and Clinch River. Model predictions are in good agreement with observed concen
trations resulting from continuous point source and instantaneous plane source injections. 

viii 



INTRODUCTION 

Recent awareness of the environmental fragility 
of river systems has brought out the need to make de
tailed estimates of a river'i waste assimilation ca
pacity. Wildlife ecologists, utilizing specialized 
input from the fields of biology, botany, zoology, 
etc., can specify the maximum pollutant concentration 
levels and durations to which various aquatic organ
isms may be exposed. The engineer must then design 
waste treatment facilities, submerged outfalls, or 
other water purification systems which will achieve 
sufficient reduction of pollutant levels to meet the 
do~~stream water quality standards. Alternatively, 
the engineer may be required to show that, in the 
event of accidental spillage of toxic material into a 
river, sufficient dilution will occur to minimize dam
age to the aquatic envir onment, and pose no threat to 
downstream municipal users. These problems require an 
understanding of three general processes: initial 
dilution of an outfall jet, chemical and biological 
decay of nonconservative pollutants, and turbulent 
mixing. This work is concerned only with the third 
process , i.e., the turbulent mixing of a conservative ~ 
pollutant in natural river flow. Furthermore, the 
study is limited to neutrally- buoyant pollutants, 
although the methods described could be extended to 
predict the mixing of sediments with finite fall 
velocity . 

Mixing in rivers is described by the terms 
diffusion and dispersion, which are often used inter
changeably although they connote distinctly different 
processes. In this study the two terms are used as 
suggested by Holley (1969); diffusion is the trans
port of mass by either molecular diffusion or by 
deviations of instantaneous turbulent velocity f luc
tuations from the local time average velocity. Dis
persion, on the other hand, is the spreading out of a 
mass of pollutant caused by deviations of local time
averaged velocities from the depth-averaged or cross
sectional averaged velocity, i.e . , due to differential 
convection . Dispersion is the more general of the two 
terms, as it is understood to include the effects of 
diffusion, which transfers mass between zones of vary
ing velocity, and thus reduces differential 
convection. 
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Predictions of mixing in turbulent flow fields 
are based to a large extent on .solutions to a partial 
differential equati on which. states mathematically that 
mass of pollutant, or tracer, must be preserved. 
Analytical solutions to the equation have been ob
tained for various injection configurations , but are 
generally limited to cases of pure diffusion , i.e., to 
flows having no gradients of l ongitudinal velocity. 
The few solutions for true dispersion are limited to 
special velocity gradients, unbounded fluids, and/or 
longitudinally uniform conditions. Predictions of 
mixing in streams of arbitrary geometry can be ob
tained only through numerical solutions of the mass 
conservation equation. Such solutions have been 
developed for time-dependent mixing in well-mixed 
estuaries , and for steady-state mixing in rivers. The 
pr imary purpose of this study is to develop a finite 
difference model of both time-dependent and steady
state mixing i n rivers of arbitrary geometry. 

Both numerical and analytical models of 
d\spersion which are based on the mass conservation 
equation require prior knowledge of the turbulent dif
fusivities; yet the diffusivities have little basis in 
theory, and their spatial variation in natural 
channels is generally not known. Numerical models do 
not require that diffusivities be constant , thus open
ing up a need for improved information on not only the 
magnitude, but also the variation of diffusivity from 
point to point in a stream. A secondary purpose of 
this investigation is experimentally to determine the 
transverse variation of transverse diffusivity in a 
nonrectangular channel. 

This paper consists of three major elements. 
Part I outl ines some of the available methods for 
prediction of dispersion in streams and describes the 
development of the numerical model. Part II describes 
t he theoretical basis of the transverse diffusivity, 
and presents the results and analysis of limited 
experiment s conducted in a triangular laboratory chan
nel. Part III consists of the application of the 
numerical model and experimental results to reproduce 
the data from field experiments in two rivers. 

,~, 



Part I 

TWO DIMENSIONAL FINITE DIFFERENCE MODEL OF UNSTEADY, 

NEUTRALLY-BUOYANT MASS DISPERSION IN NONUNIFORM CHANNEL FLOW 

Chapter I 

PREDICTION OF MASS DISPERSION IN OPEN CHANNEL FLOW 

1.1 Mass Conservation Equation 

The prediction of mass dispersion in fluids is 
based on solutions to an equation which states mathe
matically that any imbalance between the transport of 
tracer mass into and out of a control volume of 
solute must result in an accumulation of tracer mass 
within that control volume. The tracer mass transport 
across the boundaries of the control volume can be 
either convective (related to the gross movement of 
the fluid, including turbulence), or diffusive (re
lated to the exchange of tracer particles between ad
jacent layers of fluid at a molecular scale) . Sayre 
(1968) has expressed the mass balance in a control 
volume in steady flow as 

1 aw I I y at= - Cu•n dS + E VC •n dS 
5 -- S m 

(1.1) 

where 

y • weight of solute per unit volume, 
W = weight of tracer mass in the control volume, 
C • instantaneous concentration by weight of the 

tracer, 
~ instantaneou.s velocity vector, 
n • unit vector normal to the surface of the con

trol volume, 
Em= molecular diffusivity, 

V • gradient vector operator, 
S = surface of the control volume, and 
t • time. 

. w Express1ng - as 
y 

I CdV, where V is the control 
v 

volume, and using the divergence theorem to express 
the surface integrals as volume integrals, Eq. 1.1 be
comes 

I .!£ dv = - I v • cc~ dV + I E v2c dV 
v at v v m 

(1.2) 

Now this expression must hold for any control volume, 
including one so small that the integrands may be 
considered to be constant; therefore the integrals may 
be dropped. Furthermore, from incompressible continu
ity , V•u • 0. Thus Eq. 1.2 may be written 

(1. 3) 

or, in tensor notation, 

(1. 4) 

Equation 1.4 is quite general. In laminar flow, 
where the instantaneous velocities u, v, and w might 
be known for all times and at all positions in the 
flow field, Eq. 1.4 could be solved analytically or 
numerically to yield a complete concentration distri
bution in space and time, given the appropriate ini
tial and boundary conditions. But most flows are 
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turbulent, and the variation of local velocities ~ith 
space and time is exceedingly difficult to predict, 
even in simplified geometries. Thus Eq. 1.4 must be 
further modified for application to turbulent mixing 
problems. 

As in the study of the dynamics of turbulent flow, 
the application of Reynolds' rules of averaging to the 
kinematic mixing process is useful. Considering the 
concentration and velocities to be composed of time
averaged and fluctuating components, u. = u. + ul, 

1 1 l 
etc., substituting these into Eq. 1.4, and averaging 
it over a time period which is long with respect to 
the turbulent fluctuations but short with respect to 

· the• gross phenomenon being studied, Eq. 1. 4 becomes 

ac ac a ac -
-+ u --= -- (E --- u!C') at i axi axi m axi 1 

where the overbars denote time averages. 

(1. 5) 

At this stage of the development two critical 
assumptions are made: 

(a} The time-averaged mass transport in the ith 
direction due to turbulent convection , uiCi , can be 

represented as the product of a turbulent diffusivity, 
and the concentration gradient in the ith direction. 
This is tantamount to assuming a direct analogy be
tween molecular and turbulent diffusion. 

~) The mass transport due to molecular 
diffusion is much less than that due to turbulent 
fluctuations , and can be absorbed in the turbulent 
diffusivity. 

Employing these assumptions, Eq. 1.5 may be written 

ac ac _a_ (f: !£_) 
3t + ui ax:-= ax. i ax. 

1 1 1 

where the overbars have been dropped and £. 
turbulent diffusivity in the ith direction. 1 

(1.6) 

is the 

Equation 1.6 is referred to as the turbulent 
conservation of mass , or dispersion, equation. It 
describes turbulent dispersion, i.e. , the process by 
which a tracer mass is dispersed within a flow field 
by the interaction between turbulent diffusion, which 
t ends to mix adjacent layers, and differential convec
tion, which tends to move the layers one with respect 
to another. Solutions to Eq. 1.6, based on a known or 
assumed steady velocity field and known diffusivities 
£.,yield estimates of the complete concentration dis-

1 
tribution at all times for specified initial and 
boundary conditions. It must be recognized, how~ver, 
that concentration distributions predicted from 
solutions to Eq . 1. 6 are valid only to the extent that 
the diffusivities are known and that assumptions (a) 
and ~) above are justified. 



1.2 Solutions for Instantaneous Point Sources 

The instantaneous point source is of only 
theoretical interest in a practical sense, as actual 
pollutant spills are never instantaneous, but are 
spread over some finite time ihterval. Nonetheless, 
analytical solutions to Eq. 1.6 for instantaneous 
sources can be superposed in space and/or time to 
model noninstantaneous sources of finite extent. 

Csanady (1973) considered the turbulent diffusion 
of an instantaneous source of tracer solution of con
centration C and volume V in an unbounded fluid 

0 0 

having a constant velocity U in the x-direct'ion, 
with v = w = 0. Through analogy with molecular dif
fusion, and assuming mutually independent diffusion in 
the x, y , and z-directions, he presented the following 
concentration distribution: 

C(x,y,z,t) " 
c v 

0 0 
3/2 

(21T) a a a 
X y Z 

2 
• exp{ _ (x-Ut) 

2a 2 
X 

2 2 
2fz- 2~ 2} 

y z 
(1 . 7) 

Here 2 2 d ~2 h . f ax' oy , an vz are t e var1ances o the con-

centration distribution in the x, y, and z-directions. 
The critical link between Eq. 1.7, which is a state
ment of analogy with molecular diffusion, and Eq. 1.6, 
which is a statement of conservation of mass of trac
er, is developed by Csanady (1973) from the more gene
ral analysis by Batchelor (1949). By assuming the 
diffusivities to be constant in space (homogeneous 
turbulence), then taking the appropriate derivatives 
of Eq. 1.7 for substitution into Eq. 1.6, it may be 
shown that 

2 = zc t (1. Sa) 0 
X X 

2 ze t (1. 8b) a y y 

2 
2!: t (1. Be) oz c 

z 

Taylor (1921) formulated a rigorous theory relating 
the variances of a diffusing cloud to the Lagrangian 
statisti cal properties of the turbulence. These prop
erties are generally unknown and difficult to measure; 
but for diffusion times which are large compared to 
the time scale of the turbulent eddies, Taylor's re
sults al so reduce to Eq. 1.8, where the diffusivities 
are the product of the Lagrangian mean square velocity 
fluctuation and the Lagrangian integral time scale. 
Using these results, Eq. 1.7 becomes 

2 
• exp{ _ (x-Ut) 

4& t 
X 

2 2 
- _L_- _z_} (1. 9) 

4&/ 4ezt 

The concentration distribution is now expressed in 
terms of the turbulent diffusivities which appear in 
Eq. 1.6. In fact, Eq. 1.6 may be written for constant 
diffusivities and v a w = 0 as 

3 

Sayre (1973) has shown that Eq. 1.9 is also a solution 
to Eq. 1.10 for an instantaneous· point source in an 
unbounded fluid . 

For computational purposes , it is not necessary 
to relate the concentration distribution variances to 
the turbulent diffusivities; once the assumption of 
gradient-type turbulent mixing is made, Eq . 1.9 can 
be adopted as a satisfactory solution to Eq. 1.10 for 
the instantaneous point source. But the gradient
type turbulent mixing assumption is given a more f or
mal basis by the analogy with molecular gradient 
diffusion, and by Taylor ' s fundamental relationship 
between the Lagrangian properties of the turbulence, 
the variances, and the turbulent diffusivities. 

Equation 1.9 is applicable only to mixing in an 
unbounded fluid. This condition may be approximated 
by injection from an elevated point source in the 
atwosphere, (such as a smokestack) , but is clearly in
appropriate when applied to mixing in rivers. Most 
rivers are much wider than they are deep, and the 
proximity of the bed and/or water surface to a sub
merged source invalidates the unbounded fluid assump
tion. Cleary and Adrian (19.73) have obtained a solu
tion to Eq. 1.10 for boundary conditions of no tracer 
transport across the bed, banks, or water surface. 
The series solution is obtained by an integral trans
form method, and assumes uniform, unidirectional flow 
in a rectangular cross section with known and constant 
diffusivities. The resulting expression for 
C(x,y,z,t), applicable to any point source location 
and given in terms of a convergent infinite series. 
is not presented here due to its complexity. The 
authors claim that their solution yields results 
identical to those obtained by Holley (1972) for a 
particular source location, but using virtual image 
sources to satisfy the zero-transpor~ boundary condi
tions. Cleary and Adrian have also obtained a simpler 
two-dimensional solution, applicable to mixing from an 
instantaneous vertical line source in a rectangular, 
uniform channel. 

The solutions just described require a constant 
downstream velocity U in the entire flow field. 
Carter and Okubo (1965) obtained a solution to Eq. 1. 6 
which allows the velocity u to vary within the cross 
section, although in a special way. In their so
called uniform shear flow, Eq . 1.6 is written 

ac + (U + r 1 + r zz) 
ac 

at ax 

£ 
a2c 

~ 
a2c 1: 

a2c (1.11) -:--2 + --+ ;7 X ax Y ay2 z 

where as before v ~ w = 0, the diffusivities are 
assumed not to vary within the cross section, and ry 

and rz are the vertical and transverse gradients of 

longitudinal velocity, respectively. For an instan
taneous release of a tracer volume V and concentra-o 
tion C 

0 
at the coordinate origin of an unbounded 

fluid, Carter and Okubo 
tion to Eq. 1.11: 

obtained th~ following solu-

' ·F 



• exp -

{1.12) 

2 
where 4 • 

Note that when u • U, i.e., ry • rt • 0, Eq. 1.12 

reduces to Eq. 1.9, as expected. 

1.3 The Superposition Principle 

The three-dimensional, instantaneous point source 
solutions are limited to idealized stream geometries, 
unidirectional flow, and constant diffusivities. 
Nonetheless , predictions can be brought one step 
closer t o reality by use of the superposition princi
ple, by which sources of arbitrary time and space ex
tent can be modeled using the three- dimensional, 
instantaneous point source solution as a building 
block. The mathematical basis of superposition is the 
convolut ion integral, which expresses the desired 
concentr at ion distribution as the sum of t he distribu
tions resulting from an infinite superposition of 
instantaneous point sources. For the most general 
case, Sayre (1973) has expressed the convolution as 

t • B h 
cl (x,y' z, t) f f f f f(x-x , y-y , z-z , t-t

0
) 

0 -· 0 0 0 0 0 

where 

c
1 

• convoluted concentration distribution, 

f normalized instantaneous point source 
concentration distribution, 

C = the source concentration distribution , 
B channel width, and 
h a local channel depth. 

The distribution f is normalized by C
0

V
0

. The 

closed-form integration of Eq. 1.13 is generally not 
possible, but numerical integration may be used to 
predict c

1
(x,y,z,t). The most serious deficiency of 

Eq. 1.13 as a predictive tool is its limitation to the 
idealized conditions demanded by the function f, 
usually an unbounded fluid , unidirectional velocity, 
and constant diffusivities. 

Csanady {1973) describes the application of the 
superposition principle to model a continuous point 
source in an unbounded, three-dimensional flow field 
w1th constant unidirectional velocity U. Considering 
Eq. 1.13, f is given by 

f = C(x,y,z,t) 
c v 

0 0 

wher e C(x, y, z,t) is given by Eq. 1.7. For constant 
lnj ection of a tracer solution of concentrati on C0 

4 

at a volumetric f l ow rat e q
0 

at x
0 

~ y
0 

= z
0 Eq. 1.13 becomes 

C(x,y,z) 

• exp 

2 
- (x-Ut ) 

{ 2a 2° 
X 

2 2 
- ..'f._ - _z_ } dt 

202 2a 2 o y z 

0, 

(1.14) 

where the spatial integrations are not needed for a 
point source, the superposition being in time only. 
Frenkiel (1953) integrated Eq. 1.14 and obtained, 
after assuming that the longitudinal diffusion is much 
less important than the vertical or transverse dif
fusion, 

(1.15) 

Usdng the asymptotic results of Eq. 1.8, and instead 
of diffusion t ime using x/U, 

(1.16) 

Recapitulating, Eq. 1.16 is the concentration distri
bution resulting from continuous injection of tracer 
at the origin of coordinates in an unbounded fluid 
having constant unidirectional velocity U and 
negligible longitudinal diffusivity. 

1. 4 The Two-Dimensional , Depth-Averaged ~lass 
Conservation Equation 

For many problems of mixing in natural rivers the 
concentration field is adequately described by the 
depth-averaged values of concentration, rather than 
point values. In terms of analysis, thi s removes the 
vertical coordinate and the vertical diffusivity from 
the problem, consequently simplifying the governing 
equations. The two-dimensional mass conservation 
equation may be obtained by integrating the three
dimensional version, Eq. 1.6, over the depth of flow . 
It is convenient first to rewrite Eq. 1.6 without the 
simplifying appli cation of i ncompressible continuity; 
since 

it may be added to the left side of Eq. 1.6. Then, 
combining the space derivatives on the left side and 
writing the expression in Cartesian notation, 

~~ + :x (uC) + ~Y (vC) + ~z (wC) 

{1.17)' 

Referring to the definition sketch, Fig. 1.1, 
int egrate Eq. 1.17 wit h respect to y fr om a to b: 



b ac b a b a b a f at dy + j ax (uC) dy + f a (vC) dy + f az (wC) dy 
a a a Y a 

b a ac b a ac • b a ac f ax (~x ax) dy + f - (E -} dy + f - (~ "z) dy · a a ay y ay a az z a 

(1.18) 

Apply Leibniz ' s Theorem for differentiation of an 
integral: 

b ac a b ab a f at dy + ax f uC dy - (uC) lb - + (uC) I ~ 
a a ax a oX 

a b • az f we dy 
a 

.. !__ b/ ~ ~ d (~ ac) I ab c~ ac) I aa 
ax X ax y - X ax b ax + X ax a ax 

a 

(1.19) 
b 

Recognizing that, for any integrand ~. J ~ dy = h~, 
a 

where the overbar now denotes a depth average, 
Eq. 1.19 becomes after some rearrangement 

~ a ~ a - a ~ a ~ h- + - (huCJ + - (hwC) = - (he: -) +- (M -) at ax az ax x ax az z az 

(1. 20) 

The bracketed t erms on the right side of Eq . 1.20 may 
be eliminated as follows: at any boundary, i .e., 
either the channel bed or the wat er surface, the water 
velocity and the diffusive tracer transport can only 
be parallel to the boundary. This implies that the 
component of either quantity projected norm.al t o the 
surface must vanish. In vector terms , 

U n = T • n = 0 

where 

~ the normal vector to the bed or water 
surface, and 

T = the diffusive tracer transport vector. 

(1 . 21) 

Noting that the normal vector to the water surface is 
~'" 3b/ax !. - j_ + 3b/3z ~. (and similarly for the 

bed), recalling that 
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and U = ui + vi+ w~, the bracketed terms of Eq. 1. 20 

are recognized as, respectively, (!!,·!!)b' - (!!,·!!)a' 

C!:!!) b, and (!_·!!)a, each of which must vanish accord

ing to Eq. 1.21. 

Equation 1.20 is still phrased in terms of the 
depth- average of products, such as uC, wC, etc; these 
must be simplified before solutions can be considered. 
First, express each quantity as the sum of a depth
averaged value and local devi ation from it, such as 

where the superscript y denotes the local deviation. 
(It is important to note that these quantities are 
already time averages; depth-averaging alone is being 
performed here.) Then a quantity such as uC be
comes, by Reynolds ' Rules of Averaging, 

Applying similar reduction~ to the remaining terms, 
Eq. 1.20 may be written 

ac a -- a -,.,. 
h at + ax (huC) + E (hWCJ !__ ( -huY cY + hE ac) 

ax x ax 

(1. 22) 

The final task is to express the transport terms on 
the right side of Eq. 1.22 as simple products of 
diffusivities and concentration gradients. The justi
fication for so doing is discussed in detail by Holley 
(1971). The arguments are that (a) the convective 
transport due to the velocity- concentration differ
ences over the depth can successfully be approximated 
as a gradient diffusion process (see, for example, 
Fischer, 1967), and (b) in natural channels mixing 
generally is compl ete over the depth, so that the 

cY quantities ~relatively small. Then the effects 

of uYcY and ~cY may be considered to be absorbed 
i n gradient transport terms. Equation 1.22 finally 
becomes 

h ~~ + ;x (huC) + ~z (hwC) = ;x (he:x ~;) + ~z (he:z ;~) 

(1. 23) 

where the depth-average overbars have been deleted, 
and e: and e: include transport due to both turbu-

x y 
lent fluctuations and vertical variations of longitu
dinal and transverse velocity. The depth-averaged, 
two-dimensional mass conservation equation, Eq. 1.23, 
serves as the basis of a variety of analytical and 
numerical models of mixing in natural streams. 



1.5 TWo-Dimensional Mixing from an Instantaneous 
Vertical Line Source 

For a fluid of constant unidirectional velocity 
U, constant diffusivities, and a constant depth H, 
Eq. 1. 23 becomes ,· 

(1. 24) 

For instantaneous vertical line source injection of 
tracer; Sayre and Chang (1968) present the following 
solution to Eq. 1.24: 

c v 2 
C(x,z.t) • __ ..;:o_o:::_...,...,,.,.. • exp {- (x-Ut) 

4wHt(& & )1/2 4txt 
X Z 

2 
- _z_} 

4£ t z 

(1. 25) 

where. as before, V
0 

is the total volume of solution 

of concentration C
0 

injected at the origin of coor

dinates, and the solution is applicable only to an 
unbounded fluid. 

Monin and Yaglom (1971) obtained a similar 
solution, but in an unbounded so-called uniform shear 
flow, where the velocity u varies linearly with z . 
For this case Eq. 1.24 becomes 

where the uniform shear r z 
and U

0 
is the velocity at 

C(x, z,t) 

where 

(1.26) 

is defined as before, 

z • 0. The solution is 

2 z 
+ 4t t} 

z 
(1. 27) 

1.6 Two-Dimensional Mixing from a Continuous Line 
Source 

As in the case of three-dimensional m1x1ng, the 
superposition principle may be used to model continu
ous injection for two-dimensional line sources. Sayre 
and Chang (1968) integrated Eq. 1.25 over time to 
obtain 

C(x,z) 

(1. 28) 

where the fluid is again assumed to be laterally 
unbounded, and K

0
[ ) is a modified Bessel function 

at the second kind, order zero. When &x is rela

tively unimportant, as in the case in most natural 
rivers, Eq. 1.28 converges to 
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( 1. 29) 

A similar application of superposition can be 
used to model a continuous line source in a uniform 
shear velocity field , i.e., using an expression such 
as Eq. 1.27. But the resulting expression generally 
cannot be integrated in closed form, requiring the 
use of numerical integration techniques (Okubo and 
J<arweit, 1969). 

1.7 The Method of Images 

With the exception of the recent solution 
published by Cleary and Adrian (1973), all of the mass 
conservation equation solutions discussed up to this 
point have assumed an unbounded fluid. Thus the solu
tions presented are valid only in the region down
stream from the injection point before any tracer con
tacts the bed or banks (or simply the banks in the 
depth-averaged, two-dimensional cases). This restric
tion is overcome by use of the method of images, 
through which artificial, or mirror image, sources 
are used to satisfy the required boundary conditions . 
For example, the boundary condition of no tracer 
transport through the bank can be constructed by 
adding a source of equal strength equidistant from 
the bank, but on the opposite, or dry side. Thus 
the concentrations immediately on either side of the 
bank are the same , and consequently there can be no 
diffusive tracer transport across the bank. This 
procedure can also be thought of as a reflection. 
whereby that portion of the comput ed tracer distribu
tion which would fall outside the channel is assumed 
to be reflected back into the channel, and is added 
to the nonreflected concentration. Of course each 
such mirror image source requires another source 
reflected across the opposite bank so that in princi
ple an infinite number of image sources are required . 
Sayre and Chang (1968) have generalized this require
ment as follows: let the actual continuous source be 
located a distance z = t from the coordinate origin 
at the centerline of the channel. Then denoting the 
desired concentration distribution by c

1
, 

.. 
cl (x,z) • C(x,z-t) + L [C(x,nB- t+(-l)nz) 

n=l 

where 

B ~ channel width, 

(1. 30) 

n • the number of the reflection cycle, and 
C(x,z) • the appropriate solution for uniform 

conditions in an unbounded fluid, (e.g., 
Eq. 1. 29). 

