The use of a radiotherapy portal imaging device for patient setup verification through cone beam reconstruction

Loading...
Thumbnail Image
Date
2011-05
Authors
O'Reilly, Frederika Hendrika Jacoba
Journal Title
Journal ISSN
Volume Title
Publisher
University of the Free State
Abstract
English: In this study the feasibility of patient setup verification through cone-beam computed tomography (CBCT) using an Elekta Precise linear accelerator (linac) and electronic portal imaging device (EPID) was investigated. CBCT images are used for treatment verification i.e. determination of patient set-up errors prior to treatment delivery. An 8 MV photon beam was used to acquire planar images of an anthropomorphic head phantom as the system rotates in a 200° arc around the phantom. The Feldkamp-type algorithm which, through a weighting function, is an approximation of the filtered backprojection algorithm was used to perform reconstruction of 2D transversal CT images from the projection/planar images. Reconstruction was done using tools developed with the Interactive Data Language (IDL) software package. The reconstruction technique was evaluated in terms of image quality, dose imparted during image acquisition and positional accuracy. Geometric calibration of the imaging system (linac and EPID) was performed to derive a set of parameters that fully describes the geometry of the system. These parameters include piercing point (projection of isocenter on EPID), detector rotation around its normal axis, detector tilt angles and gantry angle variation. A dedicated calibration phantom was manufactured and used to determine and correct for the above-mentioned parameters during the reconstruction process. These corrections ensure accurate reconstruction and avoidance of image artefacts due to geometrical misalignments of the system. Image quality was evaluated using a standard image quality phantom (Catphan®). Parameters such as signal-to-noise ratio (SNR), spatial resolution, contrast resolution and uniformity were used to quantify image quality. Due to the high energy of the photon beam, reconstructed images yield relatively poor image quality compared to kilovoltage photons. Although soft tissue contrast were very poor, image quality was sufficient for visualization of bony landmarks, air cavities or fiducial markers. Image quality can be enhanced by increasing the number of monitor units (MUs) used but, this will lead to an increase in dose which is not desirable from a clinical point of view. Dose imparted during image acquisition was measured using an ionization chamber placed at the treatment isocenter. An overall shape of the dose distribution was obtained by film measurements and a simulated plan computed by a treatment planning system (TPS). The dose measured at the centre of the phantom was ±160 cGy which is clinically unacceptable. There exist several dose reduction techniques; in this study a reduction in number of projection images were used. The dose was reduced to ± 30 cGy when 40 projection images instead of 200 were used. Due a trade-off between dose and acceptable image quality the dose could not be reduced any further without degrading the image quality beyond clinically acceptable levels. Positional accuracy was evaluated by simulation of phantom shifts and rotation. The reconstructed images were then used to determine these shifts and rotation. Shifts and rotation could be determined within 2 mm and one degree respectively for images reconstructed with 40 projection images. Larger angular increments yield poor image quality and severe reconstruction artefacts which resulted in false positive values (absolute difference from simulated shift and rotation smaller than 2 mm and one degree). Intra- and inter observer dependency were evaluated during positional accuracy determination. Results showed that the method for determination of position and rotation is observer independent. The clinical feasibility of this method is limited by image acquisition time and dose imparted during image acquisition. Further investigations (which are beyond the scope of this study) should be conducted to explore means of reduction in image acquisition time and dose i.e. improvement of EPID detection efficiency and linac output (fractional MUs).
