CSAP Mathematios

Assessment Framework

Grade 5

ASSESSMENT FRAMEWORK- defines what will be assessed on the State's paper and pencil, standardized, timed assessment (CSAP). This document is organized as follows:

Standard	Indicates the broad knowledge and skills that all students should be acquiring in Colorado schools at grade level. Each standard is assessed every year.
Benchmark	Tactical description of the knowledge and skills students should acquire within each grade level range (i.e., K-4, 5-8, or 9-12).
Assessment Objectives	a
Specific knowledge and skills measured by CSAP for each grade level assessed. Assessment Objectives are assessed on a cyclical basis.	

Note: The appearance of an * behind a word or phrase indicates it appears in the glossary of the Colorado Model Content Standards for Mathematics.

Grade 5

Mathematic Assessment Frameworks

Grade 5
 Mathematic Assessment Frameworks

	problem-solving situations*.	
Assessment Objectives	a	Demonstrate the equivalent relationships among commonly used fractions, decimals, and percents using pictorial or concrete materials.
Benchmark 5	Develop, test, and explain conjectures* about properties of integers* and rational numbers*.	
Assessment Objectives	a	Develop, test, and explain conjectures* about properties of whole numbers and commonly-used fractions and decimals.
	b	Use number properties (commutative*, associative*, identity*) to evaluate numeric expressions and solve equations.
Benchmark 6	Using number sense* to estimate and justify the reasonableness of solutions to problems involving integers*, rational numbers*, and common irrational numbers* such as $\sqrt{ } 2 \sqrt{ } 5$ and π	
Assessment	a	Use number sense* to estimate sums and differences of fractions and decimals using benchmarks (for example, $5 / 6+7 / 8$ must be equal to an amount less than 2, since each fraction is less than 1).
Objectives	b	Use appropriate techniques to estimate, determine, and then justify the reasonableness of solutions to problems involving whole numbers.

Grade 5

Mathematic Assessment Frameworks

Standard 2	Students use algebraic methods* to explore, model*, and describe patterns* and functions* involving numbers, shapes, data, and graphs in problem-solving situations* and communicate the reasoning used in solving these problems.	
Benchmark 1	Represent, describe, and analyze patterns* and relationships using tables, graphs, verbal rules, and standard algebraic notation.	
Assessment Objectives	a	Represent, describe, and analyze geometric and numeric patterns* (whole numbers).
	b	Recognize that a variable* is used to represent an unknown quantity.
Benchmark 2	Dentify such properties as commutativity, associativity, and distributivity and use them to compute with whole	
numbers.		

Grade 5

Mathematic Assessment Frameworks

Benchmark 5	Solve simple linear* equations in problem-solving situations* using a variety of methods (informal, formal, and graphical) and a variety of tools (physical materials, calculators, and computers).	
Assessment Objectives	a	Use tables, charts, concrete objects, or pictures to solve problems involving linear* relationships and whole numbers.
Standard 3	Students use data collection and analysis, statistics*, and probability* in problem-solving situations* and communicate the reasoning used in solving these problems.	
Benchmark 1	Read and construct displays of data using appropriate techniques (for example, line graphs, circle graphs, scatter plots*, box plots*, stem-and-leaf plots*) and appropriate technology.	
Assessment	a	Differentiate between categorical* and numerical* data.

Grade 5

Mathematic Assessment Frameworks

Benchmark 3	Evaluate arguments that are based on statistical claims.	
Assessment Objectives	a	Analyze data and draw conclusions based on data displays such as tables, charts, line graphs, bar graphs, pictographs, and line plots.
Benchmark 4	Formulate hypotheses, drawing conclusions, and making convincing arguments based on data analysis.	
Assessment Objectives	a	Describe how data collection methods affect the nature of the data set.
	b	Make convincing arguments based on data analysis.
Benchmark 5	Determine probabilities* through experiments or simulations.	
Assessment Objectives	a	Describe events such as likely or unlikely and explain the degree of likelihood using words, such as certain, equally likely, and impossible.
	b	Use zero to represent the probability* of an impossible event and one to represent the probability* of a certain event.
	c	Use common fractions to represent the probability* of events that are neither certain nor impossible.
Benchmark 6	Make predictions and compare results using both experimental and theoretical probability* drawn from real-world problems*.	
Assessment Objectives	a	Using one chance device, such as a number cube or a spinner, design a fair game and an unfair game, and explain why they are fair and unfair.
	b	Make predications based on data obtained from simple probability* experiments.

Grade 5 Mathematic Assessment Frameworks

Benchmark 7	Use counting strategies to determine all the possible outcomes from an experiment (for example, the number of ways students can line up to have their picture taken).	
Assessment Objectives	a	Solve problems using strategies for finding all possible combinations* and/or arrangements.
Standard 4	Students use geometric concepts, properties, and relationships in problem-solving situations* and communicate the reasoning used in solving these problems.	
Benchmark 1	Construct two-and three-dimensional models* using a variety of materials and tools.	
Assessment Objectives	a	Represent a three-dimensional shape in two dimensions (for example, recognize a three dimensional figure from its net).
Benchmark 2	Describe, analyze and reason informally about the properties (for example, parallelism, perpendicularity, congruence*) of two- and three-dimensional figures.	
Assessment Objectives	a	Identify, compare, and analyze the attributes of two-and three-dimensional shapes and develop vocabulary to describe the attributes (for example, acute, obtuse, right angle, parallel lines, perpendicular lines, intersecting lines, and line segments).
	b	Make and test conjectures* about geometric relationships and develop logical arguments to justify conclusions.
Benchmark 3	Apply the concept of ratio, proportion and similarity* in problem-solving situations*.	
Assessment	No objectives assessed at this level.	