Sayre (1973) has indicated that the summation need 
only be carried out to n • 4 or n .. 5. 

An analytic solution to Eq. 1.23 which allows for 
the nonrectangular geometry of a natural channel has 
been developed by Yotsukura and Cobb (1972) using the 
method of images. For the case of continuous injec
tion of tracer from a vertical line source into a 
stream where the depth, velocity, and diffusivities 
are allowed to vary with transverse position but not 
with longitudinal distance, Eq . 1.23 becomes 



hu ac = ~ (he: ac) 
ax az z az (1. 31) 

where the longitudinal diffusivity has been assumed to 
be relatively unimportant, and deleted accordingly. 
As it stands, Eq. 1. 31 is not in. a form for which 
analytical solutiQnS exist. Yotsukura and Cobb define 
a new independent variable q to replace z, 

z 
q = f hu dz; 

0 
(1. 32) 

q represents the cumulative partial discharge 
measured from tho left bank. Introducing q in place 
of z in Eq. 1.31, they obtain 

(1. 33) 

which still cannot be solved analytically due to the 
q-dependence of the so-cal led diffusion factor, 

ezh
2
u. Therefor~ Yotsukura and Cobb hypothesize that 

a solution to Eq . 1.33 can be approximated by a solu
tion to 

ac = ~ (A ac) 
ax aq aq (1. 34) 

where A is the cross-sectional average value of the 
diffusion factor. They show empirically that for 
tracer injection near the centerline of the channel, 
the use of a constant diffusion factor should be 
acceptable. 

A solution to Eq. 1.34 is 

qoCO 2 
C(x,q) = • exp - {(q + D) } (1.35) 

2(vxA)l/2 4xA 

where D is a constant of integration. Yotsukura and 
Cobb use the method of images to satisfy the boundary 
condition of no tracer transport across the banks; 
superposition in space is then used to model a contin
uous vertical line source of finite width . The final 
general solution is 

1 "' a(q' +2n-q') 
C' (a,q' ) • __ ;:...__ [ L {erf --=S:.::2---

2(q~2-q~1) n=O 12 

a(q~1+2n-q') a(q~2+2n+q') erf -...::..:=----- + erf -...:!..:=-----
12 .fi 

a(q' +2n+q') 
- erf 51 

} + 
.fi 

"' a(q ' -2n-q') L {erf _..::.s=-2 __ _ 
n"l 12 

a(q' -2n-q') 
erf sl 

a(q~2-2n+q') + erf -...::..:=-----
.fi 12 

a(q' 1-2n+q') 
- erf s } ] 

.fi 
(1. 36) 
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where 

2 2 a = Q /2xA, 
Q ,. the total discharge, 

q ' q/Q 

C' CQ/C
0

q
0 

q~ 1 ,q~2 =the left and right hand l imits of the 
distributed line source, and 

erf = the error function as tabulated in 
mathematical handbooks. 

Recapitulating, Eq. 1.36 predicts the concentration 
distribution resulting from continuous injection of 
tracer as a distributed vertical line source into a 
longitudinally-uniform stream in which the velocity, 
depth, and diffusivity may vary transversely, although 

2 the product ezh u is constant. This solution is 

more applicable to the computation of concentrations 
i n natural rivers than any other two-dimensional 
analytic solution obtained to date (1975), though it 
is still limited to longitudinally-uniform conditions 
and continuous injection. 

' 
.. 

1.8 One-Dimensional Mixing from an Instantaneous 
Plane Source 

Fundamental to the mathematical description of 
dispersion in channels is the assumption that tracer 
transport due not only to temporal, but also to 
spatial variations of velocity and concentration can 
be modeled as a gradient mixing process. This con
cept is employed in the derivation of Eq. 1.6, where 

the time-averaged turbulent transport uiC' is 

replaced by ~. actax., and again in the derivation of 
~ ~ y y 

Eq . 1.23, where the depth-averaged transport uiC 

and the turbulent diffusion l. actax. are replaced 
l l 

by E:i actax. . The general approach was fi~st 
l . 

employed in connection with the modeling of instan
taneous plane source injection. Taylor (1954) hypoth
esized that, in turbulent flow through a pipe, the 
mixing of a tracer which has spread over the entire 
cross section can be described by a one-dimensional 
equivalent of Eq. 1.6, 

(1. 37) 

where u and C are the cross-sectional average 
a a 

values of velocity and concentration, respectively, 
and K is the overall longitudinal dispersion coef-

x 
ficient, 
sivity. 
stant U 

not to be confused with the turbulent diffu
A solution to Eq. 1.37 for the case of con

is the normal or Gaussian distribution, 
a 

C (x,t) a 

c v 
oo • exp{-

2A(v!K t)l/2 
X 

2 
(x-U t) 

4K\ } 
X 

(1.38) 

is the total volume of dispersant of con-where V
0 

centration C
0 

distributed over the cross section of 



area A. An important property of the one-dimensional , 
or Fickian, diffusion process is that the longitudinal 
varianc e of the cross-sectional average concentration , 

2 t . 1" 1 f . h d oa' mus 1ncrease 1near y at a rate o tw1ce t e is-

persian coefficient, or •• 

(1. 39) 

It is this property which makes it possible to evalu
ate Kx on the basis of plane-source injection exper-

iments i n natural streams . Attempts have been made, 
however, to evaluate K analytically. For turbulent 

X 
flow in a pipe, Taylor (1954) obtained 

where 

a
0 

= the radius of the pipe, and 

u. • the shear velocity. 

(1.40) 

Elder (1959) considered one-dimensional mixing in an 
infinitely-wide open channel, and obtained 

Kx = 5.9 H U* (1. 41) 

Elder's result considered only vertical variations in 
longitudinal velocit y; Fischer (1966), recognizing 
that it is transverse variations in longitudinal ve
locity which contribute most significantly to longitu
dinal dispersion, obtained 

K 
X 

1 8 " z 1 z h (z) " 
-A I u(z)h(z) I ~I I u(z) dy dz dz dz 

0 0 CzlllZJ 0 0 

(1. 42) 

where 

" u(z) = the local deviation of longitudinal velocity 
from the cross-sectional average , and 

h(z) • local depth . 

Equation 1.38, along with Eq. 1. 42, provides a useful 
method of comput.i ng concentration distr i butions re
sulting from an instantaneous plane source when the 
flow is longitudinally uniform and the transverse dif
fusivity is known. Fischer has also shown that 
Eq. 1.38 is applicable to the mixing resulting from an 
instantaneous source of any spatial configuration, but 
only downstream of the point where the tracer has 
spread over the entire cross section. In this case, 
the superposition principle may be used to route the 
observed distribution to successive downstream loca
tions if Kx is known or computed. 

A more rigorous treatment of the instantaneous 
plane source injection problem was introduced by Aris 
(1956) and further developed by Sayre (1968). The so
called moment technique involves the transformation of 
Eq. 1.6 into partial differential equations for the 
various longitudinal moments of the concentration dis
tribution. Assuming that longitudinal diffusion is 
inconsequential, Sayre obtained numerical solutions 
for the first three moments, and by fitting statisti
cal distributions to them was able t o reconstr uct t he 
concentration distributions. Sayre ' s work was unique 
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in its applicability to the dispersion of sediment 
particles of specified fall velocity . 

A recent thorough analysis of plane source 
injection data from natural streams performed by 
Nordin and Sabolt (1973) has shown that an assumption 
of one-dimensional mixing with a constant diffusivity 
is usually not justified. The general approach was 
originally suggested for use in natural rivers more 
on the basis of the convenience of a Gaussian solution 
than on the basis of any mixing theory. The present 
and future development of more r igorous numerical 
techniques for predicting dispersion with few restric
tive assumptions precludes the need for much further 
use of the one-dimensional mixing concept. 

1.9 Numerical Model of Two-Dimensional Mixin from a 
Cont1nuous L1ne ource in a Natural Channel 

All of the analytical solutions discussed thus 
far have been l imited in their gener alit y due to math
ematical restrictions necessary for a solution . All 
require longitudinally uniform flow, and all but 
Eq. 1.36 require a uniform, unbounded fluid, a rectan
gular cross section, or plane source injection. 
Therefore a numerical solution, allowing for trans
verse and longitudinal variations of velocity , depth, 
and diffusivity, is worthy of consideration. 
Yotsukura et al. (1970) developed a numerical model 
for two-dimensional mixing, with specific application 
to the Missouri River between Sioux City, Iowa and 
Plattsmouth, Nebraska. Equation 1.23 was written for 
a continuous vertical line source injection as 

(1-.43) 

where the transverse velocity, w, and the longitudinal 
diffusivity, t , have been assumed to be zero. The 

X 
stream is divided into stream tubes , each of which has 
variable width so as to maintain constant discharge in 
each, while r eproducing the known depths and veloci
ties at each cross section. Equation 1.43 is t~en 
written in discrete form; denoting longit udinal compu
tational points by the subscript I, and stream tubes 
(i.e., transverse computational points) by J, 
Eq. 1. 43 is written 

[(huC)I+l 3-(huC) 1 3 ] 

BI,J xl+l - XI 

C -C 
(ht ) ( I , J +l I,J) 

where 

xi,J 

zi , J 

(hcz)I;J,J+l • 

B' • I,J 

z I;J ,J+l zi,J+l-zi,J 

(1. 44) 

the longitudinal coordinate of stream 
tube J at point I, 
the transverse coordinate of the cen
ter of stream tube J at point I, 
the depth-diffusivity product at t he 
interface between tubes J and J+l, 
etc., and 
the width of stream tube J at point 
I. 

The solution to Eq . 1.44 proceeds as follows: at the ' 
upstream boundary the input concentration is known in 
each stream tube, cl,J' The values of c2,J are then 

computed directly from Eq. 1.44, one tube at a time, 
with special consideration given to the tubes at 



either bank, where there can be no mass transfer. The 
solution is direct, requiring only a single comput a
tion for each grid point,· and allows the depth, veloc
ity, and diffusivity to vary with transverse position. 
In their successful application of the model to t he 
Missouri River, Yotsukura et al..·asswned that the dif
fusivity € was a constant within each cross 
section. z 

1.10 The Use of Physical Models for the Prediction of 
Dispersion in Natural Streams 

Physical models of natural waterways are 
especially useful for the study of hydraulic phenomena 
when the irregular natural geometry precludes mathe
matical analysis . As shown in preceding sections, 
most closed-form mathematical analysis of dispersion 
is applicable only to uniform stream geometries and 
artificial velocity fields. Consequently it is tempt
ing to consider the use of physical models for study
ing dispersion in natural streams, especially when 
neither the tracer injection nor the water flow can be 
considered steady state. But physical models usually 
are incapable of reproducing the prototype dispersion 
process faithfully. 

There are two features of physical models which 
can effectively destroy their value in predicting dis
persion. First, the use of artificial roughness ele
ments (strips or cleats) to compensate for the rela
tively steep model slopes induces excessive turbulence 
within the flow. On the other hand, boundary- generat
ed turbulence is primarily responsible for the diffu
sion in streams; the additional turbulence induced in 
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a physical model accelerates the turbulent diffusion 
relative to the prototype. Second, restrictions of 
space and funds require that most physical models be 
distorted relative to the prototype; an exaggerated 
vertical dimension allows sufficient depth to repro
duce the phenomenon being studied without requiring 
excessive stream widths and lengths. This distortion 
can be suitably accounted for in the study of flood 
stages , velocity fields, or other gross hydraulic 
features. But Fischer and Holley (1971) have shown 
that, considering one-dimensional, plane source dis
persion in steady flow, a distorted model will produce 
longitudinal dispersion which is excessively dominated 
by vertical velocity gradients, and insufficiently 
responsive to transverse velocity gradients. Fischer 
(1966) has shown just the opposite tendencies to be 
characteristic of natural streams, where transverse 
velocity gradients dominate the mixing process. 
Holley and Karelse (1973) have present ed a similar 
analysis for two-dimensional mixing from a continuous 
vertical line source, and concluded that, in a dis
torted model, the transverse diffusion is too great 
relative to the prototype. The analytical conclusion 
was further supported by direct comparisons of model 
and prototype mixi ng data. 

' 
.. 

The exact relationship between the concentration 
distributions resulting from mixing in model and pro
totype can be developed analytically only for ideal
ized cases. This fact, added to the complexity of 
mixing within natural geometries, precludes the use of 
distorted physical models for studying dispersion phe
nomena in natural streams. 

if 



Chapter II 

A FINITE DIFFERENCE SOLUTION TO THE COMPLETE 

DEPTH-AVERAGED, TWO-DIMENSIONAL MASS CONSERVATION EQUATION 

2.1 The Need for a Numerical Approach 

The objective of this chapter is to develop a 
computational method for the prediction of depth-aver
aged concentration distributions resulting from the 
injection of a neutrally-buoyant, conservative tracer 
into steady river flow of arbitrary geometry. The 
method must allow for steady or unsteady tracer injec
tion, and take into account the appropriate physical 
restrictions to mixing in a natural stream. The vari
ous analytical and numerical techniques discussed in 
Chapter 1 do not fulfill the above requir ements for 
one reason or another. It is possible to model 
sources of arbitrary location in time and space by 
applying the superposition principle to the appropri
ate analytical solution; and the condition of zero 
tracer transport across the boundaries can be satis
fied by using the method of images. But to do so in 
streams of nonrectangular cross section becomes ex
ceedingly complex, if not impossible, and requires the 
assumptions of longitudinally uniform flow and con
stant, unidirectional velocity (or at best a uniform 
shear flow). The analytical solution of Yotsukura and 
Cobb (1972) requires longitudinally uniform flow, an 

2 assumption of a constant diffusion factor £zh u, and 

is applicable only to continuous, steady-state injec
tion. The moment method of Sayre (1968) also requires 
uniform flow, and is applicable only to one-dimension
al mixing from an instantaneous plane source, yielding 
no information on the spread of a point or line 
source . 

The numerical method of Yotsukura et al. (1970) 
does allow for an arbitrary stream geometry and veloc
ity distribution, but is limited to continuous injec
tion of tracer; therefore the task at hand is the 
modification of a method such as this to allow for 
unsteady injection of tracer. But to do so is much 
more difficult than might be expected, because it 
involves a fundamental change in the nature of the 
equation to be solved. Equation 1.43, describing 
steady-state mixing from a continuous vertical line 
source, is classified as an elliptic partial differ
ential equation (Carnahan, ct al., 1969); the steady
state concentration distribution is dependent only on 
x and z, the longitudinal and transverse position, 
respectively. Once the transverse concentration dis
tribution at the upstream boundary of the solution re
gion is specified, and the boundary condition of no 
tracer transport across the banks is invoked, then in 
principle the compl ete concentration distribution can 
be obtained. In other words, at steady state, a 
single distribution C(x,z) uniquely satisfies 
Eq. 1.43 at all points in the solution region. No 
iterative computation is required, and the accuracy of 
a numerical solution is governed primarily by the size 
of the computational grid. 

The modification of Eq. 1.43 to allow for 
unsteady tracer injection is tantamount to reconsid
eration of the complete two-dimensional depth average 
dispersion equation, Eq. 1.23. Now there are three 
independent variables; the time t is added to the 
space coordinates x and z, and the equation is 
c lassified as a parabolic partial differential equa
tion. In addition to the boundary conditions of no 
transport across the banks, the concentration distri
bution at the upstream boundary must be specified at 
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all points in time and some constraint on mixing at 
tho do~<nstream boundary must be applied. ~loreover, 

the convective portion of Eq. 1.23 can introduce an 
artificial or numerical diffusion which easily can 
dominate the physical diffusion and thus invalidate 
computational predictions. Thus the seemingly simple 
addition of the time-varying term to Eq. 1.43 not only 
re4uires that a concentration distribution be computed 
at c:tch time increment, but also requires an addition
al boundary condition and, most importantly, intro
duces the possibility that the numerical solution may 
not even approximate the true solution. Section 2.2 
demonstrates how this may occur, and Sect . 2 . 3 ex
plores the numerical characteristics of a finite dif
ference method for use in a two-dimensional mathemati
cal model of dispersion. 

2 .2 The Occurrence of Artifici al (Numerical) 
Lli ffusion 

The purpose of this section is to demonstrate 
how the fin ite differencing of a linear convection 
equat ion can introduce artificial diffusion which has 
no physical basis, but is purely a consequence of the 
computation method. It is reasonable to ask why such 
behavior should be of concern, since real-life prob
lems do involve physical diffusion. Consider dep~h
averagcd diffusion in a rectangular channel having a 
transverse velocity distribution u(z). Further 
assuming that the diffusivities are constant and the 
transverse velocities are negligible, Eq. 1.23 can be 
written 

ac 
-+ 
J t 

(2 .1) 

One solution technique might be first to solve the 
convective portion of Eq. 2.1, 

!£+u~=O 
at ax (2.2) 

for each stream tube into.which the channel is divid
ed, convecting the tracer mass a certain distance 
downstream in each time step, depending on the local 
velocity assigned to that stream tube. Then the "new" 
convected concentrations could be diffused transverse
ly and longitudinally by solving 

~r. 
I t 

(2 .3) 

at each lon~itudinal computation point, and the en
tire process repeated for successive time increments. 
Since the solution would compute convection and dif
fusion separately, i t would be desirable that the con
vection solut ion, Eq . 2 . 2, introduce no artificial 
diffusion; otherwise the total solution to Eq. 2.1 
might appear physically reasonable, but in fact be 
dominated by artificial, as opposed to physical, dif
fusion. Therefore the convection solution must be 
analyzed in some detail. 

Equation 2.2 represents a situation whereby, in 
a stream tube of longitudinal velocity u, any 



either bank, where there can be no mass transfer. The 
solution is direct, requiring only a single computa
tion for each grid point, and allows the depth, veloc
ity, and diffusivity to vary with transverse position. 
In their successful appl icat ion of the model to the 
Missouri River, Yotsukura et·~l. assumed that the dif
fusivity E was a constant within each cross 
section. z 

1.10 The Use of Physical Models for the Prediction o£ 
Dispersion in Natural Streams 

Physical models of natural waterways are 
especially useful for the study of hydraulic phenomena 
when the irregular natural geometry precludes mathe
matical analysis. As shown in preceding sections, 
most closed-form mathematical analysis of dispersion 
is applicable only to uniform stream geometries and 
artificial velocity fields. Consequently it is tempt
ing to consider the use of phys'ical models for study
ing dispersion in natural streams, especially when 
neither the tracer injection nor the water flow can be 
considered steady state . But physical models usually 
are incapable of reproducing the prototype dispersion 
process faithfully. 

There are two features of physical models which 
can effectively destroy their value in predicting dis
persion. First, the use of artificial roughness ele
ments (strips or cleats) to compensate for the rela
tively steep model slopes induces excessive turbulence 
within the flow. On the other hand, boundary-generat
ed turbulence is primarily responsible for the diffu
sion in streams; the additional turbulence induced in 
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a physical model accelerates the turbulent diffusion 
relative to the prototype. Second, restrictions of 
space and funds require that most physical models be 
distorted relative to the prototype; an exaggerated 
vertical dimension allows sufficient depth to repro
duce the phenomenon being studied without requiring 
excessive stream widths and lengths. This distortion 
can be suitably accounted for in the study of flood 
stages, velocity fields, or other gross hydraulic 
features. But Fischer and Holley (1971) have shown 
that, considering one-dimensional, plane source dis
per sion in steady flow, a d.istorted model will produce 
longitudinal dispersion which is excessively dominated 
by vertical velocity gradients , and insufficiently 
responsive to transverse velocity gradients. Fischer 
(1966) has shown just the opposite tendencies to be 
characteristic of natural streams , where transverse 
velocity gradients dominate the mixing process. 
Holley and Karelse (1973) have presented a similar 
analysis for two-dimensional mixing from a continuous 
vertical line source, and concluded that, in a dis
torted model, the transverse diffusion is too great 
relative to the prototype. The analytical conclusion 
was further supported by direct compar isons of model 
rugd prototype mixing data. 

The exact relationship between the concentration 
distributions resulting from mixing in model and pro
totype can be developed analytically only for ideal
ized cases. This fact, added to the complexity of 
mixing within natural geometries , precludes the use of 
distorted physical models for studying dispersion phe
nomena in natural streams. 

,· 



Chapter II 

A FINITE DIFFERENCE SOLUTION TO THE COMPLETE 

DEPTH-AVERAGED, TWO-DIMENSIONAL MASS CONSERVATION EQ UATION 

.· 
2. 1 The Need for a Numerical Approach 

The objective of this chapter is to develop a 
computational method for the prediction of depth-aver
aged concentration distributions resulting from the 
injection of a neutrally-buoyant, conservative tracer 
into steady river flow of arbitrary geometry. The 
method must allow for steady or unsteady tracer injec
tion, and take into account the appropriate physical 
restrictions to mixing in a natural stream. The vari
ous analytical and numerical techniques discussed in 
Chapter 1 do not fulfill the above requirements for 
one reason or another. It is possible to model 
sources of arbitrary location in time and space by 
applying the superposition principle to the appropri
ate analytical solution; and the condition of zero 
tracer transport across the boundaries can be satis
fied by using the method of images. But t o do so in 
streams of nonrectangular cross section becomes ex
ceedingly complex, if not impossible, and requires the 
assumptions of longitudinal l y uniform flow and con
stant, unidirectional velocity (or at best a uniform 
shear flow). The analytical solution of Yot sukura and 
Cobb (1972) requires longitudinally uniform f l ow, an 

assumption of a constant diffusion factor t h2u, and z 
is applicable only to continuous, steady-state injec
tion. The moment method of Sayre (1968) also requires 
uniform flow, and is applicable only to one-dimension
al mixing from an ins~antaneous plane source , yielding 
no information on the spread of a point or line 
source. 

The numerical method of Yotsukura et al . (1970) 
does allow for an arbitrary st ream geometry and veloc
ity distribution, but is limited to continuous injec
tion of tracer~ therefore the task at hand is the 
modification of a method such as this to allow for 
unsteady injection of tracer. But to do so is much 
more difficult than might be expected, because it 
involves a fundament al change in the nature of the 
equation to be solved. Equation 1.43, describing 
steady-state mixing from a continuous vertical line 
source, is classified as an elliptic partial differ
ential equation (Carnahan, et al., 1969); the steady
state concentration distribution is dependent only on 
x and z, the longitudinal and transverse position, 
respectively. Once the transverse concentration dis
t r ibution at the upstream boundary of the solution re
gion is specified, and the boundary condit ion of no 
tracer transport across the banks is invoked, then in 
principle the complete concentration distribution can 
be obtained. In other words, at steady state, a 
single distribution C(x,z) uniquely satisfies 
Eq . 1.43 at all points in the solution region. No 
iterati ve computat ion is required, and the accuracy of 
a numerical solution is governed primaril y by the size 
of the computational grid. 

The modification of Eq. 1.43 to allow for 
unsteady tracer injection is tantamount to reconsid
eration of the complete two-dimensional depth average 
dispersion equation, Eq. 1.23. Now there are three 
independent variables; the time t is added to the 
space coordinates x and z, and the equation is 
classified as a parabolic partial differential equa
t i on. In addition to the boundary conditions of no 
t ransport across the banks, the concentration distri
bution at the upstream boundary must be specified at 
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al l points in time and some constraint on mixing at 
the downstream boundary must be applied. Moreover, 
the convective pOTtion of Eq . 1.23 can introduce an 
artificial or numerical diffusion which easily can 
dominate the physical di.ff.usion and thus invalidate 
computational predictions. Thus the seemingly simple 
addition of t he t ime-varying term to Eq . 1.43 not only 
requires that a concentration distribution be computed 
at each time increment, but also requires an addition
al boundary condition and, most importantly, intro
duces the possibility that the numerical solution may 
not even approximate the true solution. Section 2.2 
demonstrates how this may occur, and Sect . 2.3 ex
plores the numeri~al charact eristics of a finite dif
ference method for use in a two-dimensional mathemati
cal model of dispersion. 

