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Abstract

Using (partial) curvature flows and the transitive action of subgroups
of O(d,Z) on the indices {1,...,d} of the components of the Yang-Mills
curvature in an orthonormal basis, we obtain a nested system of equa-
tions in successively higher dimensions d, each implying the Yang-Mills
equations on d-dimensional Riemannian manifolds possessing special ge-
ometric structures. This ‘matryoshka’ of self-duality equations contains
the familiar self-duality equations on Riemannian 4-folds as well as their
generalisations on complex Kéhler 3-folds and on 7- and 8-dimensional
manifolds with Gy and Spin(7) holonomy. The matryoshka allows en-
largement (‘oxidation’) to a remarkable system in 12 dimensions invari-
ant under Sp(3). There are hints that the underlying geometry is related
to the sextonions, a six-dimensional algebra between the quaternions and
octonions.
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1 Introduction

Many interesting examples of special geometric structures on d-dimensional
Riemannian manifolds (M, g) are provided by certain G-invariant covariantly
constant (parallel) p-forms ¢ € APT*M, where G = Hol, the restricted holon-
omy group of M. If p < d, then G is clearly a proper subgroup of SO(d), since
in the generic rotationally invariant case, only the volume form is invariant.

For Riemannian manifolds which are locally neither a product of lower di-
mensional spaces nor a symmetric space, Berger’s list [1] provides the most inter-
esting examples of restricted holonomy groups. These include U(n) C SO(2n),
which leaves the Kéahler two-form w on a 2n-dimensional Kahler manifold invari-
ant. The SU(n) Calabi-Yau specialisation has, in addition, an invariant complex
n-form, the holomorphic volume form. The group Sp(n) C SO(4n), d = 4n , of
n X n matrices with quaternion elements satisfying ATA = 1, has three invariant
Kahler two-forms w,, combinable in a two-form, w = wyi + woj + w3k, taking
values in the imaginary quaternions. These characterise hyper-Kahler geometry.
The quaternionic Kéahler generalisation has Hol = Sp(n)-Sp(1) C SO(4n), with
the three Kahler forms existing only locally. Globally, they define an invariant
parallel four-form > w, Aw,. The two exceptional d = 7 and 8 geometries with
Hol = G5 and Spin(7) have, respectively, an invariant three- and four-form. In
all these cases, the geometric information can equally well be encoded uniformly
in an invariant four-form: the two-forms afford squaring and the three-form in
seven dimensions has a Hodge-dual four-form. The Lie group inclusions

Sp(n) € SU(2n) C U(2n) C SO(4n)

imply corresponding inclusions of geometries: hyperkahler manifolds are Calabi-
Yau manifolds, the latter are Kéhler, which in turn are orientable. The two
exceptional cases are also part of lower dimensional sets of inclusions:

U(2) € Sp(2) € SU(4) C Spin(7) € SO(8)
SU(3) € Gy C Spin(7) € SO(8) .

The respective invariant tensors can be obtained by successive reductions of the
4n-dimensional volume form. For instance, the Spin(7) invariant four-form in
eight dimensions contracted with an arbitrary vector yields the Ga-invariant
three-form in the orthogonal seven-dimensional space. Similarly, the latter
yields an SU(3)-invariant two-form on projection to the complex three-fold or-
thogonal to an arbitrary vector.



For Riemannian manifolds (M, ¢g) admitting a G-structure, a principle sub-
bundle of the frame bundle of M, with structure group G C GL(d,R), the
tangent space at every point admits an isomorphism with R?. For every point
p € M there exists a choice of local coordinates with p as the origin in which
the Riemannian metric takes the euclidean form d?s = g;;da'ds? = >, dz'dz’
and the special geometric structure ¢ in these coordinates is the constant G-
invariant form

Y= Z dz™ (1)

(41 5eeeyip ) ETT

where dx - := dx A- - -Adz' and I is a set of oriented subsets {iy,...,4,} C
{1,...,d} with ¢; ,;, = 1. Differential forms like ¢ have been called special
democratic forms [2, 3]. They are ‘special’ in the sense that they have com-
ponents ¢, ,, equal to +1,—1 or 0 in some orthonormal basis, just like the
volume form voly = dz' Adz? A- - - Adx? =: dz'*+? on a Euclidean vector space.
More precisely, a p-form ¢ is called special if it lies in the SO(d, R)-orbit of

v = Z Prur..py AT (2)

1< <...<pp<d

with components ¢, ., € {—1,0,1}. There are clearly only a finite number of
orbits of special p-forms parametrised by the components ¢,,,. ,, € {—1,0,1}
under SO(d, R) or O(d,R). Distinct sets of components may give rise to special
p-forms in the same orbit, because the subgroups SO(d,Z) C SO(d,R) or
O(d,Z) C O(d,R) map the special form ¢ in equation (1) into a special form
parametrised by different components. These groups are isomorphic to the
semidirect product of the permutation group S, acting naturally on d—1 or d
copies of Z,, namely SO(d,Z) = Sy x Z&* or O(d,Z) = Sy x ZZ. Thus,
special p-forms which appear to be different may nevertheless be in the same
orbit under SO(d,R) or O(d,R). The orbit of a special p-form may always be
labelled by a choice of a representative (1).

