Boosting performance of directory-based cache coherence protocols with coherence bypass at subpage granularity and a novel on-chip page table

Date
2016- 05
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
CF '16 Proceedings of the ACM International Conference on Computing Frontiers
Print ISSN
Electronic ISSN
Publisher
ACM
Volume
Issue
Pages
180 - 187
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Chip multiprocessors (CMPs) require effective cache coher-ence protocols as well as fast virtual-To-physical address trans-lation mechanisms for high performance. Directory-based cache coherence protocols are the state-of-The-Art approaches in many-core CMPs to keep the data blocks coherent at the last level private caches. However, the area overhead and high associativity requirement of the directory structures may not scale well with increasingly higher number of cores. As shown in some prior studies, a significant percentage of data blocks are accessed by only one core, therefore, it is not necessary to keep track of these in the directory struc-ture. In this study, we have two major contributions. First, we show that compared to the classification of cache blocks at page granularity as done in some previous studies, data block classification at subpage level helps to detect consid-erably more private data blocks. Consequently, it reduces the percentage of blocks required to be tracked in the di-rectory significantly compared to similar page level classification approaches. This, in turn, enables smaller directory caches with lower associativity to be used in CMPs without hurting performance, thereby helping the directory struc-ture to scale gracefully with the increasing number of cores. Memory block classification at subpage level, however, may increase the frequency of the Operating System's (OS) in-volvement in updating the maintenance bits belonging to subpages stored in page table entries, nullifying some por-tion of performance benefits of subpage level data classification. To overcome this, we propose a distributed on-chip page table as a our second contribution. © 2016 Copyright held by the owner/author(s).

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)