2.2 The Occurrence of Artificial (Numerical) 
Diffusion 

The purpose of this section is to demonstrate 
how the finite differencing of a linear convection 
equation can introduce artificial diffusion which has 
no physical basis, but is purely a consequence of the 
computation method. It is reasonable to ask why such 
behavior should be of concern, since real-life prob
lems do invol ve physical diffusion. Consider depth
averaged diffusion in a rectangular channel having a 
transverse velocity distribution u(z). Further 
assuming that the diffusivities are constant and the 
transverse velocities are negligible, Eq. 1.23 can be 
written 

ac 
-+ at (2.1) 

One solution technique might be first to solve the 
convective portion of Eq . 2.1, 

ac ac 
at+ua; • O (2.2) 

for each stream tube into. which the channel is divid
ed, convecting t he tracer mass a certain distance 
downstream i n each time step, depending on the local 
velocity assigned to that stream tube. Then the "new" 
convected concent r ations could be diffused transverse
ly and longitudinally by sol ving 

(2.3) 

at each longitudinal comput ation point, and the en
tire process repeated for successive time increments. 
Since the solution would compute convection and dif
fusion separately, it would be desirable that the con
vection solution , Eq. 2.2, introduce no artificial 
diffusion; otherwise the total solution to Eq. 2. 1 
might appear physically reasonable, but in fact be 
dominated by artificial, as opposed to physical , dif
fusion. Therefor e the convection solution must be 
analyzed in some detail . 

Equation 2.2 represents a situation whereby, in 
a stream tube of longitudinal velocity u, any 



specified concentration distribution at t ime t, 
C(x,t) , is moved a distance u~t wi thout any change 
in shape during the time increment ~t, so that 

C(t,t+~t) = C(x,t) (2 . 4) 

where 

' = x + u~t . 

This is the exact solution to Eq. 2. 2, obtained only 
if no aTtificial diffusion is present. But now con
sider a finite difference solution to Eq. 2.2; one 
simple scheme might be a one-sided expl icit method, 
whereby Eq . 2. 2 would be written 

(2.5) 

where I and n are the longitudinal space and t ime 
subscripts and superscripts, respectively, and 6x 
and At are the space and time increments . Not e that 

for u6t/6x = 1, Eq. 2.5 gives c~:~ ; C~, which i s 

t he exact solution corresponding to Eq. 2.4. For 
u6t/Ax > 1, the solution Eq. 2.5 is unstable, and will 
not converge to the real solution (Roache, 1972); and 
for uAt/6x < 1, artificial diffusion is i ntroduced . 
To show this, expand Eq. 2.5 i n a Taylor Series about 
the point I+l,n: 

n ac At
2 a2c O(•t3) _ en c +At-+---- + u 

I +l at 2 at2 I+l 

or 

(2 . 6) 

the symbol 0 denoting the order of approxi mation. 
Now Eq. 2. 2 may be differentiated to yield 

u i__ c- u a c) 
ax ax 

or 

(2 . 7) 

Substituting Eq . 2.7 i nto Eq. 2.6 and simplifying, 

ac -+ at 
ac u -= ax EN 

a2c 2 2 (2 . 8) -+ 0 (6t , Ax ) 
ax2 

where 

u6x u2~t e = -2-- -2-N 

Now Eq. 2. 8 is not the pure convection equation 2.2 
at all, but a diffusion equation with a numerical dif
fusivity EN which vanishes only if u6t/6x = 1 . 

Figure 2.1 demonstrates the effect of the numerical 
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diffusivity, which has no physical basis, but is a 
direct consequence of the discretization. In a flow 
situation for which the velocity is a constant U i n 
each stream t ube, the t ime and distance steps could 
be chosen so as to set U6t/6x = 1, and the numerical 
solution would be nondiffusive. But in a natural 
stream, where the velocity u · changes from one stream 
tube to another, the condition uAt/ Ax = 1 could be 
maintained only for one stream tube; all others would 
exhibit artificial diffusion . Therefore Eq. 2.5 is 
an example of a finite-difference discretization which 
is unacceptable for the prediction of disper sion in 
streams . 

Another difficulty i n the numerical solution of 
Eq . 2 . 2 is the existence of artificial dispersion, or 
the spreading out of a convect ed distribution due to 
t he variation in the celerity of the different Fourier 
components of which it i s composed. Section 2.3 i n 
cludes t he analysis of both numerical diffusion and 
dispersion as applied to the choice of an acceptable 
finite difference scheme for solution of the convec
tive portion of the depth-averaged mass conservation 
equation. 

2 .3 General Method of Analysis of Finite Difference 
Schemes for Convective Transport 

It is , in general, not possible to analyze the 
numerical characteristics of finite-difference solu
tions to an equation such as Eq. 1.23. Nonetheless, 
useful comparisons may be made if the expression is 
simplified to some extent. With the goal in mind of 
analyzing a finite difference scheme for the convec
t ive portion of Eq . 1 . 23 , the simplified form, 
Eq. 2.2, is used for analysis. 

A general method for determi ning the stability 
and convergence characteristics of f inite-difference 
schemes is the consideration of the Fourier components 
comprising the solution. Writing the solution to 
Eq. 2.2 as an infinite Fourier Series, 

where 

A 
m 

m=+c:o 
C(x ,t) L Am exp{i(crmx - t!mt)} 

m=-co 

the constant coefficient for the mth 
component of the series, 

.cr th frequency of the m component, 2n/Tm' 

(2 .9) 

wave number of the mth component, 2n/Lm' 

the period of t he mth component, and 

the wavelength of the mt h component. 

Since Eq. 2.2 is l inear , any component of Eq. 2.9 
should be a solution and thus may be sub~tituted into 
it; the objective her e is to find the relationship 
between am and om such that Eq. 2 .9 is indeed a 

solution to Eq . 2 . 2. Performing the substitution, 

0 

or -s + uo o. m m (2 . 10} 

' 

l 



Therefore when Bm = uom for all components, Eq. 2.9 

is the true solution to ·Eq. 2.2 . The celerity of each 
series component is given by 

(2 .11) 

The constant celerity requires that all series compo
nents move downstream at the same rate, allowing no 
relative dispersion, or spreading, of the solution in 
space . 

Now 
.wri t ten 

em may be complex, so that Eq. 2.9 may be 

m=+co 
C(x. t) ~ A exp{ImB t} exp{i(-ReB t+a x)} m m m m 

where 

S = ReS + i Im8 . 
m m m 

Thus exp( ImS t } may be recognized as a time-depen-
m 

dent function which can amplify or damp the solution 
component m in time. But Eq. 2.10 requires that, 
since t he wave number om must be real, the f requency 

11m must also be real . Consequently 

and 

(2.12) 

~o that the solution is neither damped nor amplified 
in time. Equations 2.11 and 2 . 12 simply formalize the 
expected behavior of the · solution to Eq. 2.2: any 
concentration distribution· is displaced in a down
stream direction with no change of shape due either to 
numerical diffusion (damping) or numerical dispersion 
(spreading out). 

The above analysis describes the behavior of the 
components of the Fourier Series solution to the par
tial differential equation 2. 2. The approach can also 
be applied to the components of solutions to finite 
difference approximations of Eq. 2.2, and the results 
compared to the desired behavior. Specifically, de
fine a . convergence coefficient R1 as the ratio of 

the fini t e difference solution damping factor 
exp(ImB~t } to the actual solution damping factor 
exp{lmSt}: 1.0, so 

R1 • exp( ImB~t}. (2. 13) 

Define R2 as 

(2.14) 

or the ratio of the finite difference solution compo
nent cel erity em to the actual solution celerity u. 

In Sect. 2.3.1 the coefficients R1 and R2 are 

developed i~ detail for the double-step implicit-ex
plicit scheme which is applied to the depth-averaged 
mass conservat ion equation i n Sect. 2. 3. In 

Appendix C seven other schemes which were also 
considered are described, and the R1 and R2 coef-

12 

ficients are presented and discussed, but wit hout de
tailed derivation. 

2.4 Double-Step Implicit-Explicit Scheme, Second 
Order 

A finite difference method for convection; 
originally described by Peaceman and Rachford (1955), 
was appl ied to flow in estuaries by Leendertse (1970). 
The method can also be adapted to the pr esent problem 
of convection in rivers. Each time increment ~t is 
broken into two halves of equal length; convection is 
comput ed implicit l y over the fir st half s t ep, and ex
plicitly over the second. The discretization is shown 
schematically on Fig. 2 . 2, where the dashed lines 
indicate the finite difference approximations to the 
space and time derivatives. The first half step is 
called "implicit" because t he space derivative at 
point I, n+~ must be written in terms of the unknown 
concentrations at 1+1, n+~ and 1-1, n+~, requiring 
an indi r ect solution . The second half step is called 
"ex.Plicit" because the corresponding space derivative 
is written in terms of known concentrations at 1+1, 
n+~ and I- 1, n+~, allowing a direct computation of 

c~·l. Each step can be treated independently, and the 

results finally combined . 

2. 4 . 1 Im£licit half ste;e. The time derivative in the 
first half step is written as 

ac 
en+~ - en 

I I - · ~t/2 at 

and the space derivative as 

ac 
en+~ -

1+1 
cn+'1 

I-1 -· . ax 2~x 

Equation 2. 2 i.s then written 

en+~ - en (Cn+~ - en+~) 
1 I 1+1 [ - 1 .. 0 (2. 15) --;;t~ + u 2t.x 

As before, cons ider the solution to be decomposed into 
a Fourier Series , but with time and distance written 
in discrete form: 

m=+•..o 
C(Itlx,nllt) • ~ A cxp(i(o IClx- 6 ntlt)} m m m m=-1.0 

(2. 16) 

Substituting the mth component of Eq. 2.16 into 
Eq. 2. IS and dropping the subscript m yields, aft er 
some simplificat ion , 

exp{- i B~t }(l + ~r sin o6x) 

where 

ullt 
r • AX'' 

In order to obtain 

timately to find the 
the celerity ReB/ o . 
writing Eq. 2.17 

R1 and R2, it is necessary 

damping factor exp{ImBt. t } 
This can be done by first 

(2. 17) 

Ul 

and 



or 

exp( -i 6 ~} 
2 

exp( - i 6 ~} 
2 

ir . 
+ T s1n oAx 

ir . - T s1n oAx 

r
2 

. 2 
+ 4 s1n oAx 

In general, a complex exponential may be written 

exp{ie} exp{iRee - Ime} 

exp{-Ime} exp{iRee} 

and by Euler's formula, 

( 2 0 18) 

exp{i e} "exp( -lm9} (cos Ree' + i s in Re e). (2 . 19) 

Taking the modulus of Eq . 2. 19, 

!exp{ie}j = exp{-Im9}(cos2 Rea + sin2 Ree) 112 

• exp(- I me}. (2 . 20) 

Hence from Eq. 2.18, 

r
2 

. 2 1/2 
{ 

ll't llt (1 + 4 Sln ollx) 
exp Im8 T } = jexp{ - is y l J = r 2 . 

2 
1 + 4 sm oAx 

2 
(1 + ~ sin2 ot.x) l/2. ( 2. 21) 

To find Rea , first equate the real and imaginary 
parts on either side of Eq. 2. 18: 

1\t: 1\t exp( Im8 2 1 cos {-ReB y) = 
2 

+ : sin 
2 oAx 

(2.22) 

and 

r . 
lit At - 2 S1n OAX 

exp{ ImS T } sin (-Rea T ) 2 r 2 
+ 4 sin oflx 

(2.23) 

Taking the ratio of Eq. 2. 23 and Eq. 2. 22 , 

( llt) r . tan ReS T = 2 s1n ollx 

or 

ReB" ;t arctan {I sin oAx) . (2 .24 ) 

2.4. 2 Explicit hal f st ep. The time derivative in the 
second hal f step i s written as 

ac 
-+ at 

and the space derivative as 
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ac 
ax-= 

en+~ - c"·~ 
I+l 1-1 

2llx 

Equation 2.2 is written as 

cn+l - c"·~ 
I I 

At / 2 

The Fourier Series solution to Eq. 2.25 is 

m=+co 
C(IIIx,nllt) = L Am exp{i(omillx- 8mnllt)} . 

m=-oa 

(2.25) 

(2.26) 

Substituting the mth component of Eq. 2.26 i nto 
Eq. 2.25, droppi ng the subscripts, and simplifying 
yields 

exp(- iS ~t } + i
2
r sin(ollx) 1 

or 

.. exp(-i 8 ~t } 1 - i I sin (oAx). (2. 2 7) 

Applying Eq. 2. 20 

1\t 1 . llt I r
2 

. 2 112 exp{ Im8 yl • exp{ - 18 T} = [1 + T Sln (ollx)] . 

(2.28) 

To find ReS, equate the real and imaginary parts on 
either side of Eq. 2. 27 : 

.M 
0 

lit exp( Im8 2 1 cos (-ReB- y) = 1 (2 0 29) 

exp{ImB ~t} sin (- ReS ~t) = I sin (ollx) (2. 30) 

Taking the ratio of Eq. 2.30 and Eq. 2.29 , 

llt r 
tan (ReS T) = 2 sin (oAx) 

or 

ReS X ; t ar ctan (I sin oAx) . (2.31) 

2.4.3 Full time step. The overall damping factor, 
exp{Im8llt }, i s the product of the damping factors in 
each half step. ~lultiplying Eq. 2.21 by Eq . 2 . 28, 

exp{ ImSllt } = 1 

and consequently 

(2.32) 

The component celerities over each half step must be 
averaged to obtain a representative value. Therefore 
adding Eq. 2 . 24 and Eq . 2.31, which are identical, and 
dividing by 2o , the average celerity becomes 

o!t arctan (I sin oAx) 

I 
~ 



and division by u gives 

R = -
2- arctan (.!.2 sin oAx) . 2 au6t (2. 33) 

The result expressed in Eq. 2.32 is highly 
significant. It indicates that the double-step im
plicit-explicit finite difference scheme is not only 
stable for all values of uAt/Ax, but also that it 
introduces no numerical damping. This feature 'is most 
attractive in view of the discussion in Sect . 2.2, as 
it eliminates the possibility of artificial "diffusion 
in the purely convective stage. However Eq. 2.33 in
dicates that R2 is always less than unity, and 

therefore all Fourier components will travel more 
slowly than the true sol ution , the numerical solution 
becoming spread out as it is transported downstream; 
this process may again look like physical diffusion. 
The key here is to keep L/Ax as large as possibl e, 
as shown on Fig. 2.3, which is a plot of Eq . 2. 33. If 
uAt/Ax is kept reasonably small, say 2. 0 or less, 
then for L/Ax greater than 10 the component celeri
ties will be within 15 percent of the desired value . 
Physically, the most significant wavelength in the 
Fourier Series of an actual dist'ribution is approxi
mately the "wavelength" of the distribution itself. 
Therefore it is important that any input concentration 
distribution be spread over at least 10 computational 
points; this requirement is physically reasonable, as 
one would not expect two or three discrete values to 
describe adequately a concentration distribution . 

A demonstration of the sensitivity of the 
double- step impl icit-explicit scheme to values of 
ut.t/Ax can be developed by applying Eq . 2 .15 and 
Eq. 2 . 25 to a simple rectangular channel of width 30, 
length 10,000, depth 1.96, velocity 0.467, and dis
tance step Ax = 200, all in arbitrary units. 

The initial concentration distribution is a 
half-sine wave of amplitude 10 units centered at the 
eighth computational point, i.e. , 

C(IAx,O) 10 sin[w(I-3)} for 3 < ~ 13, 

0 otherwise . 

The distribution was routed downstream for 10,800 time 
units of At= 98 . 5, 398 . 3, and 1713. 1 units, or 
ur.t/Ax = 0.23, 0.93, and 4.0. Figure 2.4 shows the 
results of the computation , demonstrating t hat al 
though for uAt/6x = 0 . 23 and uAt/hx ~ 0.93 . som~ 
numerical dispersion is present, the pnmary dlstnbu
tion gives a satisfactory reproduction of the id~al . 
~olution . But for uAt/Ax • 4.0, the computed dlstrl
hution gives a poor estimate of the desired curve. 
Osci llations behind the primary distribution are 
\:aused by low-amplitude Fourier solution components 
moving much more slowly. Concentrations from the 
lt·ad ing edge of the distribution to its peak, where 
1111>st practical interest is generally focused, are 
r.-1 ati vcly unaffect ed by the osci llations . 

The double-step implicit-explicit scheme is of 
,Pr<>nd order accur acy . That is, a Taylor Series ex
l'·"'s ion of the finite difference solution is identical 

2 2 
to the exact solution if terms the order of Ax , 6t 
• 1n· dropped. In Appendix C seven additional schemes 
uf first, second, and fourth order are discussed. The 
,lc·rivations of R

1 
and R2 arc not shown, but follow 

tIt\· )lcneral pattern used in this section . 

14 

2 .5 Comparison of Finite Difference Schemes for 
Convective Transport 

In general it is not possible to choose one of 
the schemes analyzed in Sect. 2.4 and Appendix C as 
superior to the others. Each scheme has its own set 
of advantages and disadvantages over some range of 
conditions, and any one of them might be the best 
choice for the computation of pure convection in a 
specified flow situation. But an important considera
tion in selecting a scheme for general use is its 
flexibi l ity in demonstrating favorable characteristics 
over a broad range of flow conditions . Therefore it 
is instructive to compare some general characteristics 
of the eight schemes. 

Fully explicit methods, such as schemes A, D, and 
E, are generally easy to program for the computer and 
use relatively little computer time. But they are un
stab le, i.e., yield no solution, when the Courant num
ber, ullt/ Ax , exceeds unity. ~toreover, scheme A intro
duces numerical damping whenever uAt/Ax is less than 
unity. 

The fu l ly implicit methods, on the other hand, 
are unconditionally stable for all values of the 
Courant number . But schemes B and C do introduce nu
merical damping for all values of the Cour ant number, 
and moreover require significantly greater programming 
complexity and computer time. 

There are two fundamental questions to be 
considered in choosing between fu lly explicit and ful· 
ly implicit schemes: 

a) Is natural damping, or diffusion a 
significant factor in the physical phenomenon being 
modeled? 

b) Does the longitudinal velocity vary 
significantly from one point in the s tream to another? 

For dispersion i n streams the answer to a) is obvious
ly "yes"; and the chosen scheme must minimi:c numeri
cal diffusion . For the prediction of dispersion i n 
man-made channels such as canal s or floodways, the 
answer to b) may be "no", and a simple explicit method 
may be used with Ax and At chosen so as to keep 
uAt/Ax as c lose to unity as possible throughout. 
Then the solution will be stable and artificial damp
ing will be at a minimum. But in a natural stream, 
where the transverse gradient of longitudinal velocity 
can be significant, it is . impossible to have 
uAt/6x = 1 everywhere, and an implicit method might 
be more useful. Then the time and distance steps can 
be chosen so that the average value of uAt/Ax is 
ncar unity; the solution will always be stable, but 
3rtificial damping will be introduced over most of 
the cross section. In order to minimize the damping 
over the entire section, and at the same time allow 
some flexibility in tjme and dis t ance steps so that 
the solution may be obt·ained with the desired detail, 
it is necessary to adopt a composite scheme such as 
F, G, or the implicit-explicit scheme described in 
Sect. 2. 4 . 

Among the composite methods, the second order 
implicit-explicit scheme is c learly the most attr~c
tive, as it is unconditionally stable and nondamp1ng . 
The fourth-order version offers little improvement for 
the increased programming complexity, and the predic
tor-corrector method, (scheme G) , while unconditional
ly stable, stil l introduces numerical damping always. 



The second order double-step implicit-explicit scheme, 
described in Sect. 2.4 , offers the best convergence 
characteristics among the, eight methods studied inso
far as solutions to Eq. 2.2 are concerned . For the 
more general convection equation, i.e., the left-hand 
side of Eq. 1.23, convergence coefficients simply can
not be derived, and thus there is no basis for the di
rect choice of an optimum scheme. Therefore it is 
simply assumed that the relative desirability of the 
scheme i n Sect . 2.4, as shown for the solution of 
Eq. 2.2, extends also to the solution of Eq. 1.23. 

2.6 Application of the Second Order Double-Step 
Implicit-Explicit Scheme to Solution of the 
Depth-Averaged Dispersion Equation 

The depth-averaged mass conservation equation, 
Eq. 1.23, describes the mixing process within an 
infinitesimally narrow control volume, i.e., at a 
point. rt is important to ensure that, in solving 
Eq. 1.23 numerically on a discrete grid of computa
tional points, the principle of conservation of mass 
is n~t violated. For this reason the river is concep
tualized as a group of stream tubes each of which ex
tends from the bed to the water surface, and is 
bounded laterally by streamlines, as shown in Fig. 2.5. 
Thus the tube widths, depths, and longitudinal veloc
ities vary longitudinally so as to keep the discharge 
constant in each, and the tube centerlines may shift 
back and forth in the channel as the transverse dis
tribution of discharge changes. The centerline of 
each stream tube is a computational point J , located 
at longitudinal computational points I. 

Equation 1.23, written in terms of depth-averaged · 
variables, must be rewritten in terms of stream-tube 
averages. 1~is may be done by integrating over t he 
width of a stream tube whose loft and right hand 
transverse coordinates are z : a' and z : b', 
respectively: 

b' b ' b' 
f h <IC dz + f aax (huC) dz + f aaz (hwC) dz 
a' at a' a' 

b' ac b' a ac 
c f ox (he: X 3x) dz + f az (h!:z a-zl dz. 

a ' a' 

Applying Leibniz's theorem for differentiation of an 
integral, and noting that, by definition, the depth
averaged transverse velocity w must vani~h at the 
stream tube boundaries, Eq . 2.34 may be wrltten as 

b' b' b' 
a f hC d:z + a f (huC) dz • 1- f (hEx ac) dz at a, ax a, ax 3 , ax 

b' ac ab' aa ' 
+ aaz ! I (hEZ -az) dz + (huC) I b' --ax - lhuC) I a' ax 

(2. 35) 

Denoting the stream tube width by 8', lumping the last 
four terms into a single term R, and using an overbar 
to denote a stream tube average , Eq. 2.34 may be 
written 

(2. 36) 

In a prisma~ic channel, the stream tube boundaries are 
paral lel to the x-axis, and R = 0. In a nonprismatic 
channel , the boundaries are parallel neither to the 
x-axis nor to each other; therefore the longitudinal 
convection and diffusion, assumed to be parallel to 
the x-axis in Eq . 2.36, are actually not parallel to 
the stream tube boundaries. The terms in R account 
for the mass transport across nonparallel tube bound
aries due to longitudinal diffusion and convection. 
As long as enough stream tubes are used to keep 
aa'/3x, ab'/ax, and the variation of hu across the 
tube relatively small, the effect of neglecting R 
will be negligible. Finally, noting that the product 
B'h is the cross-sectional area of the stream tube, 
A, and dropping the overbars, Eq. 2.36 may be written 

A ; ; + oox (AuC) " aax (At x ;;) 

ac I ac I 
+ (htz a-z) b' - (htz a-z) a'. (2. 37) 

It i s important to rcco~:ni:e that Eq. 2.37, which 
is the basis of the numerical model, does not require 
that secondary transverse velocities be zero. The 
longitudinal variation of stream tube widths, required 
to satisfy continuity, results in a longitudinal 
variation of the transverse coordinates of stream tube 
centroids. An observer moving with the flow in a par
ticular stream tube would see this as a gradual move
ment across the channel, i.e., as the effect of depth
averaged transverse velocity. The stream tube 
averaging process has rem9ved the dept h-averaged 
transverse velocity w as an explicit parameter, but 
w implicitl y governs the dimensioning of stream tubes 
to satisfy continuity. ~lore over, additional trans
verse mixing caused by secondary velocities, i.e., 
the mixing associated with deviations of concentration 
and transverse velocity from their respective depth 
averages, has been absorbed in the transverse diffu
sivity, E • Therefore Eq. 2.37 is , of itself, appli-z 
cable to flow around alternate bars and in bends; any 
limitation is in the degree to which the secondary 
mixing contribution to tz can be quantified. 

