Dynamic wavelength allocation in IP/WDM metro access networks

Date
2008
Editor(s)
Advisor
Karaşan, Ezhan
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Bilkent University
Volume
Issue
Pages
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Increasing demand for bandwidth and proliferation of packet based traffic have been causing architectural changes in the communications infrastructure. In this evolution, metro networks face both the capacity and dynamic adaptability constraints. The increase in the access and backbone speeds result in high bandwidth requirements, whereas the popularity of wireless access and limited number of customers in metro area necessitates traffic adaptability. Traditional architecture which has been optimized for carrying circuit-switched connections, is far from meeting these requirements. Recently, several architectures have been proposed for future metro access networks. Nearly all of these solutions support dynamic allocation of bandwidth to follow fluctuations in the traffic demand. However, reconfiguration policies that can be used in this process have not been fully explored yet. In this thesis, dynamic wavelength allocation (DWA) policies for IP/WDM metro access networks with reconfiguration delays are considered. Reconfiguration actions incur a cost since a portion of the capacity becomes idle in the reconfiguration period due to the signalling latencies and tuning times of optical transceivers. Exact formulation of the DWA problem is developed as a Markov Decision Process (MDP) and a new cost function is proposed to attain both throughput efficiency and fairness. For larger problems, a heuristic approach based on first passage probabilities is developed. The performance of the method is evaluated under both stationary and non-stationary traffic conditions. The effects of relevant network and traffic parameters, such as delay and flow size are also discussed. Finally, performance bounds for the DWA methods are derived.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)