A special p-form ¢ is called democratic if its set of nonzero components
{®i,..i,} is symmetric under the transitive action of a subgroup of O(d,Z) on
the indices {1,...,d}. The action of an element (o,7n,...,74) € Sq X Z%, on
the components of ¢ being given by

iy iy > Mig - Mip Polin) ... olip) » (3)

where n? = 1,7 =1,...,d. So for a democratic form no choice of indices is
privileged. We refer to [2, 3] for further details. It was shown in [2] that knowl-
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edge of the above symmetry groups allows an enlargement (oxidation) of the
base space; the symmetries may be used to remix the sets of indices {(¢;...%,)}
of the nonzero components amongst a larger set of indices {1,...,D}, D > d,
thus defining special democratic P-forms in D dimensions from special demo-
cratic p-forms in d dimensions for successively higher P > p and D > d. In this
paper, we consider two such oxidation maps:

a) Oxidation through remixing

This is a map ¢ € APR? — APRP” 5 & defining a special democratic p-form
® in D > d dimensions in terms of the components of a special p-form ¢ in
d-dimensions thus:

p= Y datitr o o= ) S da o ()

(i1,e.yip) €T o€HCSp (i1,...,ip)€TF

where H is some subgroup of the symmetric group Sp acting on the D indices.

b) Oxidation through heat flow

Alternatively, for D = d + ¢ the nonzero components of a special democratic
P = p + g-form are given by a map ¢ € APR? — APTIRT4 5 & defined by

p= > datit o o= ) ST dgli) oty oD)

(i1,--msip) ETF o€HCSD (i1,...,ip) €0+
(5)

Using these mappings, a nested structure of special forms in successively
higher dimensions emerges. This is reminiscent of a matryoshka (marpémza), a
set of nested Russian dolls, traditionally carved in wood, where the inner surface
of each doll is basically a copy of the outer surface of the previous doll; but the
outer surface can then vary somewhat, depending on the geometry of the bulk.

A remarkable nested stucture of special democratic forms was displayed in
2], which included a U(3)-invariant 2-form in six dimensions, a Go-invariant
3-form in seven dimensions, and a Spin(7)-invariant 4-form in eight dimensions;
corresponding to the embeddings SU(3) C G2 C Spin(7) mentioned above. It
was also shown, that this matryoshka with 3 dolls fits into even larger dolls and
interesting properties of a special democratic 6-form in ten dimensions were
presented.

Motivated by the discussion in [2] of nested special democratic forms, we
shall presently show that there exists a corresponding matryoshka of self-duality



equations in successively higher dimensions; each implying the Yang-Mills equa-
tions, just as four-dimensional self-duality [4]. Successive sets of equations are
‘oxidised” to higher dimensions and ‘reduced’ to lower dimensions by enhanc-
ing or restricting the permutation symmetries on the sets of indices of special
geometric tensors. Remarkably, the simplest case of the mapping (5), with
g =D —d =1 corresponds to equations for (partial) curvature flows for the
vector potentials, hence ‘Oxidation through heat flow’. Solutions of the lower
dimensional equations then provide initial values for the flow into the extra
dimension, the flow to the next doll of the matryoshka. We shall dispay oxida-
tions up to d = 16. The representation theory underlying the twelve dimensional
system seems to be related to a mathematical curiosity, the algebra of the sexto-
nions [5, 6], a six-dimensional algebra between quaternions and octonions. This
algebra gives rise to a new row in Freudenthal’s magic chart, corresponding to
a (non-simple) Lie algebra between e; and es, which has been called e, 1 [6].

2 Generalised duality for gauge fields in d > 4

Generalisations of the four-dimensional self-duality equations to higher dimen-
sions were introduced some time ago in [4], where it was shown that restrictions
of the Yang-Mills curvature two-form F' to an eigenspace of a four-form 7', im-
plies the Yang-Mills equations. In a standard orthonormal basis of T*M these
take the form,

%gkmgl"Tijlemn =\Fy;, i,j,---=1,...,d. (6)
Here T}, is a covariantly constant tensor, g’" the inverse metric tensor and
F =dA+ A A A is the curvature of a connection D = d + A on a Riemannian
d-fold (M, g) with values in the Lie algebra of a real gauge group contained
in GL(n,R). These partial-flatness conditions on the curvature are first order
equations for the vector potentials A, so they are more amenable to solution
than the second order Yang-Mills equations. Indeed, many special solutions are
known (see e.g. [8, 9, 10]). The usefulness of the linear curvature constraints
(6) follows from the observation [4]:

Theorem 1 For nonzero eigenvalues X\, the conditions (6) imply the Yang-
Mills equations g”D;Fj, = 0. Thus, potentials A satisfying these first order
equations automatically satisfy the Yang-Mills equations.