Fischer (1969) and Chang (1971) have attempted theo
retical and experimental quantifications of the 
secondary mixing in bends, based on the secondary 
flow theories of Rozovskii (1957). Neither inves
tigator was able to obtain definitive results, due 
primarily to the weakness of existing secondary flow 
theory, and due to the difficulty of obtaining sec
ondary velocity measurements. 
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The general strategy for the numerical solution 
of Eq. 2.37 is as follows: in each time step, first 
route the concentrat ion distribution in each stream 
tube downstream by solving for pure convection using 
the second 01der double-step implicit-explicit scheme. 
Second, solve for transverse diffusion by applyin~ a 
fully implicit scheme to the convected concentrat1ons. 
Finally, diffuse the concentration distributions lon
gitudinally with another fully implicit scheme. The 
details of the computation are outlined in the follow
ing three subsections. 

I·~ 
J 



2.6.1 Longitudinal convection. The finite difference 
method of Sect. 2 .4 is used to solve the convective 
portion of Eq. 2.37, 

ac a 
A at+ ax (AuC) = 0, .· 

(2.38) 

separately in each stream tube J. Assume that the 
entire concentration field is known at time n. 
Equation 2.38 is written for the implicit half step as 

0 

which may be rewritten 

en R en+~ S n+~ 
I,J + I,J I-l,J - I,J CI+l,J (2. 39) 

where 

lit (Au)I -l,J 
(2. 40a) 

and 

S = lit (Au)I+l,J . 
I,J 2AI,J(xl+l - XI-1) 

(2.40b) 

Note that the coefficients R and S are known at 
all times, but Eq. 2. 39 contains three unknown concen
trations. The writing of Eq. 2. 39 for each of N- 2 
computational points will generate a system of N-2 
linear equations in N unknowns, where N is the 
total number of computational points. Therefore two 
boundary conditions must be supplied before a solution 
is possible. 

The appearance of only three adjacent unknowns in 
each of the N equations makes the linear system di
agonally dominant, or banded (Carnahan et al., 1969) . 
This is noteworthy as it obviates the need for a time 
consuming , complex matrix inversion . Instead , a tri
diagonal matrix method, also known as the doubl e- sweep 
method, may be used to solve the linear system. First, 
express the concentration at I-1 as a linear func
tion of the concentration at 1: 

Cn+~ E n+~ 
I - l,J = 1-l,J cl,J + Fl-l,J (2.41) 

where E and F are constants yet to be determined . 
Substituting Eq . 2.41 i nto Eq. 2.39, 

or 

en R E en+!:; 
I ,J + I,J I-l,J I,J 

-SI ,J n+~ 
1-R

1 
J E1_1 J CI+l,J + 

' ' 

c~,J + RI,J FI- l ,J. (2.42) 
1- RI ,J EI - l,J 

Comparing Eqs. 2.41 and 2. 42, it may be seen that 
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(2.43aJ 

and 

(2 . 43b) 

The significance of Eqs. 2.41 and 2.43 is that after 
appropriate application of the upstream boundary con
dition, El ,J and Fl,J are known, and by recurrence 

all the remaining E and F values may be computed 
from Eq . 2.43 . Then the downstream boundary condition 

fixes C~+~, and by recurrence the remaining values of 
' C may be computed from Eq . 2.41. By this means the 

double-sweep technique allows a complete solution in 
each time step through a direct computation. 

The boundary conditions are applied as follows: 
at the upstream boundary of each stream tube, the 
concentrati on i nput is known at all times. Denoting 

this value at time n+~ as en+~ Eq. 2.41 may be 
"l 1 ,J' 

written 

which will satisfy the boundary condition if 

Then the rema~n~ng values of E and F may be com
puted and stored for each stream tube. 

At the downstream boundary there is no specified 
condition . Thus it is necessary to create one by as
suming the existence of a fictitious point whose x
coordinate differs from one tube to another and is 
computed as 

Now assume that between these last two points there is 
no change in shape of the concentration distribution 
in the half step , so that 

Then 

or 

and by recurrence using Eq . 2 . 41 the rema~n~ng con
centrations may be computed using the previously· 
stored E and F values. This procedure is carried 
out for each tube J, completing the implicit half 
step of the convective stage. 

The expl icit half step computes the convected 
concentrations at time n+l given the values at time 
n+~ as computed in the implicit half step. 



Equation 2.38 is written explicitly as 

(Cn+l _ ~n+l:! 
I,J I ,J 

t:.t/2 .· 
n+l:! 

+ (Au)I+l ,J CI+l,J (A ) Cn+l:! 
u 1-l,J 1-l,J 

0 

which may be rewritten 

Cn+l = Cn+l:! R Cn+l:! S Cn+l:! 
I,J I,J + l,J 1-l,J - I,J 1+l,J (2. 44) 

where R and S are as defined previously in 
Eq . 2.40 . Equation 2.44 contains only one unknown 
concentration. The upstream boundary condi tion is 

sufficient to start the calculation; c~:~ is known, 

and the remaining concentrations may be computed di
rectly in each stream tube using Eq. 2.44. 

At this stage in the computation, the known 
concentration distribution in each stream tube has 
been routed downstream for one time step without any 
numerical diffusion, but possibly with some numerical 
dispersion. The routed distributions are now to be 
diffused transversely and longitudinally. 

2.6.2 Transverse diffusion. To this point nothing 
has been said regarding the finite differ ence scheme 
to be used for transverse and longitudinal diffusion. 
Consider a fully implicit scheme applied to a simpli 
fied one-dimensional diffusion equation, 

(2 . 45) 

where n represents either the x or ~ direction 
and c

0 
is a const ant . Applying a symmetrical impli-

cit scheme to Eq. 2.45 , 

(Cn+l 
J+l 2cn+l cn+l) 

J + J-1 
t:.n 

(2.46) 

where the J index refers to the n-direction compu
tational point. A Taylor Ser ies expansion of Eq. 2.46 
about the point (n,J) yields, after some simplifica
tion, 

(2. 4 7) 

Thus the finite difference approximation (Eq . 2.46) 
converges to the partial differential equation 
(Eq. 2.45) as the time step at and distance step t:.n 
approach zero. ~loreover, Eq . 2 .46 is unconditionally 
stable; the method is used herein for both transverse 
and longitudinal diffusion. 

The transverse diffusion portion of Eq. 2.37, 

(2.48) 

is written in implicit form as 

(_n+l Cn ) (Cn+l Cn+l) 
'-1,J- I , J I,J+l I,J 

AI ,J t:.t = (htz) I;J ,J+l _z.:..IL:,J:...+...:l:...._ __ z..:1:..l,~J-

(Cn+l 
I,J 

cn+l ) 
I ,J-1 

(2 .48a) 

where the concentrations have already been convected 
for the time step, z1 J denotes the centroid of the 

J th b h' Ith . 1 . d stream tu e at t e computatlona polnt, an 
(htz)I;J,J+l is the product of the average diffusiv-

ity in tubes J and J+l, and the smaller of the two 
tube depths. Noting that 

Equation 2.48a may be rewritten 

01 Cn+l + 02 Cn+l + 03 Cn+l 
I,J-1 I,J 1,J+l (2.49) 

.. 
where 

(2.50a) 

02 
26t (htz)I;J,J-l 

AI,J(BI,J + Bi,J-1) 
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{2.50b) 

-2t:.t (htz)I;J,J+l 
03 • -A- B + B 

I,J I,J+l I,J 
(2.50c) 

Once again the system of M-2 linear equations in M 
unknowns (where M is the number of stream tubes) 
must be solved simultaneously with the addition of 
boundary conditions at both banks. To develop the 
double-sweep method, firs t express the concentration 
in the tube J-1 as a linear function of the concen
tration in tube J: 

cn+l 
I ,J - 1 = EI,J-1 

cn+l 
I ,J + Fl,J-1" (2. 51) 

Substituting Eq. 2.51 into Eq. 2.49, 

Ol(E1 J- l 
cn+l 

FI J-1) + 02 cn+l 03 cn+l 
I,J + I,J + I,J+l 

' ' 
or 

en+ I 
I,J 

n 
-03 n+l Cl,J - Dl Fl,J-1 

(Dl EI,J- l + 02) ci,J+l + 01 EI,J-l + 02 . 

(2. 52) 

Comparing Eqs. 2.51 and 2.52, it may be seen that 

-03 
EI,J = 01 EI,J-1 + 02 

(2. 53 a) 

and 

~ 
~ 

:['i 
'.I ., 

i 
i: 
!t. 
:1 
i;' 

f 

i 

I~ 



n 
c1 J - Dl FI,J-l 

FI,J • of EI,J-l + D2 . (2.53b) 

Equations 2.51 and 2.53 represent concentration and 
sweep coefficient recurrence r elations, which may be 
used when the boundary conditions are employed. 

At the left boundary there can be no transverse 
diffusion. Thus 01 a 0, and 02 is writte~ for this 
special case as 

" 02 

and Eq. 2.49 is written 

* n+l cn+l n 02 c1 •1 + o3 " cr,1 · 1, 2 

By comparison with Eq. 2.51 , 

E • -
03 

1, 1 ... 
02 

and 

Thus the remaining values of E and F may be com
puted through tube M-1 and st ored for each computa
tional point I. 

At the right boundary, the same condi tion of no 
transver se diffusion applies , so that 03 = 0 and 
02 is written for this second special case as 

"" 02 

and Eq. 2 . 49 is written 

01 cn+l + oi" cnr+Ml • cni M" 
I ,M-1 , , 

Using Eq. 2.72, this may be rewritten 

Cn+l ) o"" cn+l n 
Ol(EI,M-1 I ,M + FI,M-1 + 2 l,M = cl,M 

or 

~+1 = C~ M - 01 FI,M-1 

I ,M 01 EI,M-1 + oi* 
(2 0 54) 

Note that the coefficients E and F are not needed 
n+l for tube M, and once c i,M i s found from Eq . 2.54, 

the remaining concentrations in each tube are computed 
using the stored E and F values , and the recur
rence relation Eq. 2.51. The entire process is re
peated at each computational point, the end result 
being a concentration field which has been convected 
and diffused transversely i n the time step . Al l t hat 
remains is t he computation of longitudinal diffusion. 
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2.6.3 Longitudinal diffusion. The implicit 
longitudinal diffusion computation is nearly identical 
to the transverse diffusion, but uses the same bound
ar y condi t ions as the l ongitudinal convection routine. 
The longitudinal diffusion porti~n of Eq. 2.37, 

(2.55) 

is written in implicit form as 

1 

[(AE:x)I,I+l;J 
(Cn+l cn+l) 

I+l,J lzJ 
xl+l - XI 

(Cn+l n+l 

- (AEX) I-1, I ;J 
I!J cr-1

1
J)] 

XI - XI-1 
(2.55a.) 

where the concentrations have already been convected 
and diffused transversely, x1+~ = (XI+l + X1)/2, 

and (Aex)I,I-l;J is the product of the average 
cross-sectional areas and di ffusivities in tube J at 
adjacent computa.tional points. 

Equation 2.55a may be r ewritten 

n+l Cn+l n+l 
Gl CI-l,J + G2 I,J + G3 c1+1,J 

where 

G2 

G3 

(2.56) 

(2.57a) 

(2.57b) 

) . (2.57c) 
XI 

To sol ve the system of N-2 equations in N unknowns 
again apply the two boundary conditions and use the 
double-sweep method. First, write 

cn+l n+l 
1-l,J = El-l,J ci ,J + FI-l,J" (2.58) 

Substitute Eq. 2.58 into Eq. 2.56: 

G1(E Cn+l + FI-1 J) + G2 Cn+1 + G3 Cn+l Cn 
I-1,J I,J , I,J l +l,J l,J 

or 

n 
Cn+l - G3 CI J - Gl FI-l,J 
I,J (Gl EI - l,J + G2) Cl+l,J + Gl El-l,J + G2 . 



Comparing Eqs. 2 . 58 and 2.59, 

-G3 (2.60a) 
Gl EI-l,J + G2 

and .· 

n 
CI,J - Gl FI-l,J 

Gl EI-l,J + G2 
(2.60b) 

At the upstream boundary the concentration c~:~ 
n+l 

is known, so by setting El,J • 0 and Fl,J = c1,J 

the boundary condition is satisfied and the remaining 
E and F values may be computed. At the downstream 
boundary assume that there is no longitudinal diffu
sion, so that 

cn+l 
N,J 

Then by Eq . 2.58 the rema1n1ng values of concentration 
are computed, and the process repeated for each stream 
tube. 

This completes the numerical solution of Eq. 2.37 
in one time step. The total solution may proceed for 
as long a time as desired, and the time step 6t may 
be changed whenever necessary. The input concentra
tion at the upstream boundary of each stream tube must 
be specified, and any initial concentration field may 
also be established on the computational grid before 
the computation begins. Appendix D contains a l isting 
of the complete computer program. Appendix-E des
cribes the recommended procedure for establishing 
stream tube dimensions. 

2.7 Practical Considerations in the Selection of a 
Computational Grid 

The selection of computational grid dimensions is 
governed by the convergence requirements of the numer
ical method, and by the computer time and storage 
availabl e. While it is always true that the smaller 
the time and distance steps, the more reliable the 
solution, it is seldom feasible to obtain the time and 
space resolution which is desired. It is the purpose 
of this section to outline the minimum requirements of 
the numerical method. 

2.7.1 Transverse computational points. At the 
furthest upstream reference section, the stream tube 
centerline locations (i.e., the transverse computa
tional points) are fixed arbitrarily by the user ' s 
specification of tube widths and/or discharges. But 
at downstream sections the tube centerlines must shift 
back and forth across the stream as the bulk of the 
river flow shifts; thus the user has little control 
over the location of the transverse computational 
points over most of the river reach . Nonetheless, the 
expected pattern of mixing can be taken into account 
in assigning stream tube dimensions at the upstream 
reference section; the tubes should be narrowest (the 
computational points closest together) in the region 
where most of the tracer is expected to be located. 
For injection at the right bank, for example, it is 
desirable to have most of the computational points 
near the bank throughout the reach. Equation 2.47 
shows that, in a rectangular channel, the numerical 
solution becomes more convergent as the spacing of 
transverse computat ional points decreases; moreover, 
the assumption that the ·terms labeled R in Eq. 2.36 
approach zero improves as the number of stream tubes 

19 

increases . Therefore it is always desirable to use as 
many stream tubes as possible. 

The recent use of remote sensing techniques in 
river mechanics has brought about an increased aware
ness of weak secondary cells in straight reaches of 
large rivers. These cells, as indicated by the col
lection of drift and foam along well-defined lines at 
the surface , appear to be quite stable, effectively 
partitioning the r each into parallel longitudinal 
elements. Although little is known about the detailed 
structure of these weak cells, it is evident that they 
could serve as bar riers to the gradient-type mixing 
assumed in Eq. 2.37. Whenever possible, evidence of 
these cells should be used to position stream tubes 
so as to enclose t he drift lines, and thus minimize 
the potential disruption of gradient mixing at the 
boundaries between stream tubes. 

2.7.2 Longitudinal computational points. The spacing 
of longitudinal computational points is governed by 
the convective, rather than diffusive, portion of the 
solution to the mass conservation equation, and de
pends to some extent on whether a steady-state or 
unsteady mixing process is being simulated. The 
steady-state concentration distribution resulting from 
continuous injection of tracer is independent of nu
merical dispersion considerations, as long as the 
simulation is run long enough for a true steady state 
to be obtained. Therefore the longitudinal computa
tional points must simply be spaced closely enough to 
reproduce the stream geometry in adequate detail, and 
positioned so as to provide transver se concentration 
distributions at points of significant interest. 

Simulations of unsteady dispersion require that 
more consideration be given to the spacing of longi
tudinal computational points. It is pointed out i n 
Sect . 2.4 that, for a fixed value of uAt/Ax, the con
vergence coefficient R2 approaches unity as L/6x 

increases, where L is the wavelength of one compo
nent of the Fourier Series solution to a simplified 
form of the convection equation. As a general guide
line the longitudinal concentration distribution i n 
any stream tube should be described by at least 10 
computational points; this demands that the longitu
dinal computational points be spaced more closely 
together near the source than further downstream. 
Furthermore, rapidly varying sources require a much 
closer spacing than unsteady but slowly varying 
sources. 

2.7.3 Time increments. The type of tracer injection 
also influences the choice of the time step 6t. For 
continuous injection, anomalous concentrations due to 
numerical dispersion are dissipated as the solution 
approaches a steady state, yet the time step must be 
small to obtain good convergence as demonstrated by 
Eq . 2.47. For unsteady injection, it is desirable to 
keep the parameter u6t/6x less than about 2.0 . The 
distance step Ax , although not necessarily constant, 
is fixed by the considerations of Sect. 2.7.2, and the 
velocity u is known at all locations. h satisfac
tory choice of At is made by considering the largest 
value of Ax/u to be encountered in the zone where 
significant mixing is expected to occur; 6t should be 
smaller than twice Ax/u. The time step need not be 
constant, and may be increased as the tracer moves 
downstream into regions of larger 6x. 

It is often advisable to check the choice of t ime 
and distance steps by first running the simulation for 
reasonable choices of At , 6x , and stream tube widths, 
then rerunning the simulation after decreasing each 
parpmeter individually. A satisfactory computational 
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model has been specified when the predicted 
concentration distribution is relatively insensitive 
to a further refinement of the grid and/or time step. 

2.8 Comparison of Numerical Predictions and Two 
Analytical Solutions •· 

The numer ical dispersion model described i n 
Sect. 2.6 is capable of producing approximat e solu
tions t o Eq. 1. 23 in situations where no analytical 
solution is avail abl e . But quantitative tests of the 
model ' s efficacy must necessarily be made in relative
ly simple flow fields, where idealized stream geometry 
allows analytical solutions to be obtained. Compar i
sons are made for the cases of (a) continuous injec
tion in a rectangular channel, and (b) instantaneous 
injection in a uniform shear flow. These comparisons 
should not be viewed as a verification of the model; 
it is known from the outset that the fini te difference 
solution to a partial differential equation may repre
sent a solut ion to an entirely different equation, as 
shown in Sect. 2.2 and Sect . 2 . 6 . 2. The comparisons 
are made so that the degree of approximation of the 
correct concentration distributions can be viewed for 
the entire solut ion , and so that the sensiti vi ty of 
the approximations to the computational grid dimen
sions can be tested . 

2.8.1 Continuous injection in a rectangular channel. 
One of the simplest dispersion situations is continu
ous vertical line source injection at the centerline 
of a rectangular channel with constant longitudinal 
velocity U at all transverse and longitudinal l oca
tions. Equation 1. 29 is a solution to Eq . 1.23 for 
these condi t ions, provided that t he method of images 
described in Sect. 1. 7 is used to reproduce the proper 
boundary conditions, and longitudinal diffusion is 
neglected. Using five reflection cycles as suggested 
by Sayre (1973) , Eq. 1. 29 may be written for this 
problem as 

C(x, z) 
2H(11 c x)li z 

-u 2 
[exp{4c\l 

z 

s 
+ L 

n=l 

n 2 
( {"U(nB+(-1) z) } 
exp 4c x 

z 

n 2 
(-U(nB(-1) z) ) )) 

+ exp 4tzx (2 . 61) 

The channel geometry and hydraulic paramet~rs were 
taken from Test 2 reported by Miller (1971); 

B • 2.0 ft, 
h 0.415 ft, 
U 1.75 ft/sec, 

2 
c

2 
0 .01039 f t /sec. 

A SO-foot length of channel was divided into computa
tional points one foot apart; a tracer f lowrate of 
0.145 ppb-cfs (parts per billion- cubic fee t per sec
ond) was i ntroduced at the upstream boundary. For the 
fir st simulation 11 stream tubes were used, and for 
t he second, 21 tubes; the two computational grids are 
sketched in Fig. 2 .6, and the stream tube dimensions 
are pr esented in Table 2.1 . Steady state concentra
tion distributions were obtained by allowing the up
stream concentrat ion in the centerline tube to rise 
from zero to its steady stat e value i n three time 
steps; approximately 50 more time steps, representing 
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about ten times the time required for the tracer to 
be convected through the channel, were run, until the 
concentr ations at the downstream boundar y were no 
longer changing f rom one time step to the next. 

The analytical solution (Eq . 2.61) and the 
numerical simulat ion results are compared on Fig. 2 . 7 . 
Both the l ongitudi nal centerline distribut ion and the 
transverse distribution at x • 25 feet indicate two 
significant things: first, the number of stream tubes 
did not significantly affect the simulation predic
tions, nor did the relatively wider stream tubes near 
the banks weaken the predictions there. Second, the 
predicted concentrations at the centerline ar e con
sistently too high by about 12 per cent , as if the 
simulation used a diffusivity which was too l ow and/or 
had an injection concentration which was t oo high. 
The error can be expl ained only by recalling that, as 
discussed in Sect. 2.6 . 2, the transverse diffusion 
discretization introduces an error which is the order 

of ~t and ~z2 , and is a consequence of t he numeri
cal differencing technique. The error should be put 
i nto proper perspective by noti ng that the model pre
dicts the concentration distributions within roughly 
10 percent as the peak concentration decays from as 
high as 40 ppb down to 0.1 ppb, or two order s of 
magnitude . 

2 .8.2 Instantaneous injection in uniform shear flow. 
The analytic solution most nearly approximating a 
field situation for unsteady injection is the jointly 
Gaussian distribution presented by Monin and Yaglom 
(1971) for instantaneous vertical line source injec
tion in an unbounded fluid of constant depth and 
havi ng a constant t ransverse gradient of l ongitudinal 
velocity, Eq. 1. 27. The situation is difficult to 
mode l numerically, for two reasons; first , the simu
lation can model only a finite, bounded fluid; second 
it can only accept injections of finite amplitude and 
duration. The first difficulty may partially be over
come by restricting comparisons to short dispersion 
times, before significant amounts of tracer reach t he 
model limits, and by using extremely broad stream 
tubes adjacent to the banks. The second difficulty 
can be minimized by using a source of high concentra 
tion at one computat ional point for one time step. 

The hydraul ic conditions for the comparison were 
as fol lows : 

H 1.0 ft . 
1 . 0 ft/sec, 

rz 2.857/sec , 

ex : 0.038 ft 2/scc, 

0 .13051 ft 2sec. 

u " 

The computat i onal grid is sketched on Fig . 2 .8 , and 
the stream t ube dimens i ons and vel ocities ar c summa
rized in Tabl e 2.2. The centerline tube is made nar
row to allow for an approximate "point" source, and 
the bank tubes are of exaggerated wi dth to approximate 
an unbounded fluid. The injection consisted of 
1000 ppb concentrat ion at x = .05 feet, tube 6, during 
the first time st ep, for an injection strength of 

0 . 10 ppb- ft 3. Figure 2 .19 compar es the numerical pre
dictions 0. 07 seconds after t he injection with the 
jointly Gaussian solution , Eq. 1.27. The three time 
steps used represent centerline Courant numbers 
u6t/6x of 0.5, 1.0, and 1.75; over this r ange the 
numerical solution is relatively insensitive to the 
time step . The numerical solution is in excellent 
agreement with the jointly Gaussian distribution at 



x • .08 feet from the injection, though the model 
consistently underestimates the centerline concentra
tions plotted longitudinally. The underestimation is 
due in large part to the noninfinite instantaneous 
point source concent ration used in the model; second
ary sources of error are the ~imit to upstream 

' 

diffusion at x = -.OS feet, and the second order 
approximation of th& finite-difference solution. But 
again, the predictions should be viewed in perspec
tive; the model predicts peak concentrations within 
20 percent over three orders of magnitude reduction in 
concentration. 
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Part II 

EXPERIMENTAL INVESTIGATION OF THE VARIATION 

OF TRANSVER~E DIFFUSIVITY IN A NONRECT ANGULAR CHANNEL 

Chapter Ill 

THEORETICAL AND EXPERIMENTAL BASIS FOR EVALUATION OF 

THE TRANSVERSE DIFFUSIVITY 

The analytical and numerical techniques for 
solution of the dispersion equation, described in 
Chapters 1 and 2, all are based on an assumption that 
turbulent mixing can be described as a gradient pro
cess thr~ugh direct analogy with molecular diffusion. 
~1oreover, the turbulent diffusion coefficients must be 
known before any of the solutions may be applied to a 
laboratory or field mixing situation. While there is 
a theoretical basis for estimation of the vertical 
turbulent diffusivity l , estimation of the compara-

Y 
ble transverse and longitudinal diffusivities, and 
especial ly the depth-averaged diffusivities ex and 

tz ' must be based primarily on experimental studies. 

