p53 mutations as a source of aberrant Beta-catenin accumulation in cancer cells

Date
2002
Editor(s)
Advisor
Öztürk, M.
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Bilkent University
Volume
Issue
Pages
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

β-catenin is involved in both cell-cell interactions and wnt pathway-dependent cell fate determination through its interactions with E-cadherin and TCF/LEF transcription factors, respectively. Cytoplasmic/nuclear levels of β-catenin are important in regulated transcriptional activation of TCF/LEF target genes. Normally, these levels are kept low by proteosomal degradation of â-catenin through Axin1- and APC-dependent phosphorylation by CKI and GSK-3β. Deregulation of β-catenin degradation results in its aberrant accumulation, often leading to cancer. Accordingly, aberrant accumulation of β-catenin is onberved at high frequency in many cancers. This accumulation correlates with either mutational activation of CTNNB1 (β-catenin) or mutational inactivation of APC and Axin1 genes in some tumors. However, there are many tumors that display β-catenin accumulation in the absence of a mutation in these genes. Thus, there must be additional sources for aberrant β-catenin accumulation in cancer cells. Here, we provide experimental evidence that wild-type β-catenin accumulates in hepatocellular carcinoma (HCC) cells in association with mutational inactivation of p53 gene. We also show that worldwide p53 and β-catenin mutation rates are inversely correlated in HCC. These data suggest that inactivation of p53 is an important cause of aberrant accumulation of β−catenin in cancer cells.

Course
Other identifiers
Book Title
Keywords
Citation
Published Version (Please cite this version)