This result follows in virtue of the Bianchi identities Dy Fy,,) = 0. In [4],
constant four-forms 7" in flat euclidean spaces were considered, but it is clear
that, more generally [11], it suffices for the consistency condition

g™ g" (g ) Tijit) Frm = 0 (7)

to hold, which follows if T is co-closed, gV, T;;x = 0. The latter in turn follows
if T" is parallel (i.e. covariantly constant) with respect to the Levi-Civita connec-
tion V. In dimensions d > 4, the four-form T clearly breaks the d-dimensional
rotational invariance of the Yang-Mills equations. Examples of 4-forms and the
corresponding partial-flatness conditions (6) invariant under various subgroups
of G C SO(d) were studied in [4] for dimensions 4 < d < 8. In particular, inter-
esting examples invariant under SU(n)®U(1))/Z, and SU(n) Go and Spin(7),
in dimensions d = 2n, 7,8 were constructed. The example of Sp(n) ® Sp(1)/Z
was discussed shortly thereafter in [12, 13]. The above groups are precisely the
holonomy groups of Calabi-Yau, quaternionic Kahler and exceptional holonomy
manifolds, so remarkably, the generalisations of self-duality for most of Berger’s
special holonomy manifolds [1] were unwittingly constructed before the subject
acquired widespread differential geometric interest (e.g. [14, 15, 16, 17, 7, 11]).
On all the above manifolds, there exists a V-parallel four-form, so the above-
mentioned consistency condition on 7T is satisfied.

The equations (6) may be expressed in terms of projection operators to the
orthogonal eigenspaces (see e.g. [19])

ALF9 =0, I=1,....4d\, (8)

where the number of equations, d, , is the codimension of the eigenspace cor-
responding to eigenvalue A. Here, the projector A is the analogue of the 't
Hooft tensor in four dimensions and we lower (raise) indices using the (inverse)
Riemannian metric.

In even dimensions, with d = 2n, if the manifold M admits a complex struc-
ture J, this provides, at any point p in M, a linear map J,: T,M — T,M under
which the complexification 7, M ®g C splits into the eigenspaces T,Sl’O)M and
TISO’UM , both of which are isomorphic to C". This allows the choice of com-
plex coordinates (z',...,2") and (2',...,2"). The complex (1,0)- and (0,1)-
forms {dz*} and {dz"}, for a,@ = 1,...,n, then provide bases for T, %M
and 7, ,So’l)M respectively. Imposing the reality conditions dz® = dz®, we may
recover R*® ~ C". The curvature two-form in this basis has components
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Fop, Fo5, F55 = Fap and the Riemannian metric locally takes the hermitian
form d%s = gagdzo‘dzg = dz%dz, = Y, dz*dz" and the complex (n,0) vol-

aq...0n

ume form is given by Q = dz In the complex setting, the equation
(6) is a G-invariant equation, where the structure group G is a subgroup of
GL(n,C) C GL(2n,R). For the particularly important A = —1 case, we shall

use the following complex variant of Theorem 1.

Theorem 2 On a Riemannian complez n-fold (M?", g), with hermitian metric
g= gagdzadzﬁ and (4,0)-form ®, the linear curvature constraints,

Faﬁ + %gVﬁgéﬁ (bocﬁ'yé FrT/i - 07 (9)
gO‘BFaB =0, (10)
977G (§*PV5Paps) Fr = 0, (11)

imply the Yang-Mills equations g*? DsF,5 = g*? DsF 5 = 0.
Proof: Using (9) we have
9" DpFog = D*Fap = —5(V®agys) F7° = 5Pagys DUF? =0, (12)

the first term being the left side of (11) and the second vanishes in virtue of
the Bianchi identity Dgzfiz + cyclic permutations = 0. Similarly, using the
Bianchi identity between Dy, Dg and D, we have, DF, 5 = DgFys+Dol5p . On
contracting with ¢g*”, the second term on the right yields the complex conjugate
of the left side of (12) and the first term contains the trace of the (1,1)-part of
the curvature, which vanishes by equation (10). O

Already in [4], it was noticed that the lower dimensional cases, including
four-dimensional self-duality, the six-dimensional SU(3)®U(1))/Zs-invariant equa-
tions and the seven-dimensional Go-invariant equations, were reductions of the
eight-dimensional Spin(7)-invariant set of equations. In the present paper, we
show that using the results of [2] these equations also admit a systematic ‘oxi-
dation’ to higher dimensions starting from the lower dimensional ones.