It is the purpose of this chapter to review the 
theoretical ana experimental basis of the transverse 
diffusivity. Specific attention is devoted to the 
possibility that the diffusivity may not be constant 
within a cross section; Chapter 4 describes some lim
ited experimental results which bear on this question. 

The longitudinal diffusivi ty is largely ignored 
in this and following discussions, as it has been 
shown to have little effect on steady-state mixing 
from a continuous source, though it may be important 
in unsteady mixing (Holley, 1971). Transverse dif
fusion, rather than longitudinal , is the critical 
process influencing dispersion in rivers. 

3.1 Theoretical Basis of Turbulent Diffusivity 

The turbulent diffusivities appearing in Eq. 1.23 
absorb mixing due to molecular diffusion, turbulent 
vel ocity fluctuations, and depth-averaged differential 
convection. Recalling the assumptions leading to 
f:qs. 1.6 and 1.23, the depth-averaged t ransverse dif
fusivity ez may be written 

£ z 

ac y y 
e w C - w'c' m az-

(3 .1) 

where the straight overbar denotes a local time aver
age and all terms are depth-averaged. The three 
terms appearing in the right hand side numerator of 
Eq . 3.1 represent, respectively, the molecular, con
vective, and turbulent contributions to depth-averaged 
transverse mixing. Absorption of all three mechanisms 
lnto a single apparent diffusivity has little theoret
Ical basis , but is commonly j ustified by the computa
tional convenience of the resulting gradient -law des
cription of the depth-averaged mixing process . 

For flows in a prismatic channel , secondary 
circulation is generated only by differential resis
tnnce related to the channel shape, and may be con
~lucred negligible insofar as transverse mixing is 

conccrn~d (Holley, 1971). Thus w y = 0, and the 

diffurc:ntial convection term w Y C y in Eq. 3.1 
.t I S(lppears. Furt hermore, the molecular diffusivity 

is several orders of magnitude less than turbulent 
m 
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diffusivity, (Sayre and Chang, 1968), so that Eq. 3.1 
may be written for prismatic channels as 

E z 
(3.2) 

Equation 3.2 has an indirect theoretical basis 
through the Reynolds analogy between vert ical trans
port of mass and momentum in a turbulent boundary 
layer. Since the vertical transport of momentum per 
unit mass, - u'v', can be described as a gradient 
mixing process such that 

aii 
u'v' = E t ay • 

(3.3) 

where tt is the eddy viscosity, Reynolds hypothe

sized that 

v 'C' = E: ac 
Y ay 

(3.4) 

the analogy has been well establ ished for vertical 
mixing in wide open channels. 

The Reynolds analogy is especially attractive 
because it allows the direct estimation of the ver
tical diffusivity .. ·l . Noting that pu'v' is the 

~ y 
turbulent shear stress, which varies linearly with 
distance above the bed, and assuming that tt • e:y ' 
Elder (1959) obtained 

where 

e; 
y 

(1 - ~) u: 
ai:i;ay 

shear ve l ocity, (t / p) 112 , 
0 

bed shear stress, pgRhS , 

fluid density , and 
hydraulic radi us, cross-sectional area 
divided by wetted perimet er . 

(3. S) 

Assuming a logarithmic velocity distr ibution, Elder 
integrated Eq. 3.5 over the depth of flow to obtain 

(3 .. 6) 

where K is von Karman's constant, approximately 
equal to 0.4 . 

The development leading up to Eq. 3.6 is made 
possible py the requirement that the shear stress must 
vary linearly from a maximum at the bed to zero at 
the water surface. No analogous constraint can be 
placed on the transverse shear, i.e., pu 'w', to 
achieve a comparable result for transverse eddy vis
cosity and/or diffusivity. 



Recognizing that a transverse equivalent to 
Eq. 3. 6· could not be developed from theoretical 
considerations, Elder simply postulated that the 
transverse diffusivity can be written similarly as 

.· (3. 7) 

where K is a constant requ1r1ng experimental deter
mination. The analogy may be justified qualitatively 
on the basis of the strong correlation between verti
cal and transverse turbulent velocity fluctuations. 
It is important to note that Eq. 3.7, which is widely 
assumed to represent correctly the transverse diffu
sivity, suggests that transverse diffusion is attrib
utable entirely to bed-generated turbulence. Experi
mental results described in Chapter 4 suggest that 
this may be an incomplete description of transverse 
mixing. 

3.2 Experimental Determination of Transverse 
Diffusivity 

With few exceptions experimental determinations 
of £z have been conducted in rectangular channels, 

often with large width-to-depth ratios, and have 
utilized continuous tracer injection into a steady, 
longitudinally-uniform flow of constant velocity U. 
For these conditions the Gaussian concentration dis
tribution , Eq. 1.29, is expected, (for £x vanish-

ingly small), the variance of which is given by 

or, noting that 

time t = x/U, 

£ is a constant and the diffusion 
z 

(3.8) 

Thus to determine £z one need only compute the 

transverse variance of steady-state distributions at 
successive downstream locations, (before significant 
amounts of tracer reach the banks) , and find the slope 

2 
of a straight line fit to the plot of crz versus x. 

Equation 3.8 may also be obtained by taki ng the second 
z-moment of the appropriate simplified version of 
Eq . 1.23. The method has been applied to mixing in 
nonrectangular channels and nonuniform flows such as 
the Columbia River (Glover, 1964) and the Hissouri 
River (Yotsukura et al., 1967), using for U the 
discharge velocity Q/A. The resulting values of K 
have been summarized by Okoye (1970) and Prych (1970); 
K ranges from as low as about 0.1 in a straight 
laboratory channel, to about 0.7 in large natural riv
ers, with El der ' s value of 0.23 widely adopted for use 
in rectangular flumes and small canals . Fischer 
(1970) reported values of K as high as 2.5 in a 
curved laboratory flume, where the mixing due to 

w y C y was significant . 

Implicit in all the early analyses was the 
assumption that £z is constant within a cross sec-

tion; this appeared reasonable, since tracer was in
jected at the centerline of the channels, ~here there 
was little transverse variation of depth or velocity, 
or at the bank of a nearly rectangular channel 
(Fischer, 1970). The only mixing experiments conduct
ed in a zone of transverse variation of velocity or 

depth are those reported by Holley (1971), in which 
the effect of groin-generated turbulence on transverse 
mixing was investigated using bank injection; these 
experiments and their analysis are discussed in 
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Sect. 3.3 . 

The study of transverse m1x1ng in zones of 
roughly constant depth and velocity has provided use
ful general information on the mixing process in riv
ers; moreover, this type of mixing is amenable to 
analysis using Eq. 3.8 . Yet many pollutant spills 
occur at or near the bankline, where concentrations 
can be relatively high due to the limited depths 
available for dilution, and where transverse varia
tions of depth and velocity might influence the mix
ing. The transverse diffusivity in such a region has 
even less theoretical basis than in a region of con
stant depth and velocity; therefore recourse must 
again be made to experiments for information on the 
magnitude and variation of the transverse diffusivity. 

3.3 The Generalized Change of Moments Method 

3~3.1 Mathematical basis. The magnitude and 
distribution of the transverse diffusivity in a non
uniform flow in a channel of arbitrary shape can be 
determined by using the Generalized Change of Moments 
(GCM) method developed by Holley (1971). The method 
effectively extends Eq. 3. 8 to allow for transverse 
and longitudinal variation of depth, velocity, and 
transverse diffusivity, and allows for depth-averaged 
transverse velocities. Equation 1.23, written for 
steady-state mixing in a flow with negligible longi
tudinal diffusivity, becomes · 

a a ax (huC) + az (hwC) 

After assuming that E could be written z 

KcHx,z), 

(:>.9) 

(3 .10) 

where $(x , z) = some function of x and z, Holley 
took the second moment of Eq. 3. 9 with respect to z

0
, 

a refe.rence transverse coordinate, and integrated the 
result longitudinally to obtain 

2 - G) d(crhuC 
dF 

2K (3. 11) 

where 

ZR 
2 f huC zl dz 

2 ZL 
0 huC ZR 

(3.12) 

f hue dz 
ZL 

[ /' hi ac , ,, 

1 
az 1 

X ZL 
F f dx', 

0 ZR 

f huC dz 
ZL 



ZR 
2 I hwc z

1 
dz 

G 
ZL 

ZR 

f huC dz ,· 

ZL 

zL' zR .. = left and right channel boundary 
z-coordinates. 

h . 2 . h T e quant1ty crhuC 1s t e transverse variance of the 

tracer mass flux; the parameter F may be thought of 
as a modified length variable, (dimensions of length 
squared) which is always positive, since ac;az and 
z1 generally have opposite signs when z

0 
is taken 

as the transverse location of the peak concentration . 
G represents mixing due to net transverse velocities . 
Equation 3.11 is valid throughout the mixing zone, 
whether or not the tracer has reached the banks. For 
idealized ·conditions of u = U = constant, w = 0, and 
an infinitely wide channel, Eq. 3.11 reduces to 
Eq. 3. 8. 

The GCM method is quite a powerful tool for the 
estimation of transverse diffusivities using observed 
concentration distributions from continuous injection 
in a natural channel. The proper choice of the dif
fusivity function ~(z) should result in a linear 

2 
plot of (crhuC -G) versus F, the slope of which is 

2K. The generality of the GCM method is obtained at 
the expense of increased data requirements and compu
tations, including the need to estimate 3C/3z from 
scattered data points, and to estimate w by inte
grating the two-dimensional continuity equation as 
described by Holley (1971). For most applications the 
computation may be considerably simplified by assuming 
w to be negligible; the validity of the assumption 
may be checked by using the GOl-determined diffusi vi ty 
in a numerical simulation of the experiment. 

3.3.2 Application to Delft experiments . The GCM 
method was used to analyze groin-influenced mixing in 
laboratory and natural channels by Holley (1971) who 
proposed the following four possible diffusivity 
functions: 

E z 
K' 

1 u.H = K H3/2 
1 (3. 12a) 

u. 
£ z K' 2 -uh 

ua 
K

2 
uh (3.12b) 

£ z = K3 u.h K h3/2 
3 (3.12c) 

£ K' u h = K4
h (3 .12d) z 4 a 

where Ki, Ki, K3, and K4 are dimensionless con

stants, and K
1

,. K2, K3, and K
4 

are dimensioned 

constants for a particular cross section, 

Kl (gS)l/2 (3.13a) 

(3.13b) 
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K' (gS)l/2 
3 

K = K' U 
4 4 a 

(3.13c) 

(3.13d) 

Equation 3. 12a is the traditional constant -diffusivit:y 
assumption, equivalent to Eq . 3.7. The remaining 
functions have no theoretical basis, according to 
Holley, but simply introduce transverse variation of 
~z through local analogy with cross-sectional 

average parameters. Holley demonstrated that, partic
ularly for side injection into a trapezoidal channel, 
peak concentrations near the source are particularly 
sensitive to the choice of the diffusivity function. 

The difficulty of obtaining true time-average 
concentrations in an experimental dispersion study 
within reasonable constraints of time and effort 
precluded the drawing of firm conclusions from 
Holley's experiments , which were conducted at Delft 
Hydraulics Laboratory, the Netherlands. Indications 
were, however, that the functions which allowed trans
verse variation of diffusivity, i.e., Eqs. 3.12b-
3.12d, were more appropriate than the constant 
diffbsivity, Eq. 3.12a, in the laboratory channels 
with and without groins . In these channels the cross 
sections were approximately rectangular, the presence 
of groins accounting for most of the transverse 
velocity gradient. 

3.3 .3 Computational applicati on. The GCM method is 
applied to the experiments reported in Chapter 4. As 
suggest ed.by Holley (1971), the reference coordinate 
zo is taken as the centroid of the tracer flux dis-

tribution for inj ections at the centerline of a chan
nel, or as the coordinate of the bank for bank injec
tions. For injections at other locations, Holley 
gives no guidance as to the best choice of z

0
; but 

the GCM derivation requires that z
0 

not be a func-

tion of x, even though the centroid of a concentra
tion distributin shifts toward the center of the chan
nel as the tracer becomes completely mixed. Therefore 
the centroid of the distribution at the injection 
point is used in this case. 

The various terms in Eq. 3.11 are evaluated 
numerically using normalized concentration distribu
tions (described in Chapter 4) and the stream-tube 
discretization of the test channel, as described in 
Appendix E. Velocities, depths, and incremental 
widths are assigned to each measured concentration at 
a cross section by linear interpolation between depths 
and velocities previously assigned to stream tube cen
troids; velocities are assumed to be zero at the 
banks . The integrations of Eq. 3.11 are then approxi
mated by simple summations . 

The scatter in measured concentration 
distributions requires that special consideration be 
given to the evaluation of the concentration gradient , 
aC/az, appearing in F. If the functiona l form of the 
distribution is known a priori, it is possible to fit 
the function to the data using a least squares tech
nique; for example, considering centerline injection 
in a wide, rectangular channel, a Gauss i an distribu
tion can be fit to the data, and the gradient computed 
analytically. But in general the functional form is 
not known, especial ly in a natural channel. If the 
data define a smooth curve, a polynomial of appropri
ate order can be fit to sets of data points, and the 
gradient again computed analytically. The technique 
breaks down, unfortunately, when a particular data 



point does not follow the general trend of the 
distribution. 

These difficulties were obviated by using a 
linearization technique to compute the concentration 
gradients from data described~n Chapter 4. The 
technique averages the slopes of least squares lines 
fit to successive groups of data. Figure 3.la illus
trates the method applied to five data points , fit 
three at a time. Define the line by 

where a
1 

and a
2 

are the slope and intercept of the 

line, computed by standard formulas (see Carnahan et 
al., 1970). The slope a1 is computed for points 1, 

2, and 3, then for 2, 3, and 4, and finally for 3, 4, 
and 5, as shown on the figure. The appropriate slope 
at each data point is taken as the average of the 
slopes of the lines computed using that point. Thus 
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ac al(l,2,3) + al(2,3,4) + al(3,4,5) 

Caz) 3 • 3 

etc. 

The gradient thus assigned to each data point 
describes the general trend of the distribution with
out giving undue weight to an isolated bad point. The 
procedure is illustrated for three-point computations, 
yet an arbitrary number of points may be used. The 
tradeoff is between the need to use enough points to 
smooth the curve, without losing local gradient trends 
by using too many points. In practice, three-point 
fits were found to reproduce the general data trend 
most faithfully. Figure 3.lb shows the gradients thus 
computed for a typical set of concentration data from 
the ~lissouri River (Yotsukura et al., 1967); noting 
that the method is used only to estimate the gradients 
of the distribution at measured data points, the 
results are satisfactory . .. 

" ~· 
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Chapter IV 
TRANSVERSE MIXING EXPERIMENTS IN A TRIANGULAR FLUME 

Limited dispersion experi~ents were conducted in 
a l aboratory f l ume of t r iangular cross sect ion at 
Colorado State University from August through 
December, 1974. The purpose of these experiments was 
partially to verify the numerical model of Chapter 2 
in a nonrectangular channel , but primarily to test the 
hypotheses of Holley (1971), Eq. 3.12, i n a channel 
having transverse var iations of depth and longitudinal 
velocity. 

4.1 Goal and Strategy of Exper iments 

The choice of a channel shape for the experiments 
was governed by the need to maximize the effects of 
depth and velocity variations on the mixing process, 
while no·t violating the assumptions made in deriving 
Eq. 1.2~ , t he depth-averaged mass conservation equa
tion. Specifically, this required that transverse 
variations of depth not be so severe as to induce 
strong secondary flow cells which might do~inate the 
transverse mixing. Moreover, it was considered impor
tant approximately to reproduce prototype values of 
t he Froude number and width-to-depth ratio. The tri
angular cross section shown in Fig. 4.la was adopted 
as a reasonable compromise among several alternatives 
which included trapezoidal sections and a composite 
section of discrete rectangular elements; the Froude 
number was about 0.3 (based on average veloci t y) and 
the width-to-depth ratio was about 10, a minimum value 
for small streams and artificial canals. The Reynolds 
number, based on depth-averaged velocity and flow 
depth, ranged from about 5,000 near the flume wall to 
about 90,000 at the centerline; by comparison, Elder's 
(1959) experiments used a Reynolds number range of 
2,300 to 4,500. 

Once the cross-sectional shape had been selected, 
it was necessary to determine what types of water flow 
and tracer injection would most effectively amplify 
the effects of transverse variations of diffusivity. 
Steady water flow is required by the numerical model, 
and no particular advantage in using nonuniform flow 
was apparent. Therefore steady, longitudinally
uniform flow was adopted for all dispersion tests. 

An important question to be answered before the 
experimental program could be designed was whether 
continuous or instantaneous tracer injection would 
respond most cl early to the transverse variation of 
transverse diffusivity. The question had been studied 
using a mathematical model of the symmetrical compos
ite channel sketched in Fig. 4.2; longitudinal veloc
ities were computed by the backwater routine described 
in Appendix E. Tracer was inject ed at the upstream 
boundary centerline of the model by means of either 
continuous injection or as a short-period sine wave. 
Comparisons between the two injection methods were 
made by considering the effect of two diffusivity 
assumptions on the peak centerline concentrations 
resulting from each injection. Let w(x) denote the 
ratio of centerli ne concentration computed using 
t = . 23U H to the centerline concentration computed z .. 
using t = .23U / U uh; for the unsteady injection 

z " a 
w is evaluated using the peak concentration occurring 
at x during the passage of the tracer cloud. 
Figure 4.3a demonstrates that for both types of inj ec
tion, ~ differs from unity at most downstream loca
tions; t his simply verifies that the centerline con
centrations are i ndeed sensitive to the transverse 

variation of diffusivity. But w differs more 
great ly fr om unity for the unst eady inject ion , and 
this is significant, as it suggests that unsteady 
injection may be a better experimental technique for 
the detect ion of t:he proper distribution of transverse 
diffusivity when a transverse velocity gradient 
exists. However Fig. 4.3b indicates that, when the 
longitudi nal velocity is forced to be a constant in 
the entire flow field, the variation of ~ with x 
is relatively insensiti ve to the mode of tracer 
inject ion. 

In spite of the apparent advantages of 
instantaneous injection for detection of the proper 
transverse diffusivity function , there are three 
practical reasons why continuous injection is more 
attractive. 

(a) The diffusion of a single cloud of tracer 
represents a particular realization of the turbulent 

' flow field; another cloud may diffuse quite different
ly . Therefore the results of many instantaneous 
releases would have to be averaged to obtain a con
centration distributi on which is representative of 

26 

the time-averaged properties of the turbulent flow 
field. But for continuous injection, (an infinite 
superposition of instantaneous puffs) time averaged 
concentrati ons at fixed points are sufficient to 
describe the average turbulent mixing process. 

(b) Measurement of the diffusion of 
instantaneous injection clouds requires that multiple 
fixed probes or samples record the time history of 
concentration as the cloud passes . Continuous injec
tion mixing requires only that finite-vo lume samples 
be collected for later analysis using a single probe 
or i nstrument. 

(c) The· powerful Generalized Change of Moments 
method is applicable only to steady-state mixing 
resulting from continuous injection. 

For the above reasons, continuous tracer in jection 
was adopted as the more practical technique for use 
in these limited tests. But the potential advantages 
of instantaneous injection must not be overl ooked in 
future studies, especially if available resources per
mit the use of more extensive instrumentation. 

4.2 Experimental Equipment and Data Collection System 

4. 2.1 Flume and water circulation system. The 
experiments were performed in the 60- foot long, four
foot wide tilting flume belonging to the Agricultural 
Research Service, United States Department of Agricul 
ture, and operated at Colorado State University ' s 
Engineering Research Center. The facility recircu
lates water through a 1000-cubic-foot sump, a 12-inch 
return line, and a 0.45- foot orifi ce plate which is 
calibrated to measure discharge from 0 . 25 to 2. 5 cubic 
feet per second. 

The flume bottom, and consequently the invert of 
the triangular section built upon it, deviated con
siderably from a plane surface. Using a surveying 
level, the bottom contour was established as shown on 
Fig. 4.4; piezometer tubes mounted at either end of 
the flume and connected by a one-inch pipe indicated 
the net slope of the bottom, i.e., the slope of the 
dashed line on the figure. 



The exact dimensions of the triangular section, 
shown on Fi g. 4.1, wer e fixed by the standard dimen
sions of lumber used· to frame the false bottom as 
sketched on Fig. 4.5a . Artificial roughness was added 
using expanded metal lath placed over the entire bot
tom and dimensioned as shown on Fig. 4. Sb. The metal 
lath was chosen over discrete blocks or st rips because 
it generates turbulence uniformly, avoiding any local 
zones of accelerated mixing. Vent holes were provided 
through end and intermediate wedge supports to allow 
the underside of the false bottom to fill completely 
and thus avoid the possibility of the entire structure 
popping up should any unwanted leakage occur . 

4.2.2 Velocity measuring system. Time-averaged point 
velocities were measured with a 1/8- inch diameter 
Dwyer Pitot Tube; differential pressures were measured 
using a Validyne transducer with a 0.1 psi .diaphragm 
installed, connected to a Pace Model CD 10 Carrier 
Demodulator. Differential pressure measurements of 
from one to two minutes were recorded on a Hosley 
Strip Chart Recorder, connected i n parallel with a 
large capacitor to damp the turbulent fluctuations. 
The voltage trace on the strip chart was averaged by 
eye, and then the linear calibration between output 
voltage and velocity was applied to obtain a time
averaged, point velocity. The transducer calibration 
was obt ained using a t wo- chamber head tank with micro
meter point gauges, and a pitot-tube coefficient of 
unity was used as suggested by the manufacturer. The 
transducer calibration was found to be quite stable, 
as long as no air was allowed to accumulate in the 
pr essure lines . 

4.2.3 Dye injection system. The choice of a tracer 
injection system was governed by the need to inject 
over the full depth at a constant rate and with mini
mum disruption of the flow field . . These objectives 
were met by injecting t hrough a ·vertical 5/32-inch 
O.D. brass tube, plugged at the lower end, with 1/16-
inch holes drilled at 1/4- i nch centers over the full 
injection depth. Tracer was supplied by a five-gallon 
constant-head Muerriat vessel; the tracer flowrate 
was controlled by a Poly- Flo needle valve downstream 
from a Fischer and Porter Company Precision Bore Flow
rater, which accurately measures flows from 1 t o 200 
ml/min (millileters per minute). 

Rhodamine WT was chosen as the tracer material, 
of its availability and favorable characteristics as 
described by Wilson (1968). Test injection solutions 
were made up by diluting from four to six milliliters 
of 12 percent (by weight) WT solution in five gallons 
of flume water. Tracer solution was injected at 
140 ml/min, allowing as much as 135 minutes for a test 
run. 

4.2.4 Tracer sampling system. A siphon system was 
used to withdraw discrete water samples from the 
flume. The samplers were 18-inch- l ong, 1/16-inch ! .D. 
brass tubes bent 90 degrees at the bottom so that the 
tube openings faced into the flow direction. Once 
the siphons were primed, 1/8-inch !.D. Tygon tubes 
carried the sampl es over the flume walls and down to 
pint sample bottles. 

It was important to ensure that the sampling tube 
withdrawal velocity was about the same as the flume 
flow velocity at the sampling point , so that the 
sampling process would not affect the flow immediately 
upstream. The required siphon heights can be deter
mined by an application of the Bernoulli equation and 
a quick experiment. Let 6h denote the vertical 
distance from the water surface down to the open end 
of the siphon tube. Application of the Bernoulli 
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equation between the two ends of the siphon tube, 
assuming a constant diameter, constant friction fac
tor, and laminar flow, yields 

(4. 5) 

where u 
e 

is the siphon tube entrance velocity and c 

is a constant related to the tube dimensions and fric
tion factor. The constant could be computed, but a 
more reliable value was obtained experimentally using 
the actual siphon system. Tests in st i l l water 
showed that Eq. 4.5 is indeed linear, and that for 
this particular system c = 1.435 sec. The value was 
checked in an actual sampling configuration and found 
to be satisfactory. 

For any sampling location the local velocity u 
was known. Setting u = ue, 6h was computed, and 

the siphon tube opening was clamped at that distance 
below the water sur face. Four samples were collected 
at a time, over a period of from one to three minutes; 
individual sample volumes ranged from a quarter to a 
half pint. 