Afrikaans: Die moontlikheid van rekenaar tomografie (RT) met konus-vormige bundels (KB) deur gebruik te maak van ‘n Elekta Precise lineêre versneller en ‘n elektroniese portale beeldings apparaat (EPBA) vir verifikasie van pasiënt opstelling word in hierdie studie ondersoek. Beelde verkry vanaf KBRT word hoofsaaklik gebruik vir die verifikasie van behandeling in radioterapie bv. die kwantifisering van opstel foute van pasiënte voor die aanvang van behandeling. Planare transmissie beelde van ‘n antropomorfiese kop fantoom is deur middel van ‘n 8 MV foton bundel opgeneem terwyl die beeldings sisteem (versneller en EPBA) in ‘n 200º boog rondom die fantoom roteer. Die Feldkamp-tipe algoritme, wat deur ‘n geweegde funksie ‘n benadering van die gefiltreerde terugprojeksie algoritme is, is gebruik vir die rekonstruksie van 2D transversale RT beelde vanaf die planare/projeksie beelde. Die ‘Interactive Data Language (IDL)’ sagteware pakket is gebruik om ‘n program te ontwikkel vir die rekonstruksie prosedure. Die rekonstruksie tegniek is geevalueer op gronde van beeld kwaliteit, dosis neergelê tydens beeld opname en posisionele akkuraatheid. ‘n Stel parameters wat ‘n volledige beskrywing van die geometrie van die sisteem lewer kan afgelei word deur geometriese kalibrasie van die beeldings sisteem. Hierdie parameters sluit in die sny punt (projeksie van isosenter op die EPBA), die rotasie van die detektor rondom sy normale as, detektor tilt hoeke en die deviasie van die versneller raamwerk hoek tydens rotasie. Die parameters is bepaal deur ‘n spesiaal vervaardigde kalibrasie fantoom te gebruik. Korreksies vir hierdie parameters is aangebring tydens die rekonstruksie proses. Hierdie korreksies verseker akkurate rekonstruksie en die voorkoming van beeld artefakte as gevolg van afwykings in die geometriese instellings van die sisteem. ‘n Standaard beeld kwaliteit fantoom (Catphan®) is gebruik vir evaluasie van die beeld kwaliteit van gerekonstrueerde beelde. Beeld kwaliteit is gekwantifiseer deur die volgende parameters: sein-tot-geruis verhouding (SGV), ruimtelike resolusie, kontras resolusie en uniformiteit. A.g.v die gebruik van ‘n hoë energie foton bundel is die beeld kwaliteit van die rekonstruksie beelde swakker in vergelyking met beelde opgeneem met laer (kilovolt) energie bundel. Die sagte weefsel kontras was baie swak, maar beeld kwaliteit is nogsteeds voldoende vir die visualisering van benige strukture, lug holtes en geometriese merkers. Deur die aantal monitor eenhede waarmee beelde opgeneem word te verhoog kan die beeld kwaliteit tot ‘n groot mate verbeter word , maar dit sal lei na ‘n toename in dosis wat ongewens is uit ‘n kliniese oogmerk. ‘n Ionisasie kamer geposisioneer by isosenter is gebruik om dosis neergelê tydens beeld opname van die fantoom te bepaal. Film metings en ‘n gesimuleerde behandelingsplan bereken deur die beplannings stelsel is gebruik om ‘n dosis distribusie te verkry. Die dosis in die middel van die fantoom was ongeveer 160 cGy. Uit ‘n kliniese oogpunt is dit onaanvaarbaar hoog. Verskeie tegnieke om dosis te verminder kan gebruik word; in hierdie studie is die vermindering in aantal projeksie beelde as dosis verminderings tegniek gebruik. Die dosis is verlaag na 30 cGy wanneer 40 projeksie beelde i.pv 200 gebruik word. A.g.v die verwantskap tussen dosis en beeld kwaliteit kan die dosis nie nog meer verlaag word sonder om die beeld kwaliteit so te verswak dat dit onprakties vir kliniese gebuik sal wees. Posisionele akkuraatheid was ondersoek deur gesimuleerde skuiwe en rotasies op ‘n fantoom te doen. Gerekonstrueerde beelde van hierdie ‘nuwe’ posisies is dan geanaliseer om die skuiwe en rotasies te bepaal. Die skuiwe en rotasies kon binne 2 mm en een graad bepaal word vanaf beelde gerekonstrueer met 40 prokesies. Die beeld kwaliteit van rekonstrusie beelde gerekonstrueer met groter hoek intervalle (minder projeksies) is swak met baie rekonstruksie artifakte en lewer vals positiewe waardes skuiwe en rotasies van minder as 2 mm en een graad). Die intra- en inter waarnemer afhanklikheid van die metode is ook getoets. Die resultate het bewys dat die metode vir bepaling van posisie en rotasie waarnemer onafhanklik is. Die moontlikheid om hierdie metode klinies te implementeer word beperk deur die beeld opname tyd en dosis neergelê tydens beeld opname. Verdere studies (wat buite die bestek van hierdie studie val) moet onderneem word om ander metodes van vermindering in beeld opname tyd en dosis te ondersoek bv. deur verbetering van EPBA se deteksie effektiwiteit en lineêre versneller uitset (moontlikheid om fraksionele monitor eenhede te lewer).
Description
Keywords
Megavoltage cone-beam CT, Electronic portal imaging device, Geometric calibration, Image quality, Positional accuracy, Dissertation (M.Med.Sc. (Medical Physics))--University of the Free State, 2011
Citation