We consider two types of oxidation. The first is based on the map (4) and
uses cyclic permutations to remix the index sets appearing in the lower dimen-
sional equations amongst a larger set of indices. The second oxidation method
is based on the heat flow for some appropriate partial curvature. This is related
to the D —d =1 case of (5). More specifically, if in (d—1)-dimensions, there
exist a special set of d—1 curvature constraints fijxF/* =0, i =1,...,d—1,
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where f is some appropriate tensor, then we can consider the corresponding
partial curvature flow

Identifying the parameter or ‘time’ of the flow with a d-th independent variable
2, the left hand side is the A; = 0 ‘temporal’ gauge form of the curvature
components Fy;, so that the flow equations (13) are in fact linear curvature

constraints of the form
Fy = fij v (14)

Remarkably, in many interesting cases, these constraints may be reformulated
in the form (6), thus implying the Yang-Mills equations. The idea of choosing
such a temporal gauge to obtain a flow equation is not new. For instance,
both Nahm’s equations for magnetic monopoles [20] and the generalisations
to higher dimensions of Euler’s equations for a spinning top [21], arise from
the imposition of precisely such a gauge choice on equations of the form (6).
The converse idea, that flow equations can be interpreted as gauge covariant
equations one dimension higher by gauge un-fixing the component of the gauge
potential in the direction of the flow, has been used by Tao [22].

As we shall see, the juxtaposition of the two oxidation methods above yields
the advertised matryoshka of self-duality equations, starting from zero curva-
ture in d = 2 and including the familiar 4-dimensional self-duality, as well
as its generalisations to 6,7 and 8 dimensions mentioned above. Remarkably,
the matryoshka affords enlargement to even higher dimensions. We discuss an
interesting 12 dimensional extension and display its oxidation to 14 and 16
dimensions.

3 The matryoshka of self-duality equations

Let us begin in two dimensions with the flatness condition Fi5 = 0 for the sole
component of the curvature two-form. In the complex setting, the curvature
only has a (1,1)-part, F.z, where we use complex coordinates z = z* +iz? |, z =
! —iz? . The flatness condition means that the curvature is in the kernel of
the volume form. We therefore have,

e Fi=0 & Fy=0 & F.=0, (15)



Both real and complex forms of the equations are locally rotationally invariant,
since their respective invariance algebras s0(2) and u(1) are isomorphic. The
rich properties of the solutions of these equations on Riemann surfaces have
been investigated by Atiyah and Bott [23].

We oxidise the equation Fi2 = 0 to a system in three dimensions by acting
on the indices by all permutations generated by the cycle o = (1 2 3) € S5, so
as to obtain a system of equations invariant under these permutations:

{F12 = 0} — {Fap(1)ap(2) =0; 0= (1 2 3) y P = 172} (16)

This of course yields flatness in 3 dimensions; the curvature lies in the kernel of
the three-dimensional volume form,

pF* =0 & Py = Fyy = Fy =0 .lad3 (17)
Since this is a set of 3 equations for the three vector potentials A;, 1 = 1,2, 3,

it allows us to write the Yang-Mills curvature flow

0

Dot

with initial (at z* = 0) flat connection A;(z’,0) satisfying (??). This is the
gradient flow of the Chern-Simons functional [24]

A2t o) = e BV i =1,2,3, (18)

)

M3 M3

where dz* = daz® A d2? A dx*, the volume form. In his canonical quantisation
of this theory, Witten [24] considered the 3-fold to be of the form M3 = ¥ x R},
where the data on the 2-dimensional boundary ¥, a Riemann surface, satisfied
the equations (15).

Now applying an z*-dependent gauge transformation to the vector potentials

Ay e g7 (@ 2 Agg(at, ) + g7 (@' 2 Dug (2’ 2%) L, a=1,...,4, (20

which yields a pure-gauge form for the fourth vector potential, Ay = ¢~ 10,9.
The non-gauge covariant equation (18) now takes the gauge covariant form of
the four dimensional SO(4)-invariant anti-self-duality equations

Fab_'_%EabchCd:Oa a,b,c,dzl,.--4, (21)



a set of 3 equations for the 4 vector potentials. (The self-duality equations
emerge on reversing the z'-direction of the flow.)