Grade 5

Mathematic Assessment Frameworks

Benchmark 4	Solve problems using coordinate geometry*.	
Assessment Objectives	a	Given a coordinate graph, read coordinate pairs in quadrant one.
	b	Choose the coordinate graph, which represents a given data set.
	c	Use maps and grids to locate points, create paths and measure distances within a coordinate system*.
Benchmark 5	Solving problems involving perimeter and area in two dimensions, and involving surface area and volume* in three dimensions.	
Assessment	a	Solve problems involving the perimeter of polygons.
	b	Solve problems involving the area of rectangles and squares.
Benchmark 6	Transforming* geometric figures using reflections*, translations*, and rotations* to explore congruence*.	
Assessment	a	Predict and describe the results of flipping, sliding, or turning a two-dimensional shape.
	b	Show lines of symmetry* for geometrical shapes.
Standard 5	Students use a variety of tools and techniques to measure, apply the results in problem-solving situations*, and communicate the reasoning used in solving these problems.	
Benchmark 1	Estimate, use and describe measures of distance, perimeter, area, volume*, capacity*, weight, mass, and angle comparison.	
Assessment Objectives	a	Determine the appropriate unit of measure (metric and US customary) when estimating distance, capacity*, and weight.

Grade 5

Mathematic Assessment Frameworks

	b	Estimate the length of common objects.
	c	Estimate the perimeter of polygons.
	d	Estimate the measures of angles (for example, 90°, less than 90°, more than 90°).
	e	Describe angles as acute, obtuse and right.
Benchmark 2	Estimate, make, and use direct and indirect measurements to describe and make comparisons.	
Assessment Objectives	No objectives assessed at this level.	
Benchmark 3	Read and interpret various scales including those based on number lines, graphs, and maps.	
Assessment	a	Read and interpret scales on number lines, graphs, and maps.
	b	Select the appropriate scale for a given problem (for example, using the appropriate scale when setting up a graph).
Benchmark 4	Develop and use formulas and procedures to solve problems involving measurement.	
Assessment Objectives	a	Find the perimeter and area of rectangles and squares, using appropriate units.
Benchmark 5	Describe how a change in an object's linear dimensions affects its perimeter, area, and volume*.	
Assessment Objectives	a	Demonstrate how changing one of the dimensions of a rectangle affects its perimeter (using concrete materials or graph paper).

Grade 5 Mathematic Assessment Frameworks

	b	Demonstrate how changing in one of the dimensions of a rectangle affects its area (using concrete materials or graph paper).
Benchmark 6	Select and use appropriate units and tools to measure to the degree of accuracy required in a particular problemsolving situation*.	
Assessment Objectives	a	Select and use the appropriate unit and tool to measure to the degree of accuracy required in a particular problem.
	b	Measure the sides of rectangles, squares, and triangles to the nearest $1 / 4$ inch and nearest centimeter.
Standard 6	Students link concepts and procedures as they develop and use computational techniques, including estimation, mental arithmetic*, paper-and-pencil, calculators, and computers, in problem-solving situations* and communicate the reasoning used in solving these problems.	
Benchmark 1	Use models* to explain how ratios, proportions, and percents can be used to solve real-world problems*.	
Assessment Objectives	a	Use concrete materials or pictures, determine commonly used percentages (for example, $25 \%, 50 \%$) in problemsolving situations*.
Benchmark 2	Construct, use and explain procedures to compute and estimate with whole numbers, fractions, decimals, and integers*.	
Assessment Objectives	a	Demonstrate the conceptual meaning of the four basic* arithmetic operations (addition, subtraction, multiplication, and division).
	b	Use and explain strategies to add, subtract, multiply and divide whole numbers in problem-solving situations*.
	c	Demonstrate proficiency of addition, subtraction, multiplication and division of whole numbers in problemsolving situations*.

Grade 5
 Mathematic Assessment Frameworks

	d	Use and explain strategies to add and subtract commonly-used fractions with like denominators in problemsolving situations*.
	e	Use and explain strategies to add and subtract commonly-used decimals in problem-solving situations*.
Benchmark 3	Develop, apply and explain a variety of different estimation strategies in problem-solving situations*, and explain why an estimate may be acceptable in place of an exact answer.	
Assessment Objectives	a	Determine from real-world problems* whether an estimated or exact answer is acceptable.
	b	Use and explain a variety of estimation techniques to solve problems.
Benchmark 4	Select and use appropriate methods algorithms* for computing with commonly used fractions and decimals, percents, and integers* in problem-solving situations* from among mental arithmetic*, estimation, paper-andpencil, calculator, and computer methods, and determining whether the results are reasonable.	
Assessment Objectives	a	Determine whether information given is a problem-solving situation* is sufficient, insufficient, or extraneous.
	b	Given a real-world problem*, use an appropriate method (mental arithmetic*, estimation, paper-and-pencil, calculator) to correctly solve the problem.
	c	Given a math sentence, use any one of the four operations with whole numbers, create and illustrate a real-world problem*.
	d	In a problem-solving situation*, determine whether the results are reasonable and justify those results with correct computations.