4.2 .5 Concentration measuring system. Samples 
collected from the flume were analyzed using a Turner 
Model 111 Fluorometer. The instrument was recalibrat
ed using standard solutions before each test; sample 
temperatures were recorded frequently, and all fluoro
metric dial readings were adj usted to the calibration 
temperat ure , following the procedure suggested by 
Wilson (1968). The fluorometer calibrations were 
found to be quite stable, and linear. Samples taken 
near the tracer inj'ection often read off-scale, and 
had to be diluted using flume water before the concen
tration could be determined. 

4.3 Test Procedure 

Before any dispersion tests were conducted, the 
hydraulic characteristics of the flume flow were 
measured in detail . This process included a trial
and-error establishment of approximately uniform flow, 
and the detailed measurement of velocities and water 
surface elevations throughout the flume . 

Each dispersion test began with the m1x1ng of an 
injection solution in the ~!uerriat vessel, the con
centration of which was made strong enough to ensure 
good resolution of concentrations at the downstream 
end of the flume . Once the flume flow had reached 
steady state at the desired discharge, the injection 
was turned on and allowed to stabilize. Sampling 
was begun at the downstream end of the flume, and 
moved progressively upstream through a total of seven 
cross sections . Sufficient time was allowed to ensur e 
that the siphon lines were f ully purged between 
samples. The ent ire process occupied about two hours 
for one test. 

The limited sump capacity of the Agricultural 
Research Service flume made it especially important to 
monitor the buildup of background concentration as the 
test progressed. A grab sample was taken in the head
box upstream of the injection point as each set of 
four samples was being siphoned downstream. Then the 
fluorometer dial reading of the background sample was 
subtracted from the reading for each test sample be
fore concentrations were computed, effectively giving 
the concentration with respect to the background 
level. While thi s procedure correctly adjusted the 
observed concentrations, it did not account for the 
steady decrease of effective tracer· injection strength 

!• 
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as the test progressed. That the decrease in strength 
was occurring can be seen by imagining an unlimited 
supply of tracer solution of fixed concentration C

0
, 

injected continuously into a recirculating f l ume water 
supply until the flume concent~tion, Cf' approached 

c
0

; the injection strength, given by q
0

(C
0 

- Cf)' 

would approach zero. 

The decrease in effective injection strength· was 
not of sufficient magnitude to cause any concern in 
the tests reported herein. For all tests C

0 
was 

about 10
4 

ppb, while the background concentration Cf 

rose from 0 ppb to about 30 ppb during a typical test. 
The maximum change in source strength was thus less 
than one-half of one percent during a test . 

4.4 Analysis of Test Data 

4. 4.1 Hydraulic conditions. Two flume roughness 
configurations were used, and approximate uniform 
flow was established for each. For dispersion tests 
A, B, and C, the expanded metal lath covered the 
entire flume bottom; the center half of the metal lath 
was removed for tests D, E, and F. Table 4 . 1 lists 
the overall hydraulic characteristics of each flow. 
The energy slope S was estimated by adding observed 
water surface elevations to the known flume invert 
elevations with respect to a horizont al datum, thus 
taking into account the waviness of the invert; the 
velocity head was approximately constant at all longi
tudinal locations, as the flow was essentially uni
form. Note that the discharge cross-sectional area, 
and average velocity for each flow were approximately 
equal, though the slopes were different to compensate 
for the different roughnesses. 

It was recognized during the planni ng of the 
experimental program that to have a high relative 
roughness in the shallow areas near the flume wal~s 
could induce sufficient secondary flow to dominate the 
turbulent mixing process. For this reason a low
roughnes s , flat-slope flow was considered best, even 
though it might mean that the energy slope could be 
difficult to measure. The flow cross-sectional area, 
the mean velocity , and thus the discharge were chosen 
to produce the desired water surface elevation and 
Froude number; then the bed slope and the flume tail
gate were adjusted until the centerline depth was 
approximately constant throughout the flume . The 
expanded-metal-l ath roughness, whi l e achieving the 
goal of a uniform roughness wi thout inducing signifi
cant secondary flow, was still relatively smooth, as 
reflected in the energy slope and Manning roughness 
coefficient in Table 4.1. The drop in water surface 
elevation from one end of the flume to the other was 
less than the deviations of the ~avy bottom from a 
plane surface, and the water surface, or energy, slope 
could not be measured with any precision over such a 
short distance. Moreover, the full-roughness flow was 
so smooth that removal of the center half of the 
metal - lath mesh had only a small effect on the depth
averaged velocity distributions, to be discussed 
shortly. The secondary flow strength was qualitative
ly estimated by observing the transverse movement of 
surface floats and/or instantaneous point source dye 
clouds as they moved downstream from various trans
verse injection points. No net transverse movement 
could be observed over a 40-foot l ength, suggesting 
that the turbulent mixing process would not be too 
strongly influenced by secondary flow. 

28 

In summary, the need to m1n1m1ze secondary flow 
effects demanded that the energy slope be so flat that 
it could only roughly be estimated. The slopes in 
Table 4 . 1 were obtained using a least-squares fit to 
the water surface elevations above a horizontal datum; 
but note that the total drop in water surface 
elevation was less than 0.3 feet over a length of SO 
feet . 

Complete time-averaged ve l ocity measurements were 
made at five longitudinal locations for tests A, B, 
and C, and at three locations forD, E, and F. From 
these measurements it was evident that the flow became 
fully developed in the first twenty feet downstream 
from the headbox. Figure 4.6 shows the time-averaged 
velocity contours at x = 40 feet for the full rough
ness flow, and at x = 30.6 feet for the half-rough
ness. From the contours it is evident that the flow 
was essentially symmetrical about the cent erline, and 
that the centerline velocities ~ere actually lower 
for the half-roughness flow. The smoother center 
section of the half-roughness flows causes a thinner 
turbulent boundary layer, allowing the depth-averaged 
velocity to be closer to the bed, thus reducing the 
velocities at the surface. Figure 4.7, a plot of 
depth-averaged velocities for both flows, shows also 
that the depth-averaged centerline veloci ty is de
pressed relat ive to the full roughness f l ow, although 
continuity is preserved by higher velocities in the 
region half-way to the flume wall. This behavior 
cannot directly be explained without mor e extensive 
velocity measurements; it most likely represents the 
effect of weak secondary velocity cells on either side 
of the centerline, generated by the roughness dis
cont inuities at z • 0.92 feet and z E 3.08 feet. 

4.4.2 Dispersion test data. Since the mat hematical 
modef and the GCM analysis both deal with depth
averaged concentrations, it was necessary to obtain 
depth-averaged values in the laboratory experiments. 
The experimental effort could be greatly simplified by 
taking concentration samples only at mid-depth, as a 
satisfactory approximation to an actual depth-aver
aging process . Two tests were conducted to test the 
efficacy of t his approximation , using t est B and F 
conditions . Figure 4.8 shows the observed vertical 
concentration distributions at two transverse posi
tions at each of two longitudinal positions , for in· 
jection at the centerline and at z = 3.0 feet. From 
these data i t is apparent that mid-depth sampling 
should provide a reasonable estimate of the depth
averaged concentration . 

Three cont inuous -injection dispersion tests were 
performed in each of the two roughness configurations, 
half and full . The primary variable among these tests 
was the injection location, which is listed with t he 
source solution strengths in Table 4.2. For each test 
the injection was at x = 18 feet; mid-depth samples 
were taken at seven cross sections from x = 20 feet 
to x a SO feet. Transverse sampl e locations were 
chosen so as to describe the transverse concentration 
distribution i n sufficient detail; for test s C and F, 
which used centerl ine injection, most samples were 
taken on only one side of the centerline, with a few 
on the other side to check the symmetry of the distri
bution. The measured distributions from al l tests are 
presented after the following discussion of concentra
tion normalization and adjustment. 

At steady state, the measured tracer flowrate 
should be the same as the injection tracer f l owrate 
for a conservative tracer. Nonetheless , factors 



such as experimental error in measuring 
concentrations, loss of dye through seepage in a river 
or leakage in a flume, and chemical decay of the 
tracer can cause the observed tracer flowrate to devi
ate above or belo~<~ the injection strength. Figure 4. 9 
is a plot of the recovery ratio ,. RR, versus x for 
all six tests, where RR is de£ined as 

4 
I huCdz 

RR "'.:..,0 ..---
Coqo 

(4. S) 

' The recovery ratio for tests Band E is greater than 
unity at x = 20 feet, just downstream of the source, 
and remains above unity for most of the mixing region. 
This strongly suggests that the measured injection 
vessel concentrations were inaccurate, which is quite 
possible due to the need for a large dilution of the 
injection solution sample before it could be analyzed 
on the Fluorometer. Since the injection concentra
tions were subject to error, it is more instructive to 
consider the trend of values on Fig. 4.9 than the 
numerical value of the recovery ratio. Ideally, for 
a particular test RR would not deviate from its 
value at x = 20 feet . That it deviates a fair amount 
for most tests suggests that samples of larger volume 
and longer duration should have been taken to obtain 
more representative time averages at a point. Other 
sources of error undoubtedly include the mid-depth 
sampling, Fluorometer errors, and some loss of dye due 
to leakage. 

k~atever the cause of recovery ratio deviations 
from unity, it is necessary to adjust measured con
centrations so that continuity of tracer is preserved. 
This was done at each cross section by dividing each 
concentration by the recovery ratio, thus uniformly 
increasing or decreasing the concentration magnitudes. 
The adjustment may be combined with a normalization 
technique whereby the concentration magnitudes reflect 
the relative strength of the injection source. 
Specifically, each adjusted concentration C

8 
is 

divided by the concentration which would result if the 
injected solution were fully mixed over the cross sec
tion, C q /Q, to yield a normalized concentration 

0 0 
c . 

n 
Thus, writing both the adjustment and the normal-

ization together, 

c Q 
4 
I huCdz 
0 

(4. 6) 

Thus recovery-ratio adjustment and source-strength 
normalization may be accomplished in a single step. 

The normalized concentrations for all six tests 
are shown on Figs. 4.10 to 4.1S. Note that for the 
centerline injection, tests C and F, some of the data 
points for z < 2.0 feet are not actual measurements, 
but are mirror images of measured concentrations on 
the opposite side of the centerline. 

4 .4 . 3 Analysis of dispersion t est results. The 
measured concentration distributions were used to de
tect the proper assumption for transverse diffusivity 
through a two-stage process. First, the normalized 
distributions for each test were analyzed using the 
General ized Change of Moments method for each of the 
first three suggested diffusivity assumptions, 
Eq. 3.12a-c . Although the fourth assumption, 
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Eq. 3.12d, appeared to be most appropriate for 
groin-influenced mixing in Holley's (1971) experi
ments , it was not suggested by Holley as a potential 
general diffusivity function, but rather as a special
ized function for mixing in grained channels . There
fore the applicabi lity of Eq. 3.12d was not investi
gated in this study. 

Application of the GOt method to the test data is 
summarized in Figs. 4.16 through 4.21, which show 

the resulting plots of o~uC versus F. It is imme

diately evident from these plots that the scatter of 
data points is sufficiently great to preclude using 

the apparent linearity of a o~uC versus F plot to 

detect the proper diffusivity assumption. But the 
2 slope dohuC/dF of each line may be determined using 

a least squares fit, and the proper coefficient K 
thus established for each possible assumption as if it 
were the proper one, using Eq. 3.11 . The variances 
at x = SO feet for ~ests A, E, and F departed signif
icantly from the general data trends, and thus were 
not used in the least squares computations . Since 
concentration sampling began at X = SO feet for all 
tests, the anomalous variances are probably a conse
quence of allowing insufficient time for the steady 
state distribution to develop before sampling was 
begun . 

The resulting least -squares K values are listed 
in Table 4.3, along with the mean coefficient values 
for each flume roughness configuration, half and full. 
If one of the three <liffusivity functions analyzed is 
the correct description of the mixing process , then 
the coefficient K for that function should be a 
constant property of the flow conditions. Thus the 
averaging of K values for each flow condition, i .e . , 
half and full roughness, should provide an estimate 
of the proper K for each function in that flow, 
regardless of the injection location . Note, however, 
that the K values for test A were quite high com
pared to tests B and C. This fact, coupled with the 
obviously severe GCH dat a scatter for test A as seen 
on Fig . 4.16, lends suspicion to the validity of the 
test A GCM results. Therefore the full roughness K 
values were obtained by averaging only test B and C 
results. 

In the second stage of the analysis, the complete 
diffusivity functions for each assumption were used in 
a numerical simulation of the experiments, thus pro
viding a direct means of detecting the proper assump
tion through comparison of observed and simulated 
distributions. The hydraulic characteristics of the 
model were established using the velocity distribu
tions shown on Fig. 4.7; Table 4.4 lists the param
eters of the 21-tube models developed for the full and 
half roughness flows; the stream tube arrangements are 
sketched in Fig. 4.16. Input concentr ation distribu
tions were taken as the observed normalized distribu
tions at x c 20 feet, reproduced within the con
straint of fixed stream tube transverse positions. 
The models were run for at least five times the slow
est transit time through the mixing region, to ensure 
that steady-state predictions were obtained. 

The numerical model predictions, using the mean 
diffusivity values for each roughness as in Table 4.3, 
are plotted with the normalized test data on 
Figs. 4.10 through 4.1S. The "predictions" at 
x • 20 feet for each test are actually the stream
tube equivalents of the observed distributions; the 



apparent low simulation values are a result of the 
need to spread the contribution of high point values 
of concentration over stream tubes of finite width. 
As expected, the predicted concentrations distribu
tions resulting from injection at the centerline 
and at z • 3.0 feet (tests 8, C, E, and F) are 
fairly insensitive to the assumed diffusivity 
function; but the side-injection simulations, tests A 
and D, clearly show that a constant diffusivity, 
Eq. 3.12a, best reproduces the peak concentrat ions at 
the bank. Note also that, considering tests B and E, 
the constant-diffusivity simulations predict a more 
rapid movement of t .he peak concentration to the bank 
than the other two diffusivity assumptions, and in so 
doing better predict the observed data at the bank. 

The concentration distributions could be better 
reproduced by the numerical simulations if the exact 
K values for each test were used in the simulation. 
The use of the averaged values in Table 4.3 is more 
consistent with the assumption that, if the proper 
diffusivity function is used, K should be a constant 
for the flow conditions. 

4.5 Discussion of Test Results and Data Analysis 

~tuch of the data scatter in the recovery ratio 
plots , the measured concentration distributions , and 
the GCM analysis is due to the limited nature of the 
experimental program. A more extensive program would 
have taken longer samples, probably of at least five 
minutes duration, and would have obtained depth-aver
aged concentrations by averaging samples taken at 
multiple locations along a vertical line, rather than 
relying on mid-depth concentrations as an approxima
tion to depth averages . Also , a more complete program 
would include multiple tests of the same flow and in
jection conditions, to check the reproducibility of 
the data. 

The major conclusion of the experimental program 
is that the assumption of a constant t ransverse diffu
si.vity is more appropriate than the two other assump
tions suggested by Holley (1971), at least for the 
particular triangular section tested. The conclusion 
is based essentially on the resul ts of the side-injec
t ion tests A and E, for both of which the constant
diffusivity assumpt ion reproduces the peak concentra
tions and the general shape of the distributions quite 
well. Since the conclusion is based on the numerical 
simulation rather than the GCM analysis, it is impor
tant to be sure that the results do not depend on the 
particular stream tube arrangement used in the model. 
Table 4.5 lists the specifications of an alternate 
21-tube model. Stream tubes have now been concentra
ted on the right side of the flume, where most of the 
mixing takes pl ace in a side-injection test; Fig. 4.lc 
is a sketch of this alternate configuration. Test D 
was res imulated using the alternate model and the same 
K values used previously for the half roughness flow. 
Figure 4.22 shows the results of the simulation, and 
clearly demonstrates that the changed stream tube 
discreti zation had no effect on the conclusion that 
the constant diffusivity best reproduces the t est 
data . The consistent underestimation of peak concen
trations is due to the fact that the simulation uses 
the average K1 for tests D, E, and F, which is 

higher than the value for test D alone as shown in 
Table 4.3. 

There is little theoretical basis for a rational 
explanation of the apparent constancy of the trans
verse diffusivity in the triangular channel. 
Chapter 3 points out that the functional form of 
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transverse diffusivi ty in a rectangular channel, which 
i s supposed to describe mixing due to transverse 
vel ocity fluctuations, is assumed by analogy 1;i th 
vertical diffusivity, which describes mixing due to 
vertical velocity fluctuations. Evidently the analogy 
is acceptable in channels of roughly constant depth, 
but in a channel with transverse variations of depth 
and velocity, a transverse shear must contribute to 
transverse mixing of mass; yet the analogy with verti
cal diffusivity takes no account explicitly of trans
verse shear . In the sha llow flow near the flume lo/all, 
the proximity of the free surface to the bottom limits 
the scale and intensity of vertical turbulent fluctua
tions, and, due to a strong correlation, transverse 
fluctuations. Yet the transverse shear, as reflected 
in the transverse velocity gradient, is greatest near 
the wall. At the centerline, on the other hand, ver
tical turbulent fluctuations can be of larger scale 
while the transverse shear is negligible . The net 
effect of the two contributions to transverse mixing. 
one bed-generated and the other transverse-shear
generated, might be a roughly constant transverse 
diffusivity across the entire section. 

The values of Ki for the test data, which can 

be obtained from the K
1 

values in Table 4.3 using 

the depth and estimated slope, are f rom two to three 
times larger than those reported in the literature for 
rectangular channels. But as discussed earlier, the 
energy slope could not be measured • .. dth any precl.SlOn 
for these tests, and this undoubtedly accounts for 
some error in t he apparent Ki values . However, it 

is also quite possible that the transverse shear in 
the triangular channel is reflected in a Ki value 

which is higher than the values found in rectangular 
channels where bed-generated turbulence governs the 
m1x1ng process. The higher Ki values reported by 

Okoye (1970) ~ere from natural, nonrectangular chan
nels ~here transverse shear could well have dominated 
the mixing. 

The above arguments are heuristic at best. But 
they serve to illustrate the fact that past analogies 
between hed-generated turbulence and transverse dif
fusivity are incapable of describing the effects of 
transverse shear. There is a great need for a de
tailed analysis of the i nteraction between vertical 
and transverse shear in producing apparent transverse 
diffusivity; experimental studies must include mea
surements of the transvetse velocity-concentration 
covariances, as reported for vertical mixing by Keefer 
(1971). 

The probl em of assigning diffusivities to the 
overbank flow area when a river is at flood stage is 
not addressed by the single-channel experiments dis
cussed here. It is possible to have distinct changes 
in depth, roughness, and velocity at the bankline in 
such a case, suggesting that the overbank flow be 
treated as a separate channel insofar as mixing prob
lems are concerned. Thus a constant transverse dif
fusivity should be assigned to each of the quasi
separate channels . using the functional form of 
Eq. 3.12a, and using Okoye's (1970) review for 
guidance as to the proper value of Ki· 

A secondary conclusion to be drawn from the 
experimental program is that the numerical model des
cribed in Chapter 2 provides an effective and versa
tile means of estimating steady-state transverse 
max1ng in a nonrectangular channel, once the diffusiv
ities are known. 



Part I ll 

APPLICATION OF MODEL TO FIELD PROBLEMS 

Chapter V 

TRANSVERSE MIXING IN THE MISSOURI RIVER 

It is the purpose of this chapter to illustrate 
the application of the numerical dispersion model to 
steady-state mixing in a natural river. A six-mi le 
reach of the ~lissouri River was chosen for the appli
cation, since its hydraulic and mixing properties were 
reported in detail by Yotsukura et al. (1967) . 

5.1 Description of Field Experiments 

The study reach, immediately downstream from 
Blair Highway Bridge in Io1~a. 1~as selected by 
Yotsukura et al . because of fairly gentle meandering 
over a six-mile reach, the availability of a bridge 
from which to inject the tracer, and minimum river 
traffic. Figure 5.1 shows the general alignment of 
the reach, in h'hich the average Nidth and depth were 
about 600 feet and nine feet , respectively, for the 
test discharge of 34,100 cfs. A Rhodamine R~ solution 
was injected at a constant rate for four hours near 
the center of the river at the Blair Highway Bridge. 
Steady-state concentration distributions were measured 
at ten cross sections downstream from grab samples 
taken f rom a boat. These di stributions, combined wi th 
detailed depth and velocity measurements taken at t~o 
cross sections in the reach, are the basis of compari
sons with the numerical model. 

5. 2 Adaptati on of l!ydraulic and r.eometric Data to 
:>lumerical ' lodel 

The availability of velocity and depth data at 
only two cross sect i ons required that data be assumed 
for the rest of the reach. The measured sections were 
just above the injection site, at mile 648.5, and 
midway through the reach, at mil e 645.0; these veloc
ity distributions were distributed over the reach as 
suggested by Yotsukura et al. At the injection point 
and at station 5, the mile 648.5 distribution was as
sumed to apply. At mile 645 the measured distribution 
was used, and its mirror image was used at the mid
point bet1veen stations 8 and 9. The mirror image of 
mile 648 .5 was used at station 10. At each of these 
five reference sections the cross-sectional area was 
assumed to be the same as the source section; depths 
were thus uniformly adjusted as the widths were in
creased or decreased to correspond to known channel 
widths. Table 5.1 summarizes the reference section 
locations and adjustment factors. 

Eleven stream tubes of equal discharge were 
assigned to each of the two source secti ons by the 
procedure described in Sect. 2.6.2; Fig. 5.2 shows the 
resulting stream tube configurations and velocity dis
tributions. • Table 5.2 summarizes the stream tube 
dimensions and velocities at each reference section 
after width and depth adjustment; a constant energy 
slope of 0.0002 for the entire reach was suggested by 
Yotsukura et al. Longitudinal computational points 
were established at approximately 600- foot intervals; 
ten of the 54 total points were at the dye sampling 
stations sho~~ on Fig. 5.1. 
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5.3 Generalized Change of Moments Analysis 

Concentration distributions as reported by 
Yotsukura et al . were normalized as described in 
Sect. 4.4.2, then analyzed using the Generalized 
Change of ~loments method (assuming w = 0). In view 
of the apparent invariance of the transverse diffusiv
ity as discussed in Sect. 4.4.3, and the general 
insensitivity of centerline injection mixing to the 
diffusivity function, only Eq. 3.12a was tested. 

2 
Figure 5.3 presents the curve of ahuC versus F; the 

relationship is linear within the l imits of data scat
ter, and indicates an apparent Ki value of 0.63. 

This is in good agreement with the value of 0.60 
determined by Yotsukura et al. through a trial-and
error application of the steady-state numerical model 
described in Sect. 1.9. It should be noted that 
Yotsukura et al. attempted to apply Eq. 3.8 to this 
nonuniform flow, and obtained Ki = 0.71 using con-

centration variances from the injection location down
stream to stati on 7, where significant amounts of 
tracer began to reach the banks. The GCM method, on 
the other hand, utilized all ten distributions and 
took account of transverse variations of depth and 
velocity. 

5. 4 Simulation of Field Experiments 

The G01-determined value of K' was used with 
1 

the observed concentration distribution at station 1 
to simulate the field mixing experiment. Steady-state 
distributions were obtained by running 37 time steps 
of 12 minutes each for a total time of 7. 4 hours, 
compared 1~ith a transit time through the reach of 
about 1.5 hours. Figure 5.4 shows the predicted and 
measured normalized concentrations at seven of the 
sampling stations; the station 1 "predictions" are 
simply stream- tube equivalents of the observed tracer 
flowrate. Peak concentrations are generally estimated 
well, as are the shapes of the distributions. Appar
ent transverse shifts of the predicted distributions· 
as compared to measured ones are no doubt a conse
quence of the rather gross use of only t1~0 measured 
cross sections to describe the entire reach. 

The prediction described above is not unique but 
corroborates the results obtained by Yotsukura et al. 
using the steady-state model described in Sect. 1.9 
with 20 stream tubes and a slightly different assumed 
stream geometry. The comparison ~as made further to 
verify the numerical computational method , to demon
strate its utility, and to confirm the rather large 
value of Ki previously reported . Results indicate 

that this large value is indeed appropriate, thus 
supporting the demonstrated need for further analyti
cal and experimental studies of the magnitude and 
variation of transverse diffusivity in natural 
channels . 