Using a manifestly u(2)-covariant notation for Yang’s complex coordinates
(2%, 2%:=2%, a,a = 1,2), these equations take the form (c.f. (15)) [25],

QupF* = 0 & Fp=0 (22)
¢PF; = 0 & Fi+Fp=0. (23)

This is a system consisting of one complex and one real equation, leaving as the
sole non-zero part, the trace-free part of the (1,1)-curvature. The U(2)-invariant
metric on C? ~ R* is given by gagdzadzﬁ = dztdz' + d22dz? =: dz*dz" and the
symplectic (2,0) volume form, invariant under SU(2), by Q = Q,5dz® A dz° =
dzt A\ dz? =: dz'2.

Now, complexifying all the data by dropping all reality conditions (see for
instance the discussion in [11]), we obtain the additional equation F,z = 0,
which allows us to choose the holomorphic gauge A, = 0. The equation (23)
then takes the form of a conservation law [26]

970,45 =0°4;=0, a,B=1,2, (24)

which has local solution Az = Qg-d7f , where Q = Q_zd2" A d2’ = dz" is the
symplectic (0,2)-form. The remaining equation in (22) then takes the form of
Leznov’s wave equation [27]

Df + %Qaﬁ [&sz ) 8ﬁf] =0 ) (25)

with Laplacian [J = gag&l% = 0%0y. Solutions provide stationary points of
the Leznov functional

1 1
SL:/ Tr <—fo+—Qan8af05f) . (26)
MC 2 3
whose variation has the standard heat equation form,
0
Sof =OF 430 (0.1, 03] 27)

In this case, the left-hand-side side does not allow interpretation as a (gauge-
fixed) component of the curvature.

In all the above cases, in dimensions d = 1,...,4, the equations are fully
SO(d)-invariant. The special geometric structures characterising these equa-
tions are thus precisely the volume forms, which are trivially special democratic
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forms. The oxidised volume form in d-dimensions vol; = dz'¢ may be obtained
from lower dimensional volume forms by taking succesive wedge products with
the additional basis one-forms, vol; = voly_; Adz?.

4 From four to eight dimensions

4.1 Permutation to d=6

To proceed to higher dimensions, we now consider the complex version (22),(23)
of the four-dimensional equations. Following the previous mapping from two to
three dimensions (16), we now oxidise these equations from C? to C3 by requiring
invariance under the cyclic permutations generated by o = (1 2 3) € S3, where
the indices are now complex;

{Fis =0} — {Fopyor2y =0; 0=(123), p=1,2}. (28)

This yields the system (c.f. (?7))
Qup F7' =0 & {Fi3 = Fy3 = F5 = 0} (29)
9PF5=0 & Fi+Fo+F3=0, a,a=1,2,3, (30)

a set of three complex and one real equation. Here gagdzo‘dzg is the U(3)-
invariant hermitian metric and Q = dz' A dz? A dz® = dz'?3, the complex
(3,0) volume form. These equations were obtained in [4] as SU(3)®@U(1))/Zo-
invariant curvature constraints which imply the second order Yang-Mills equa-
tions. They later made an appearance in work by Donaldson [28], Uhlenbeck
and Yau [18] as the equations for holomorphic connections on three (complex)
dimensional Kahler manifolds, g being the Kahler metric.

In the six real coordinates, % = Rez®, 2" = Im2*, o = 1,2,3, the
equations take the form (6), with the special democratic four-form (see [4])

T(G) — d$1425 4 d$1436 4 d$2536. (31)

This is invariant under the group S; of permutations of the 3 ordered pairs
({1,4},{2,3},{4,5}), or, equivalently, the symmetries generated by the per-
mutation o = (123)(456) € Sg. The stabiliser of T(s) in SO(6) is the group
SU(3) x U(1)/Zy and under this, the space of 2-forms has the following decom-
position into eigenspaces of T{g [4]:

AR = (su(3)o, A=-1) & (¥ &V, A=1) & (Rwp, A=2),  (32)
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where (V*, A) is the n-dimensional irreducible representation of SU(3), the
index ¢ denotes the U(1) charge, A the eigenvalue of T{s) and wy = g,5d2* A d=?
is the invariant metric form associated with g. Two-forms parallel to wq are
contained in the [ = 2 eigenspace. Under the action of T{g) the curvature tensor
therefore decomposes into 7{g)-eigenspaces according to

F=(F5—395F0, A=—1)® (Fas ® Faz, A=1) & (Fum, A=2),  (33)

o

where Fjy denotes the trace go‘BFag. The set of seven equations (29), (30) thus

projects the curvature to the 8-dimensional su(3) part, the A = —1 eigenspace.

