The use of curl-conforming basis functions for the magnetic-field integral equation

Date
2006
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
IEEE Transactions on Antennas and Propagation
Print ISSN
0018-926X
Electronic ISSN
1558-2221
Publisher
Institute of Electrical and Electronics Engineers
Volume
54
Issue
7
Pages
1917 - 1926
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Divergence-conforming Rao-Wilton-Glisson (RWG) functions are commonly used in integral-equation formulations to model the surface current distributions on planar triangulations. In this paper, a novel implementation of the magnetic-field integral equation (MFIE) employing the curl-conforming n̂ × RWG basis and testing functions is introduced for improved current modelling. Implementation details are outlined in the contexts of the method of moments, the fast multipole method, and the multilevel fast multipole algorithm. Based on the examples of electromagnetic modelling of conducting scatterers, it is demonstrated that significant improvement in the accuracy of the MFIE can be obtained by using the curl-conforming n̂ × RWG functions.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)