!::: 
'I· 

·' 



CHAPTER 6 

UNSTEADY MIXING IN CLINCH RIVER 

The strength of the numeri~al model rlescribed in 
Chapter 2 is i ts capability of predicting unsteady 
mixing in nonuniform flow, to include cyclical injec
tion from a submerged outfall, or sudden injection 
from, say, a barge collision anywhere in a river. Yet 
experimental data for these types of unsteady mixing 
simply are not available. Unsteady mixing experiments 
have been performed only for the special case of in
stantaneous plane source injection, to test the one
dimensional mixing assumption of Sect. 1.8, and to 
evaluate the overall longitudinal mixing coefficient 
Kx. It is the purpose of this chapter to verify the 

numer ical model to the extent possible for instantan
eous plane source injection, and then to demonstrate 
the utility of the model by simulating unsteady bank 
injection into nonuniform flow. 

6.1 Description of Field Experiments 

Godfrey and Frederick (1970) reported eleven 
tests conducted in natural rivers to test the one
dimensional dispersion assumption. Their test 10, 
performed on a straight, four-mile reach of the Clinch 
River, near Speers Ferry, Virginia was selected for 
the model application . In that test, detailed 
velocity and topographical data were first obtained at 
six cross sections . Then radioactive tracer was in
jected at the upstream limit of the reach; it took 
about one minute t o distribute the tracer over the 
entire cross section. Concentrations of the passing 
cloud were determined at five downstream stations, at 
each of which radiation detection equipment recorded 
the time history of centerline concentrations at an 
unspecified distance below the water surface. 
Table 6.1 summarizes the hydraulic and geometric 
properties of the six reference sections. 

points , it was necessary to use 6x • 250 feet near 
the source. Knowing u and 6x, it was important to 
use 6t less than 100 seconds to keep u6t/6x ap
proximately equal to or less than unity. Computer 
program output constraints made it more convenient to 
use an initial time step of only 30 seconds. The sim
ulation could have been run using these time and dis 
tance steps throughout, but some economy could be 
achieved by increasing them as the distribution spread 
out in time and space . Based on the observed distri
butions reported by Godfr ey and Frederick (1970} , the 
distance step 6x was gradually increased so as to 
describe the distribution by at l east 10 points every
where. The maximum allowable time step was corres
pondingly increased gradually to keep u6t/6x approx
imately equal to unity. Table 6.3 summarizes the time 
and distance steps finally used in the simulation. 

A more typical field application would not have 
the benefit of concentration distributions known a 

' priari , obviously. For such a case it is best first 
to compute 6x and 6t using the assumed concentra
tion input, and to run the full simulation using these 
conservatively small values. Once the approximate 
dispersion pattern is known from the simul ation, 6x 
and 6t may be increased as above to minimize compu
tational cost on repetitive trials. 

Transverse and longitudinal diffusivities were 
chosen as if no special information was available. 
The diffusivities were assumed to be constant within a 
cross section, as traditionally assumed and supported 
by the results described in Chapter 4. Elder' s (1959) 
coefficients, also commonly accepted, were adopted, so 
that 

E:x 5.93 u .. H (6. 1a) 

6.2 Adaptation of Hydraulic and Geometrical Data to and 
Numerical Model 

Eleven stream tubes of equal discharge were 
assigned to each of the six reference sections as des
cribed in Appendix E; Fig. 6.1 shows the resulting 
stream tube configurat ions, the dimensions and veloci
ties of which are tabulated i n Table 6.2 . The first 
SO feet from the left bank at section 1 had no flow , 
and thus was ignored in the stream tube 
discretization. 

6.3 Simulation of Field Experiment 

Since neither the rate of tracer injection nor 
the injection concentration were known precisely, the 
simulation used for the measured concentration distri
bution at section 1, x = 2,260 feet, as upstream in
put . Although only centerline concentrations were 
measured, it was necessary to assume the same concen
tration-time curve for each stream tube at section 1, 
as if the dispersion upstream of x = 2 ,260 feet was 
due entirely to turbulent diffusion, with no spr eading 
due to differential convection. 

Time and distance steps were chosen so as to 
minimize numerical dispersion without requiring exces
sive computer memory and/or computation time. The 
input distribution, shown on Fig. 6 .2, was spread over 
about 18 minutes, or, using an average velocity of 
about 2.5 ft/sec, 2,700 feet. In order that the dis
tribution be described by at least 10 computational 
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(6 .lb) 

Note that Eq . 6.1a represents longitudinal diffusion 
due both to turbulent fluctuations and to differential 
convection related to the vertical gradient of veloc
ity. The simulati on was run for two hours , i.e., long 
enough for most of the tracer to be convected out of 
the reach; this required 80 seconds of computation 
time on the CDC 6400 digital computer at Colorado 
State University. 

Direct comparison could not be made between the 
neasured concentration-time curves (at specific loca
tions) and the computed concentration-distance curves 
(at specific times). Nonetheless, a rough comparison 
can be made by converting a computed concentration
distance curve to an equivalent concentration-time 
curve using the convective velocity of the tracer 
cloud, and assuming no change in the shape of the 
distribution as it passes the station in question. 
The computed curve at t = 0.61 hours, which peaked 
at x c 8,970 feet, was transformed to a concentra-

o 
tion-time curve peaking at t • 0.62 hours (to cor 

o 
respond to the me.asured section 3 distribution) by the 
relation 

X - X 
t t - 0 

0 u;- (6 . 2) 



where 

t 
t 

0 

X = 

u c 

equivalent time corresponding to x, 
time of peak concentration passage at 
measured section , 
longitudinal coordinate of simulated concen
tration value, 
location of peak concentration for simula
tion, and 
convective velocity of tracer cloud . 

The convective velocity Uc' taken from Fig. 6.4 

(to be discus sed further) was about 3 ft/sec. 
Figure 6 . 2 shows the measured and computed curves; 
units of concentration are microcuries per cubic feet . 
The trailing edge oscillations in the computed curve 
are an inevitable consequence of the finite-difference 
computation, and are caused by t he different ial celer
ities of Fourier Series solution components as pre
dicted by Eq. 2.33; the sample computation for pure 
convection shown in Fig. 2.4 displays the same oscil
lations. Fortunately, however, the oscillatory be
havior always occurs on the trailing edge of a distri 
bution, whereas the leading edge and the peak 
concentrations are generally of most practical impor
tance in pollution problems. 

The computed concentrations appear to begin 
rising sooner at x = 8,170 feet than the measured 
ones; the error i s due i n part to the effects of 
numerical dispersion, and the transformation of the 
concentration-distance curve t o a concentration-time 
curve. But it also suggests that Elder's coefficient 
of 5.93 may overestimate the longitudinal diffusion, 
at least upstream of this particular location. Note 
al so that the simulation underestimates t he peak con
centration by 17 percent; but Fig. 6.3, which compares 
peak concentrations over the entire reach, indicates 
that at most locations t he simulation predicts 'peak 
concentrations quite well. Figure 6.4 shows also that 
the celerity of the peak centerline concentration was 
accurately predicted by the simulat ion. It is impor
tant to recognize that the celerity is determined by 
the interaction between differential convection and 
transverse diffusion; the apparent value of about 
3 ft/sec from Fig. 6.4 falls between the mean stream 
velocity of approximately 2.6 ft/sec and the center
line velocity of approximat ely 3.3 ft/sec. Moreover , 
the good general agreement of the simulation predic
tions with experimental results reinforces recent 
criticism of the one-dimensional mixing concept 
(Section 1.8) in natural rivers; Nordin and Sabolt 
(1974) showed that the Clinch River experiments could 
not be modeled as a one-dimensional Fickian process. 

The simulation's accurate prediction of the 
Clinch River experimental resul ts provides a strong 
argument for its efficacy and utility. Neither cali
bration nor coefficient adjustment were required; 

topographic information, water surface elevations, and 
velocity measurements were input along with tradition
ally assumed diffusivities to provide mixing informa
tion essential ly as good as that obtained by a costly 
field experiment. 

6.4 Simulation of Hypothetical Unsteady Bank 
Injection 

A final demonstration of the numerical model's 
utility is its application to the predict ion of mixing 
resulting from the injection of a slug of pollutant 
near the bank of a river. Such a situation might 
result from a temporary breakdown of mechanical 
equipment in a sewage treatment plant or chemical fa
cility, such that untreated waste is discharged 
through a submerged outfall for a short period of 
time. Outfalls are designed to provide as much ini
tial dilution as possi bl e, so that complete mixing 
over the depth is an acceptable first assumption. 

The Clinch River was again chosen for the 
simulation; the computational grid and time steps were 
l eft unchanged from the instantaneous plane source 
simulation described earlier. A full sine wave 
concentration curve of period 15 minutes and peak 
concentration 100 ppb was input into tube 2 at 
x = 2, 260 feet: 

C(t) = 50[1 - sin~~(;~O + rl l (6. 3) 

where t is in seconds . The simulation was run for 
two hours , long enough to convect the cloud through 
most of the reach, and for three diffusivity combina
tions, as follows: 

5 .93 u.H. cz • 0.23 u. H 

o, c
4 

• 0.23 u.H 

0, 0.23 u.tu uh 

Run (a) represents conditions normally assumed; (b) 
tests the influence of the longitudinal diffusivity; 
and (c) tests the influence of nonconstant transverse 
diffusivity (Eq. 3.12b) in this channel. Figure 6.5 
shows the results of the simulation at two times, one 
only 16 minutes after the start of the injection, the 
other after 71 minutes. At each time the transverse 
concentration distributi on is shown at three arbitrary 
x-locations, showing the three-dimensional shape of 
the tracer cloud . Two conclusions are immediately 
evident: first, the mixing is quite insensitive to 
the magnitude of the longitudinal diffusivity ex, 

as has been suggested in the literature (Sayre and 
Chang, 1968; Holley, 1971). Second, i n this channel 
the distribution of transverse diffusivity has only a 
minimum influence on the mixing process . 



CONCLUSIONS 

The primary objective of t.his study was to 
develop and apply a numerical model for the prediction 
of time-dependent mass dispersipn in natural streams. 
Numerical diffusion in the computation of streamwise 
convection is eliminated by using the double- step 
implicit- explicit second order method described by 
Peaceman and Rachford (1955); numerical dispersion can 
be minimized by judicious choice of time and distance 
steps. Computation time and computer storage require
ments are kept reasonably conservative by the use of a 
tri-diagonal matrix solution technique for the impli
cit computa~ions . The overall result is an easily
appl i ed model for the computation of both steady-state 
and time-dependent depth-averaged mixing of a conser
vative, neutrally-buoyant pollutant in steady but non
uniform channel flow of arbitrary cross section. Both 
longit udinal and transverse diffusion are computed ; 
depth-averaged transverse velocities are taken into 
account, and mixing due to transverse secondary circu
lation can be absorbed i n the transverse diffusivity, 
which need not be constant within a cross sect ion. 

The numerical model was ver ified against 
analytical solutions for simplified flow fields. 
Comparison with solutions for a cont inuous · vertical 
line source in a rectangular channel of constant ve
locity, and for an instantaneous vertical line source 
in an unbounded fluid having a constant transverse 
gradient of longitudinal velocity, indicated that mod
el provides sat isfactory prediction of t he· analytical 
concentration distributions. Model predictions are 
relatively insensitive t o the magnitude of time and 
distance steps used in the numerical computat ion. 

The secondary goal of this invest igation was an 
experimental determination of the variation of trans
verse diffusivity i n a triangular laboratory channel. 
The capabi lity of numerical model s to allow the trans
ver se diffusivity to vary within a cross section ex
poses a need for information on not only the magni
tude, but also the distribution of the diffusivity 
within a cross sect ion . The experiments were designed 
specifically to test the diffusivity functions pro
posed by Holley (1971). Analysis of steady-state con
centration distributions resulting from continuous 
injection at the bank and at two other t ransverse 
positions indicates that the traditional constant dif
fusivity assumption best reproduces the observed dis
tributions. The apparent invariance of the transverse 
diffusivity represents an interaction between bed 
shear and transverse shear, the relative contributions 
of which cannot yet be determined. 
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Application of the numerical model to two field 
exper iments confirms its utility. The previously 
reported constant transverse diffusivity in a reach of 
t he Missouri River was verified using Holley ' s (1971) 
Generalized Change of ~loments method, and a numerical 
simul ation of the continuous-injection experiment 
using minimal hydraulic and geometric data success
fully reproduced the measured concentration distribu
tions. The model's capability for predicting time
dependent mixing was demonstrated through comparison 
with an instantaneous plane source injection experi
ment performed on the Clinch River. The decay and 
convective velocity of the peak centerline concentra
tion, as well as the general shape of the longitudinal 
centerl ine concentration distributions, were predicted 
quite well by the numerical model. The predictions 
used commonly accepted values for longit udinal and 
transverse diffusivity, requiring no adjustment or 
calibration to reproduce the observed behavior. 

Appl ication of the model to predict 
time-dependent mixing from a hypothetical vertical 
line source near one bank of the Clinch River con
firmed the insignificance of longitudinal turbulent 
diffusion for most situations. Moreover , these simu
lations demonstrate that, in an approximately rectan
gular channel, predicted concentration distribution s 
are insensitive to the assumed variation of transverse 
diffusivity. The applicability of the numerical model 
should further be tested through comparison with 
mixing experiments in nat ural rivers using vertical 
line sources of f i nite duration. 

This study has demonstrated that a relatively 
simple finite difference model can successfully pre
dict time-dependent concentration distributions in a 
river. But the predictions are no more accurate than 
the transverse diffusivity assigned by the user. The 
diffusivity is assumed to describe mixing due to mo
lecular diffusion, turbulent velocity fluctuations, 
and differential convection; yet existing theory and 
experimental investigation have been focused solely on 
the relationship of diffusivity to bed shear. There 
is a need for a better theoretical and experimental 
under standing of ·the individual contributions of sev
eral components comprising transverse diffusivity. 
Specific effort should be devoted to the mixing con
tribution of transverse gradients of longitudinal ve
locity and secondary circulation in bends. 
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APPENDIX A 

TABLES 

Table 2.1. Stream Tube Dimensions and Injection Table 2.2. Stream Tube Dimensions and Velocities, 
Concentrations·: Rectangular Channel Uniform Shear Flow 

11-Tube Mode 1 21-Tube Model Width Velocity 
Tube 8' u 

Tube Width Injection Tube Width Injection (ft) ( ft/sec) 
8' Concentration 8' Concentration 

(ft) (ppb) (ft) (ppb) 1 10.000 0.000 

1,11 0.55 0 1,21 0.55 0 2 0. 100 0.000 

2, 10 0.20 0 2, 20 0.10 0 3 0.100 0.286 
3,9 0.10 0 3,19 0.10 0 

4,8 0.10 0 4,18 0.05 0 4 0. 100 0.571 

5, 7 0.04 0 5,17 0.05 0 5 0 .095 0.850 

6 0.02 10 6,16 0.05 0 6 0.010 1.000 
7,15 0.05 0 

8,14 0.02 0 7 0.095 1.150 

9' 13 0.02 0 ~ 8 0.100 1.430 

10, 12 0. 0075 0 
9 0.100 1. 710 

11 0.005 40 
10 0.100 2.000 

11 10.000 2.000 

Table 4 .1. Hydraulic Test Data 

Tests A,B,C Tests D,E , F 

Q(cfs) 1. 69 1.69 

A(ft2) 1. 53 1. 56 

IT (ft/ sec) 1.11 1.08 

R(ft) 0.37 0.37 

S(ft/ft) 0 .00052 0.00025 

1/3 n (sec/ft ) 0.0158 0.0112 

u. (ft/sec) 0.079 0.055 

Froude No. 0.32 0.31 

Table 4.2. Dispersion Test Injection Data 

Injection Injection Injection Injection 
Test Roughness Location, Concentration Rate Strength 

z c qo qoCo 0 0 

{fli {EEbl (ml/minl (EEb-cfsl 

A Full 4.0 3.Sxl04 140 2.884 

B Full 3.0 4 .9xl04 14 0 4.038 

c Full 2.0 5.4xl04 140 4.450 

D Half 4.0 4.3xl04 140 3. 543 

E Half 3.0 4.8xl04 140 3.955 

F Half 2.0 
. 4 

6.2xl0 140 5.109 
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Table 4.3 . Results of Generalized Change of Moments 
Analysis for Test Data 

Least-Squares K'for 
.· Indicated Diffusivity Function 

Test K' U*H ~ !!&. uh K~ u. h 1 - II 
:1 

A 0.45(l) 0.50(l} 0.48(1) 

8 0. 30 0.20 0.18 

c 0. 34 0.27 0.25 
Average of 

0.32(2) 0.24(2) 0.22(2) 
Tests A,B,C 

0 0.55 0. 48 0.45 

E 0.67(1) 0 .39(1) 0.35(! ) 

F 0.63{l) 0. 50(l) 0 . 48 (1) 

Average of 

Tests O,E,F 0.62 0.46 0.43 

(1} Excludes variance at x"SO ft. 

(2) Full-roughness averages formed using test B and C results only. 

Table 4.4. Stream Tube Parameters for Numerical Model of Triangular Channel 

Full - Roughness Flow Half - Roughness Flow 
8' h u 8' h u 

Tube (ft) (ft) (ft/sec) (ft) (ft) (ft/sec) 

0.1 0.0996 0. 4925 0.1 0.1098 0.2350 

2 0 . 2 0 . 1435 0 .7486 0.2 0.1540 0.5800 

3 0.2 0.2020 0.8274 0.2 0.2130 0.7200 

4 0.2 0.2605 0.8865 0. 2 0.2720 0.8500 

s 0.2 0.3190 0.9456 0.2 0.3310 0.9950 

6 0. 2 0. 3775 1. 0047 0.2 0.3900 1. 1000 

7 0.2 0. 4360 1.0737 0.2 0.4490 . 1.1550 

8 0.2 0. 4945 1.1426 0.2 0.5080 1.1950 

9 0.2 0.5530 1.2116 0.2 0.5670 1.2050 

10 0.2 0 .6115 1.2608 0.2 0.6260 1.1950 

11 0.2 0.6700 1.3002 0.2 0.6850 1.1830 

12 0.2 0. 6115 1.2903 0.2 0. 6260 1.2000 

13 0.2 0.5530 1.2707 0.2 0.5670 l. 2200 

14 0.2 0.4945 1. 2214 0.2 0.5080 1.2150 

IS 0.2 0.4360 l. 1525 0 . 2 0.4490 1.1750 

16 0.2 0.3775 1. 0934 0 . 2 0. 3900 1.1160 

17 0.2 0.3190 1.0145 0.2 0.3310 1.0000 

18 0.2 o. 2605 0.9357 0 . 2 o. 2720 0.8500 

19 0.2 0. 2020 0.8471 0. 2 0 . 2130 0. 6650 

20 0.2 0.1435 0. 7584 0.2 0. 1540 0. 5350 

21 0. 1 0.0996 0.3940 0.1 0.1098 0 . 2250 
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Table 4.5. Stream Tube Parameters for Alternate Numerical I ' Simulation, Test D 

B' h u 
Tube (ft) (ft) (ft/sec) 

1 
.. 

1.0 0.:?425 0. 7708 

2 1.0 0.5375 1.:?090 

3 0.5 0. 6113 1.2141 

4 0.4 0.4785 1.2090 

5 0.3 0.3753 1.0881 

6 0.2 0.3015 0.9420 

7 0.1 0.2573 0.8060 

8 0.09 0.2292 0. 7254 

9 0.08 o. 2042 0.6650 

10 0.07 0.1820 0.6096 
• 

11 0.06 0.1629 0.5743 

12 0.05 0.1466 0.5239 

13 0.04 0. 1333 0.4165 

14 0.03 0.1230 0.~044 

15 0.02 0.1157 0 . 2243 

16 0.01 0.1112 0.1762 

17 0.01 0.1083 0.1442 

18 0.01 0.1053 0.1121 

19 0.01 0. 1024 0.0801 

20 0.01 0 . 0994 0.0481 

21 0 . 01 0.0965 0.0160 

Table 5 .1. Missouri River Source Reference Sections 

X Source Width Width Depth 

Section adjustment adjustment 

(ft) (mile) (ft) factor factor 

0 648.5 601 1.0 1.0 

11,850 648.5 627 1.043 0.958 

17' 105 645 738 1.0 1.0 

25,050 645* 631 0.855 1.170 

32,970 648.5• 509 0 .847 1.181 

* denotes mirror image 
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Table 5.2. Missouri River Reference Section Stream Tube Parameters 

Sect ion 1 2 3 4 5 
X = 0 f t X ,. 11,850 ft X • 17,105 f t X = 25 , 050 ft X = 32,970 ft 

Tube B' h u B' h u B' h u B' h u B' h u 
(ft) (ft) (ft/sec) (ft) (ft) (ft/sec) (ft) (ft) (ft/sec} (ft) (ft) (ft/sec) (ft) (ft) (ft/sec) 

1 213 6.3 2.3 223 6.0 2.3 191 5.6 2.9 67 10.4 4 .5 42 15.5 4.8 

2 90 8.3 4.2 94 8.0 4.2 81 7.1 5.4 37 12.0 7.0 26 16.9 7.0 

3 49 10.4 6.1 51 10.0 6.1 58 9.2 5.8 40 12.0 6.5 19 19 . 3 8.5 

4 38 11.7 7.0 40 11 . 2 7.0 67 9.4 4.9 28 12.0 9.3 17 19.1 9.6 

s 32 13.0 7.5 33 12.5 7.5 48 10.0 6. 5 38 u.s 7.2 24 18.3 7. 1 . 
6 28 14.1 7.9 29 13.5 7. 9 48 9.4 6.9 41 11.0 6 .9 24 16.6 7.9 

7 28 15.5 7.2 29 14.8 7.2 44 9.8 7.2 41 11.7 6.5 27 15.3 7. 5 

8 20 16.2 9.6 21 15.5 9.6 33 10. 3 9.1 57 11.0 5.0 32 13.8 7.0 I 

I 
9 22 16.3 8.7 23 15.6 8.7 47 10.3 6.4 so 10.8 5.8 42 12.3 6.1 

10 31 14.3 7.0 32 13.7 7.0 43 10.3 7.0 69 8.3 5. 4 76 9.8 4 . 2 

11 so 13.1 4.8 52 12.6 4.8 78 8.9 4 . 5 163 6.6 2.9 180 7. 4 2.3 
f 

Table 6.1. Clinch River Channel Geometry and Flow Data I 
Section 2 3 4 5 6 l 

x(ft ) 2,260 5,170 8,170 11,800 15,300 19,300 

B(ft) 200 165 160 183 175 166 

H(ft) 5. 70 5.31 6.50 7. 43 7.37 8.92 

S(ft/ft) .0012 .00078 .00058 .00044 .00044 .00040 

Q(cfs) 3,030 2,820 3,150 3 , 070 2,960 3,010 

U(ft/s ec) 2.66 3.22 3.03 2.26 2.29 2.03 
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Table 6J 2. Clinch River Reference Section Stream Tube Parameters 

1 2 3 4 5 6 
Section X " 2. 260 ft X • 5,170 ft X • 8,170 ft X • 11,800 ft X • 15,300 ft X " 19,300 ft 

Tube 8' h u 8' II u 8' h u 8 ' h u 8' h u 8' h u 
•(ft) (ft) {ft/sec) (ft) (ft) {ft/sec) (ft) (ft) (ft/sec) (ft) (ft} {ft/sec} (ft) (ft) (ft/sec) {ft} (ft} (ft/ sec) 

. ' 
1 27 6.2 1.6 32 4. 1 2. 1 33 4.5 1.8 40 6.0 1.1 33 6. 0 1.4 31 5.0 1.8 

2 10 6. 4 3.6 13 6.1 3.5 13 7.6 2.8 14 9.3 2.1 13 7.9 2.7 17 10.2 1..6 

3 11 6.3 4.0 12 6.4 3. 6 12 8 .0 2.9 12 8.8 2.6 12 7.9 7..9 10 11.8 2.3 

4 8 8 .6 4.0 13 5.9 3. 6 12 7. 5 3.0 11 8.6 2. 9 11 8.5 2.9 8 11.9 2.9 

5 9 8.0 3.8 14 5.3 3.7 10 8.0 3.4 11 8. 3 3.0 13 8.2 2.6 7 11.4 3.4 

6 12 5.5 4 .2 11 6.6 3.8 9 8.9 3.4 11 8.0 3. 1 11 8.6 2.9 10 11.2 2.4 

7 6 6.2 7.3 11 6.4 3.9 8 9.4 3.6 11 8.0 3. 1 13 7.3 2.9 9 11. 1 2. 7 

8 7 7.5 5. 2 8 6.2 5.5 10 7. 8 3.5 10 7.5 3.6 12 7.4 3.1 10 10. 9 2. 5 

9 9 8.0 3.8 10 6.9 4 .0 9 8.9 3.4 12 7. 3 3. 1 11 8 .6 2.9 13 10.7 2.0 

10 12 8. 1 2.8 12 6.4 3.6 11 7.9 3.6 13 7.3 2.6 13 9.3 2.3 14 9.3 2.1 

11 35 6.7 1.2 27 4.2 2.4 31 4.5 2.0 36 5.5 1.4 32 5. 5 1.6 33 5. 9 1.4 

Table 6.3. Clin<:h River Simulation Time and Distance Steps 

Distance Time 

Range Ax Range lit 

(ft) (ft) (hours) (sec) 

2,260 - 3,715 100 0.0 - 0.067 30 

3,715- 9,985 200 0.067 - 0.683 60 

9, 985 - 13,550 275 0.683 - 1.383 120 

13,550 - 17,300 300 1. 383 - end 180 

17,300- 19,300 350 
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APPENDIX 8 

FIGURES 
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A PPENDIX C 

ANALYSIS Of SEVEN ADDITIONAL FINITE DIFFERENCE 

METHODS FOR THE COMPUTATION OF CO NVECTIO N 

The double-step implicit-e~plicit scheme 
describ-ed in Sect . 2. 4 was chosen from eight schemes 
initially considered. In t his Appendix t he r emaining 
schemes are presented, and their numerica l character
i st ics are ·summari zed without detailed der i vat ion . 