Analogously to (23), complexifying the Yang-Mills fields, the equation (30),

in the holomorphic gauge A, =0, a = 1,2, 3, can be locally solved in terms of
three prepotentials taking values in the complexification of the gauge group:

Az = Q50717 . (34)

The remaining conditions (29) provide extrema of the Chern-Simons action
5 — / Tr (ADA + A%) A 00
Mc
= / Tr (%AE%AV + %AEABAW) dZaEﬁ . (35)
Mc

Inserting (34) in (29) yields a wave equation analogous to (25) for the triplet of
complex prepotentials fg,

OOt + 3005 fy . Oufy] =0 . (36)

The associated heat flow equation takes the form

0
Efa =0 0o fs + 207 [05f, , Oufa) - (37)

The reduction of (29),(30) to the missing d = 5 case involves choosing a con-
stant unit vector in R and projecting to the five-dimensional space orthogonal
to it. Without loss of generality, we may simply choose one of the basis vectors,
say eg, effectively deleting the variables 2° and yielding an SO(4)-invariant 4-
form T = dz'?*®. The corresponding equations (see [4]) are an embedding of
four-dimensional self-duality (21) in five dimensional space. A five dimensional
reduction of the Chern-Simons action (35) and corresponding flow equations
were discussed some time ago by Nair and Schiff [29].
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4.2 Flow to d=7 and d=8

Since the three complex equations (29) have an action (35), we may write down
the partial curvature flow, for the three complex potentials A,, now depending
on seven variables (2%, 2%, 27):

o7 e = Qup, F?', a=1,2,3. (38)
This being the gradient flow for the functional (35). Now, analogously to the

four-dimensional case (20), an z’-dependent gauge transformation yields the
fully gauge covariant form of this partial curvature flow

= QQBWFBV & {ln=Fy, Frp="Fs, 3= I} . (39)

Here 0/0z7 denotes the real vector field (the ‘time’ of the flow) and «, 8,y =
1,2, 3 are complex indices. The three complex equations (39) together with the
real equation,

9 F,5=Fi+Fp+ Fig =0, (40)
imply the Yang-Mills equations in seven dimensions. Choosing real coordinates
(z',...,27), these equations they take the manifestly Go-invariant form [4]

Here 9 is the Go-invariant Cayley three form whose components v;;;, provide
structure constants of the algebra of imaginary octonions. Choosing the first
six real coordinates as the real and imaginary parts of the complex coordinates

© = g% 4223 o= 1,2,3, we obtain,

as follows, z
Y = dz*" + dox®" + da"7 + da'% + da® + da' + da' (42)
Its four-form dual is given by
= wip = o' 10 g0 | gy T2y g7 | gaTH6 4 35T (43)
in terms of which the equations (41) take the form,
Fj+toumF™ =0, dijk=1,...7T, (44)

which projects the curvature to the A = —1 eigenspace of ¢; the eigenspace
decomposition of the space of 2-forms being [4]

A’R” = (go, A= —1) @ (R", A = 3). (45)
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Since the system (41) consists of 7 equations for 7 potentials and has the
Chern-Simons type action

Ses = / Tr (AdA+ A As = [ Tr (LA Ac+ TAA A 7%, (46)
M7 M7

we can immediately write down the corresponding partial curvature flow in eight

dimensions analogous to (18):

%A,. = gmijjk, i=1,...,7. (47)

This is the temporal gauge (As = 0) form of the Spin(7)-invariant equations
in eight dimensions, which were discovered in [4] and shown there to arise as
the projection of the curvature form to the A = —1 eigenspace of the Spin(7)-
invariant 4-form ¢,

Fab"’%gbabchCd:Oa a>bacad:17“'8” (48)

where in terms of the seven dimensional forms ¢, ¢ in (41) and (44) the four-
form ¢ in eight dimensions is given by ¢ = da® A ) + ¢. The decomposition
AR into eigenspaces of this 4-form is given by

A*R® = (spin,, A = —1) @ (R", A\ = 3). (49)

In complex coordinates, z® = z® + iz®™ | «a = 1,2, 3,4, the equations (48)
take the form (see [4]) incorporating (39),

Faﬁ_‘_%Qaﬁ’YéFﬂyézo = {F4l:F§3> F42:F31’ F43:Fﬁ}
9PFz=0 & Fi+Fp+Fs+F3=0, (50)

where ¢ is the U(4)-invariant hermitian metric on C* ~ R® and Q = dz'?3!
is the SU(4)-invariant volume form in C*. In the complex ‘temporal’ gauge,
Ay = 0, the three complex equations in (50) therefore take the form of a partial
curvature flow with complex flow parameter z?,

0

@Aa - %Qaﬁ-y FB'Y (51)
0 o

@Ai = gsﬁFE (52)
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where Qq5., g5 # are the volume form and inverse metric of the complex 3-space
orthogonal to the complex vector field 9/9z*. The equation (51) thus gives the
complex variation of the Chern-Simons action (35).

All the above duality equations in dimensions up to eight are more or less
well-known [4]. Our main result is that the pattern of succesive dimensional
oxidation actually continues to higher dimensions. Proceeding further, we see
that a particularly interesting 12-dimensional system results.

5 Self-duality in 12 dimensions

Following the method of oxidising the duality equations from R* to RS, we
now extend the system (50) in C* to C°® by juxtaposing two additional complex
variables 2°, 2% and then remixing the six complex indices by requiring symmetry
under permutations generated by o = (135)(246) € Ss. We thus obtain the
equations, B

gaﬁFag:F11+F2§+F33+F421+F55+F66 =0, (53)

together with
Fio+Fyi+Fss =0, Fau+Fy+Fra=0, Fs+ Fia+F=0 (54)
Fig+Fi =0, Fiy+F5=0, Fis +Fe =0
Fig + F55 =0, Fy5 + Fsi =0, Fie + Fy5 =0. (55)
These equations imply the 12-dimensional Yang-Mills equations! The proof fol-

lows from Theorem 2 and the observation that these equations allow expression
in the form (9), (10), with the (4,0)-form ® taking the form

d = d21234 4 d21256 4 dZ3456 ) (56)
This four-form is thus given by ® = w?, where w is the symplectic (2,0)-form
w = dz"? +dz* + d2°° € A*CE. (57)

This is analogous to the RS case, except that now everything is complex. The
(4,0)-form & is manifestly invariant under the action of Sp(3) C SU(6) C
Spin(12).
The three conditions in (54) are equivalent to the four real equations,
Im(Fr3) = Im(F33) = Im(Fz5) = 0,
Re(w*™ F_3) = Re(Fiz + Fsi 4 Fs5) = 0, (58)



where the symplectic (0,2)-form & = wgzd2® A dzP = dz" + dz3* + d25% and
cuagcug7 = 5? . The system of equations thus consists of 5 real equations, (53)
and (58), together with 6 complex equations (55), a total of 17 real equations.

The entire system (53),(54),(55) in real coordinates for 12-dimensional eu-

clidean space given by 2° = Re2*, 275 =Im2*,i = 1,...,6, takes the following

form. Here we denote the indices 10,11,12 by 0, a, b respectively.

Fio + F3y + Fse + Fgy + Fog + Fpg = 0

Fir + Fog + F39 4+ Fyo + F50 + Fep =0

Fi3 + Fyo + Fo7 + Fgo =0
Fig+ Fo3 + For + Fog = 0
Fis + Foo + For + Fgy, = 0
Fig+ Fos + Fpr + Fos =0
Fi5 + Fea+ Foo+ Fop =0
Fz6 + Fus + Fypg + Foo =0
Fig+ Frs+ Fgy + Fo =0
Fio+ Fry+ Foo + F33 =0
Fio + Frs + Fge + Fop = 0
Fiy + Fre + Fop + Fsg = 0
F34 + Fos + Fog + Py =0
Fap + Fog + Fos + F50 =0

Fs0 + Fos =0
Fsp, + Fog =0

(59)
(60)

(61)

(62)

These equations have the familiar form (6), with the 4-form T(12) € A’R' being
given by the special democratic form

Tz

d!lf1234 —|—d!l§'1256 +dl’1287 —|—dl’1209 —|—dl’12ba +dl’1397 —|—dl’1380
+d$1407 +d$1498 —|—d$15a7 —|—dl’158b —|—d$16b7 —|—d$16a8 —|—d$2307
+d!)§'2398 + d!lf2479 +dl’2408 +dl’25b7 +dl’25a8 +dl’267a +dl’26b8
+d!)§'3456 + d!lf3487 +dl’3409 +dl’34ba + dx35a9 +dl’35b0 + d!lf36b9
+d$36a0 + d$45b9 +d$45a0 + d$469a + d$46b0 + d$5687 + d$5609

—l—dZESGba + d[l'f7890 + d[l'f78ab + dIQOab

16
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which has a set of 39 non-zero components. The characteristic polynomial of this
Sp(3)-invariant four-form, acting on the space of two-forms has been calculated
using Maple. The eigenspace decomposition of the space of 2-forms in terms of
Sp(3) representations (see e.g. [30, 31]) is given by

AR = (sp, @ VY(m) @ Vi(m), A=—1) @ (V(m), A=—3)
& (Cw, \=—5) @& (Rwp, A=3). (64)

Here, w is the symplectic form (57) and wy the metric form wy = g,5d2* A dzP.
V14(7y) denotes the 14-dimensional representation with highest weight 7o, the
2nd fundamental weight of sp;. The 4-form Ti19) is in fact one of six Sp(3)-
invariant 4-forms in 12 dimensions. The 17 equations (59)-(61) project the cur-
vature two-form to the 49-dimensional eigenspace with eigenvalue A = —1. The
other eigenspaces have rather small dimensions compared with dim(A%R!?) =
66. We therefore expect the corresponding solutions to be rather trivial. Sp(3),
the stabiliser of the 4-form Ty, is a maximal subgroup of SU(6).