A. Asymmetrical explicit scheme, fi rst order . This 
relatively simple scheme is used in Sect . 2. 2 to dem
onstrate. numerical diffusi vi ty. 

n+l 
~, 

I 
I 

n ~- ..... ' 
X 

I-1 I ·l+l 

Fig. C. l. Scheme A Discretization 

Figure C.l shows the computational method, whereby 
Eq . 2.2 is written 

en• 1 - en 
I+l 1+1 

llt 

(en en 
u I+l - I 

+ llX 0. 

For thi s scheme 

and 

1/2 
R1 • [1+2r (l-r) (cos ot.x-1)] 

a rctan --· ? • 
( 

r sin ot.x ) 
i - CluX l -2r s n - 2-

uoAt 

(C2) 

The scheme is unstabl e for r>l, stable and non
diffusive for r=l , and int roduces numeri cal di ffusion 

for r<l. R2 isequaltounitywhen r= l and 1::..>4 
llx ' 

but is generally less than unity for other values . 
The method is computationally attractive due to the 
possibility of a direct, single calculati on for each 
concentration at each time step, but obvi ously suffers 
from numerical diffusion problems if r<l , as it must 
be at most locations in a natural channel. 

B. Asymmetrical i mp licit scheme, first order . 
Figure C. 2 i ndi cates 

n + l .... --
\ 
I 
I 

n J 
I - I 1 J+ l 

X 

Fig . C. 2. Scheme B Discretization 
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that this scheme is just an implicit version of 
Scheme A. Equation 2. 2 is written 

and 

Cn+ l - Cn u (Cnl++ll - Cnl+l) 
_:..I •_l:.__..::.I_•.:...l + O 

llt llx 

R • [1+2r(l•r) (1-cos ollx)]-l/2 
1 

r sin ollx 

(C3) 

It may be noted t hat R1<1 , a lways , (unless llx=O) , 

so t he scheme is uncondit ionally stable but diffusive. 
L For al l values of r and 6X• R2<1, and numerical 

dispersion can be quite severe for r>2 and ~<SO. 
X 

Thus the method offers no major advantage i n spite of 
the greater computational complexity demanded by the 
implicit discretization. 

C. Symmetrical implicit scheme, first order. Some 
improvement over the first order implicit scheme can 
be gained by using a center ed space 

n -1 ------....... 
\ 
\ 
I 
I 
I 

n t/ 
X 

I - 1 1 I+ I 

Fig . C. 3. Scheme C Discret izat i on 

derivative as on Fig. C.3 . Equation 2. 2 is written 

n•l en n+ 1 n+ 1 
CI - I + 

u(CI+l - CI-1 
0 

lit 2llx 

and 

[
arctan (r sin allx)J 

R2 • uollt 

Again the method is unconditionally stable but 
diffusive although R1 tends to be closer to unity 

then for the asymmetrical method. The scheme is also 
d1spersive, but R

2 
tends to be closer to unity than 

for the asymmetrical method. 

D. Symmetrical explicit "leap frog" method , second 
order. By st epping t he time der i vat i ve back

wards~centered.explicit method can be made 

i' 
' 

! ' ~ 

'I 

:.• 

,i, 
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I 
n -J ~I 
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X 

Fig . C. 4 . . Scheme D Discreti zat ion 

almost nondamping . As shown in Fi g . C. 4, Eq. 2 . 2 can 
he written 

0 

where for r~l , R
1
=1, 

for r >l , R1=-r sin ollx±(r 2 . 2 l / 2 Sln ollx- 1) 

ar ctan r s i n ollx 
2 2 

crllxJ 112 
and for r~l , R = +(1-r sin 

2 uollt 

Thus f or r> l the method i s uns t able . But f or r<l 
it is s t abl e and nondampi ng; moreover , for r~l , R~ 

appr oaches unity rapidl y as L increases . llx 

E. Symmetrical explicit "leap f r og" method, fourt h 
or der . Fourt h order accuracy can be added to the 

explicit l eap frog met hod by extendi ng t he space deri
vat ives . As suggested in Fig . C. S, Eq . 2. 2 i s written 

3 cc i+2 - cr_zl _ 
1 n n . ] . 

- 4t.x - 0 · 

n+ I 
~', 

.... ---L.., ...... __ 
--- ~-J--

__ ... 
n 

n-1 
I 

I- 2 I- 1 I 1+1 1+2 
X 

Fig . c. 5. Scheme E Discretization 

It t urns out t hat 

Rl for r < 1 ' and 

R2 > for r > 1. 

Also, for r<l , 

[ !:.cs s i n aflx - s i n 2ollx) 

L ±4-~2 (8 sin crllx - sin 2crllx) 2 

ar ctan 

ucrll t 
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The method is stabl e and nondamp.ing for r< l , but Rz 

can r each nearly 1 . 4 before converging back toward 1.0 
L . 

as ~ 1ncreases . 

F. Doubl e-step implicit- expl icit scheme , four th 
or der. An ext ensi on of t he space der i vatives 

gives fourth or der accuracy t o the method first des
cribed in Sect . 2 . 4. As shown on Fig . C. 6, Eq . 2. 2 
is written i n t wo parts as 

fo l lowed by 
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Fig . C.6 . Scheme F Discr et ization 

A derivation s i milar t o t hat of Sect . 2. 4 shows t hat 

and 

2 ar ctan [TI(S sin ollx - sin 2 oAx ) J 
R2 = crullt 

0. 

As is the case with i ts second-order count erpart, 
t his method i s unconditiona l ly stable and nondamping . 
However the addi tional fourt h-order complexi t y re
sul t s i n on ly a s light i mpr ovement i n the numer i cal 
dispersion characteristics as displayed by R

2
. 

G. Doub l e- step pr edi ctor-corr ector scheme. A minor 
variat ion of t he second-st ep time derivative in the 
double- s t ep i mpl icit - expl ici t scheme of Sect . 2 . 4 
can reduce th e numerica l di spersion . With refer ence 
t o Fig. c. 7. , t he firs t half-step is applied to 
Eq. 2. 2 to yield 

n+!t n • 'i 

(CI+ l - CI- 1) 
+ u 2Ax 0 

I 

t 
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I 



and for 

n+ 
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n 
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Fig. C.7. Scheme G Discretization 

the second step 

n+l n n•~1 n+1: 

c - ci (Cl + 1 - el-I) I 0 + u 2llx llt 
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The coefficient s R1 and R2 must be computed for 

two conditions. 

For r sin ollx ~ 2, 

r
2 . 2 -1/2 R = ( 1 + -- s1n crx) 

1 4 

and 
arctan <f sin o6x) ±arctan [-r sin oOx(4-r2 sin2 oOx)·l/2) 

R2 • • uo6t 

For r sin ollx > 2, 

r sin crllx ( 2 . 2 4) 1/2 
Rl 

±_r s1n crllx -

(2 + r 2 sin2 crllx) 112 

and (r . ollx) + 'IT/2 arctan 2 Sln 

R2 uollt 
• 

Here R1 i s less than unity always, so the method is 

unconditionally stab l e but also damping, compared to 
the nondamping characteristics of the parent scheme, 
Sect. 2. 4. Thus the slight improvement in numerical 
dispersion characteristics is obtai ned at the expense 
of numerical dampi ng. 

i 



APPENDIX D 

DESCRIPTION OF DISPERSION MODEL COMPUTER PROGRAM 

The dispersion model as described in Chapter 2 
and Appendix E is programmed in Fortran IV, and as 
presented here is written for the CDC 6400 computer. 
The program consists of the fol l owing major elements: 

SUBROUTINE GEOMIN - Reads stream tube data from 
permanent file. 

SUBROUTINE DATAIN - Reads time history of source 
injection at upstream end of each t~be; supplies 
appropriate injection concentration for each tube 
at any time during the simulation. 

SUBROUTINE UANDDI - Computes longitudinal and trans
verse diffusi vities for all stream tubes at al l 
computational points. 

SUBROUTINE CONCEN - Executes the dispersion simulation; 
revises time step, requests output. 

SUBROUTINE CONVECM- Solves Eq. 2.38 for one time step 
using the second order implicit- explicit double 
step scheme. 

SUBROUTINE DIFFUS - Solves Eq . 2.48 for one time step 
using the centered fully implicit scheme . 

SUBROUTINE LODIFF- Solves Eq. 2.55 for one time step 
using the centered fully i mplicit scheme . 

SUBROUTINES LABEL, EDIT, EDIT 3 - Print out complete 
concentration fields and stream tube data. 

Incl uded in this Appendix is a compl ete listing 
of the program and a generalized flow chart. The 
following list of important variables is by no means 
complete, but includes all input and most output 
variables: 

Variable 

ALFA (real) 

B (real) 

BW!l!UT (integer) 

C (real) 

CINIT (logical) 

DTH (real) 

EPSL0C (integer) 

G (real) 

IN (integer) 

Description 

Dimensionless K'
coefficients , F.q. 3.12. 

Width of stream tube. 

Number of computational 
points for which complete 
printout of stream tube 
specifications is desired. 

Concentration. 

If true, concentrations set 
equal to zero initially; if 
false, init ial concentra
tion field read in . 

Beginning simulation time 
step, in hours. 

Specifies the transverse 
diffusivity function to be 
used , keyed to K'
subscripts, Eq. 3.12. 

Gravitational acceleration. 

Genera I subscript in column
wise variable array. 
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Variable 

INDEX (integer) 

LALFA (real) 

LONGO (logical) 

NBPTS (integer) 

NCIN (integer) 

NCYCL (integer) 

NDT (integer) 

NTUBE (integer) 

Q (real) 

RDATA (logical) 

STR (real) 

T (real) 

TEND (real) 

TIME (real) 

TITLE (alphanumeric) 

ZBOT (real) 

Description 

Number of iteration cycles 
between outputs of concen
tration field; if zero, 
ou~put will be generated 
onl y at end of simulation. 

Dimensionless longi~udinal 
diffusivity coefficient . 

If true, longitudinal dif
fusion is computed . 

Number of longitudinal 
computational points. 

Number of concentra~ion
time pairs input for up
stream end of each stream 
tube. 

Number of simulation 
iteration cyc le. 

Number of times at ~~hich 
time step is changed; if 
zero, time step is constan~ 

Number of stream tubes . 

Total stream discharge. 

If true, stream tuhe 
velocities and depths are 
read in, not computed. 

If RDATA=true, velocity of 
stream tube; if RDATA=fals~ 
Strickler coefficient of 
stream tube. 

In DISPERS, the array in 
which all variables are 
stored columnwise ; in sub
routine DATAIN, the times 
(in decimal hours) at which 
input concentrations are 
specified . 

Decimal time, in hours, at 
which simulation ends . 

Decimal time, in hours at 
which simulation begins . 

User-specified title ofrun. 

If RDATA=true, depth of 
stream tube; if RDATA=fals~ 
bed elevation of strean 
tube . 

The usc of program PISPERS first requires that a 
permanent file be established on disk or tape storage 
containing stream tube data for the river being 
studied. These data, which are read by subroutine 
GEOMIN, are prepared by the user based on known data 
and the procedures described in Appendix E. 

As presented here, the program i s dimensi oned and 
formatted for a maximum of 22 stream tubes. The re
striction can be removed by revising subroutine EDIT. 
to print out additional sets of 11 tubes each. 

·.j 



PROGRAM DISPERS 

Compute 
locations of 
variables in 

T 

Loads 
Stream tube 
data 

loads 
input 

concentrations 

Computes 
diffusi vi ties 

Executes 
dispersion 
simu l ation 

SUBROUTINE GEOMIN 

stream 
tube data 
from disk 
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SUBROUTINE DATAIN 

Locate 
T,C pairs 

which brackct 
simulation time 

Interpolate 
to obtain 

input concentrat10n, 
c:~ch tube 

SUBROUTINE CONCEN 

Loads input 
concentrations, 
each tube 

Computes 
convection 

Computes 
transver se 
diffusion 

Computes 
longitudinal 
diffusion 

no Revise time 
>------4~ s t cp when 

appropriate 



Compute 
Q,A,B,Ull,U* 
for each 
section 

Compute 
e:x, Ez for 

each tube , 
each section 

Compute 

(he:%_) I ;J ,J-1 
etc. 

Diffusivity 
function 
specified by 
EPSLOC 

.. 

SUBROUTINE CONVECM 

yes Compute and 
store all R, S 

~--------~ values 

Compute 
and store all 

E, F values 

Compute 
concentrations 
by recurrence 

Generate 
downstream 

boundary 
condition 

Compute 
oncentrations 
directly 

)mplicit half step 
for each stream tube 

Exp l icit half step 
for each stream tube 
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SUBROUTINE LODIFF 

l 
f 
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I 
I 
l 
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TWO-DIMENSIONAL ~lASS DISPERSION COMPUTER PROGIW1 
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TWO-DIMENSIONAL MASS DISPERSION COMPUTER PROGRAM (CONT' D) 
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TWO-DIMENSIONAL MASS DISPERSION COMPUTER PROGRAM (CONT' D) 
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APPENDIX E 

RECOMMENDED PROCEDURE FOR THE COMPUTATION OF STREAM TUBE WIDTH?, 

DEPTHS, AND VELOCITIES 

Stream tube dimensions must be chosen so as to 
satisfy continuity in each. ·The derivation of 
Eq. 2.57 requires that there be no f l ow of water 
across transverse stream tube boundaries; consequently 
the discharge in each tube must be the same at all 
longitudinal computational points. Topographical and 
hydraulic information are generally available at only 
a fe~ cross sections in a typical study reach; stream 
tube dimensions are determined ' at each of these "ref
erence" sections, and then assigned to intermediate 
longitudinal computational points by linear interpola
tion. The computations at a reference section require 
the cross-sectional geometry and transverse distribu
tion of longitudinal velocity; if only the cross
sectional geometry is known, the velocities may be 
estimated by a gradually-varied flow computation, des
cribed below. 

Optional computation of transverse distribution of 
longitudinal velocity. If velocities must be esti
mated, topographic information for the :reach must be 
sufficient to describe the cross-sectional geometry at 
each reference section in terms of bed elevations ref
erenced to a common datum. Once these cross sections 
have been plotted, each one may be divided into an 
equal number of rectangular elements, not to be con
fused with stream tubes. The element widths are cho
sen to coincide with zones of roughly constant bed 
elevation as shown on Fig. E.l . The elements at the 
banks must be chosen so that their bed elevations are 
below the expected water surface elevation . The com
putations begin with a straightforward backwater com
putation, by which the loss of total energy head, 
i.e., water surface elevation plus velocity head, is 
balanced by an equivalent friction loss. The friction 
slope S may be expressed by Manning's equation, 

where Q is the total discharge, and Ki is the to

tal conveyance at the ith reference section. Between 
any two reference sections i-1 and i the energy 
equation is 

n 2 (x1. - x ) 2 n 2 
Y· + (~) ..!_ + 2 i-1 [(_ELK.) + (_.::s__) ] 

1 Ai 2g 1 Ki- 1 

(E .1) 

where the friction slope applicable to the reach be
tween i-1 and i has been taken as the average of 
the slope at the end points, and 

yi • the water surface elevation at point i, 

Ai the cross-sectional area at point i, 
and 

g gravitational acceleration. 

The computation is started with the known water sur
face e levation at the furthest downstream reference 
section, L. Then an estimate of the water surface 
elevation is made for point L- 1, and the total con
veyance for each cross section is computed as the sum 
of the conveyances of each element, or 
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I If Yj 

t-1V1 Y~.i 1 

~Dotum 
Fig. E. l. Discrete elements for estimation of 

longitudinal velocities. 

\ l. 49 b ( - b ) 5/3 L . . y. y .. 
j ni,j l,J 1 l,J 

(E. 2) 

w~ere n. . is the estimated Manning roughness coef-
l.J h h 

ficient for the jt element at the it reference sec-
tion, and yb. . is the corresponding bed elevation. 

1,J 
The water surface elevation which satisfies 

Eq . E.l is found by a Newton-Raphson iterative compu
tation; once the proper value is found (usually in 
less than ten iterations) the water surface elevation 
and the energy s lope are stored, and the entire com
putation repeated at successive upstream sections. 

The above procedure establishes the water 
surface elevations and energy s lope for a given dis
charge Q. Assuming that the Manning equation can be 
written for each element using the overall energy 
slope at section i, the longitudinal velocity in 
each element may be estimated as 

u. 0 1,J 
1.49 ( 0 - b .. )2/3 (..Q..;) 
n. y1 Y1,J K." 
l,j 1 

(E.3) 

It must be emphasized that the velocities 
estimated by Eq. E.3 are no more valid than the rough
ness estimates n ... An estimate of the cross-sec-1,J 
tional average Manning coefficient may be based on 
experience and methods described by Barnes {1967) . 
But transverse variations of depth in Eq . E.3 uo not 
fully account for observed velocity distributions; 
transverse variations in bed material size and bed 
forms in alluvial channels, and bank roughness .all 
contribute to an apparent transverse variation of 
Manning's coefficient. Nonetheless , there is no basis 
for a computation of this transverse variation, which 
must therefore be estimated based on the engineer's 
experience and knowledge of typical transverse veloc
ity distributions . As a first approximation, the 
estimated cross-sectional average roughness should be 
decreased slightly in the center of the stream, and 
increased slightly near the banks. 

Stream tube dimensioning by graphical integration. At 
each reference section i the transverse variations 
of depth and vel ocity at the desired discharge must be 
available either from direct measurements or from an 
estimate such as that described above . The depth h, 
velocity u, and the partial discharge hu, are all 
plotted versus the transverse position z referenced 
from the left bank (see Fig . E.2) . The cumulative 
partial discharge, defined as 

I 

I . 
1 
I 

i 
l 



q 
z 
J hudz 
0 

( l. 32) 

is then obt ained by graphical integration (planimeter
ing) of the partial d ischar ge curve. Since the total 
discharge at each reference section i may not exact
ly equal the assumed discharge Q, denote the dis
charge at each r e f erence section as 

B 
Qi " J hudz 

0 
(E. 4) 

The number of stream tubes, and their indivitlual 
widths or dischar ges, must be chosen for t he furthest 
ups tream reference section. If the dispersion process 
to be modeled is expected to occur over the entire 
cross section, it is usual ly best to use tube~ of 
equal discharge in each. If, on the o1:hcr hand, the 

Uj , J 

"'-.c 

hj , J 
' 

hu~',, 

z 
B 

Fig . E. 2. Definition sketch for dimensioning of 
s t ream t ubes. 

dispersion is expected to take place primarily near 
one bank, it is best to use tubes of smal ler di schar ge 
(narrower width) in that region. The cumulative par
tial discharge at the right hand boundary of each cho
sen s t ream tube J is denoted by qJ. The following 

procedure is then followed at each reference section 
i: (see Fig . E. 2) 

a) Compute the cumulative part ial discharge at 
the right hand boundary of each tube J a t r efer ence 
section i as 
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b) Locate t he right hand boundary of <'<ll.:h tulle 
J at r e feren-ce s ection i by en tering the cunrulat i vc 
partial discharge curve for that section with qi,.J; 

c ompute the stream tube width s B. 1 hy suhtractior\. 
t, . 

c) Estimate the appropriate s trc:un tube vc~ loc i ty 
u for each tub~ using the tran~vcr~e velocity tlis-

i , J 
tri hution already plotted. 

d) Compute the required drpth f o r v~~h s tream 
tube J as 

1 (q . J - q'J - 1) (Bu). J 1, 1, 
1 , 

where (q. J - q . J-l ) is simpl y the dc s irl'd di s -
l. , 1, 

charge in tube J . 

e) Adjust t he velocity in each strc:tm tui H' so 
as to obta in the desired total tlischargr: 

_g_ 
L hub 
J 

The computation outlined above is lw s r dOll(' hy hand, 
since it relies upon the user' s judgment. a s rn t he 
appropriat e velocit y to be assigned to each sr n'am 
tube. Note that step d) require$ a c"ompu t:1t io11 of 
stream tube depth, ensuring that the d i sc: ret c• <kpths 
and ve lociti es satis f y the continuous .;JJnHJLlt i vc pa r 
tial discharge curve at the tube hound:r r i c•s . lic•pths 
thus computed must always be checked :1g;t i 11s t the mea 
sur ed depths f a lling within t hat st ream tube. The 
final velocity adjustment e ) .is r cqu i n •d 1 o c' n::tJJ'c' 
that continuity is satisfi.cd in c:rc h q n•am tuht· :1 s 

1<1ell as bet ween overall ref erence sections . 

Once t he stream t ube dimcns i OilS :liHI Vt'l<>r i t i c·s 
have been established at the rcfcrenn· S (' c·t i <HI:<, tlw 
tube depths and widths are e s tabl i s hcd at t ht• c·ompu
tational poin ts by linear i nterpol at io11 he t ><ecrJ 1·c f 
erence sections. Then tube veluciU.:! s an· dvtc' nnincd 
by dividing the desired t ube eli scha rgl· l>y the i nt cr
polated tube area , thus ensuring that n111t in<Jity i s 
s atisfied. 
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the dilution attr ibutable to turbulence be estimated for 
particul ar rivers and particular disposal sites. The ob
jective of this research was to develop an efficient com
putational model for the prediction of time-dependent mass 
dispersion in natural streams by using the results of 
transverse diffusivity in laboratory channels . 

The computational model is a partial differential 
equation expressing conservation of pollutant mass in a 
control vol ume. The computational model developed is 
based on a finite-difference solution to the depth
averaged dispersion equation, for predicting concentrations 
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space configuration in a stream of any geometry with non
uniform steady flow. Problems of numerical instabilit y 
and damping in the convective stage of the computation 
are avoided through the use of a half-implicit and half
explicit second order differencing scheme for the space 
derivative. The result is a model which is uncondi
tionally stable with accuracy not dependent on the time 
and distance steps. 

The triangular-channel tests performed indicate that 
the transverse diffusivity is constant within a cross 
section. This suggests an interaction between bed shear 
and transverse shear. The applicability of the model is 
demonstrated through simulation of dispersion experiments 
for the Missouri River and Clinch River. 

Hydrology Paper #78 - "Two-Dimensional Mass Dispersion in 
Rivers," by Forrest M. Holly, Jr . 
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space configuration in a stream of any geometry with non
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