The similarity of the equations (53)-(55) to the three and six dimensional
sytems in R? and C?* ~ R® discussed above suggests that this is the counterpart
in three dimensional quaternionic space H?® ~ C°®. The imaginary quaternion
units satisfy i = j?2 = k> = —1 and ij = —ji = k, together with the relations
which result on cyclically permuting (i, j, k). We consider C to be an R-vector
space spanned by (1,4) and H a C-vector space spanned by (1, 7). Scalar mul-
tiplication of z € C with the quaternionic basis element j satisfies zj = jZ, so
quaternions may be written in the form

g =z+ju=z+wj, qeH, z,weC. (65)

The conjugate quaternion is then given by

g =zZ—wj=zZ—jw, q€H, z,ueC. (66)

The conjugate imaginary units are clearly given by i = —i, j=—j, k= —k.
Quaternions being noncommutative, conjugation is an involutive antiautomor-
phism, i.e. = ¢ and q1qz = ,q;. There exist related involutive automorphisms
given by conjugation with the quaternion units,

id: ¢ — q=z+wjg,
a: g — —iqi=z—wj,
Bigq — —jgg=z+wj,
v:q — —kgk=ZzZ—wj, (67)
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in terms of which the real and imaginary parts of q can be expressed as linear
combinations of ¢, «(q), 8(q),v(q) (see e.g. [32]).

Now, let M be a three quaternionic-dimensional (i.e. 12 real-dimensional)
space. In a local coordinate frame T,M ~ H? ~ C°® We define three quater-
nionic coordinates ¢#, A =1,2,3, in terms of pairs of the complex coordinates

2% =% 452t o =1,...,6 used above,
¢ = 2+ o= 2t i’ + gt o+ ka®,
¢ = 2+ o= 2 i’ + gtk
¢ = 2P +25 = 2 Fin® + jab + kat (68)

and we denote the conjugate coordinates as ¢4 = gt

For any two quaternionic vector fields @)1, Q2 the curvature components
F(Q1,7(Q2)) and F(Q2,v(Q1)) have the same content in terms of real curvature
components, since 7 is an involutive automorphism. We now denote the basis
vectors of the coordinate vector fields on M by Q4 := 9/9q*, their quaternionic
conjugates by Q1 = Qa = 8/8(]Z and their a, 8, y-conjugates by Qua) =
a(Qa), etc. The hermitian metric in local quaternionic coordinates is given by
d%s = g,pdqdgP = dq*dg* + dg?dq® + dgPdgP.

Proposition 1  On a three quaternionic dimensional Riemannian manifold,
the following 8 quaternionic curvature constraints are equivalent to the system
(59)-(62) of self-duality equations in 12 dimensions:

WE

9*% F(Q5, Qar) = F(Qz, Qo)) = 0 (69)

S
= 1

g*P F(Qz, Qs) = F(Qz, Qpa)) = 0 (70)

b
I
—_

F(QTv Q'y(2)> = F(Qia Qv(3)) = F(Qg, Q'y(l)) =0 (71)
F(Qr, Qyn)) = F(Qsz, Qvy2) = F(Q3, Qys) = 0. (72)

Proof: The equivalence to the 17 equations (59)-(62), or equivalently to the
complex form (53)-(55) follows from a direct expansion of the quaternionic
vector fields in the basis (1, j). O
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6 Flowing to 14 dimensions

The similarity between the 3 quaternionic equations in (71), the 3 complex
equations in (29) and the 3 real equations in (??) immediately suggests that
in analogy to the flows (18) and (38), we may write down flows for the three
quaternionic partial curvatures in (71) into a futher complex direction, with
coordinate z7. We write, in M = M3 x C with coordinates (¢!, >, ¢3,27), in
analogy with (51) and (52),

9
027

0
WA(Qz) = —F(Qs, Q)

AQ1) = —F(Qz, Qya)

0
QA(QZS) = _F(QT7 Q'y(2))

%A(Z7) = ZF(QZ’ ro(A)) (73)

A=1

together with (70), considered as an equation in 14 dimensions,

3
Y F(Qx, Qsay) =0. (74)

A=1
Writing the quaternionic vector fields Q4, A =1,...,3 in terms of complex
vector fields Z,, o = 1,...,6 according to the choice in (68) and unravelling

the A(Z;) = 0 gauge, we obtain the system

F(Z7, Zs+ Zsj) + F(Z1—jZy, Zs— Zyj) = 0

3
F(Z77 7’7) - ZF(Z2Q—1 _jZ—2aa Z2a—1 _.]Z—2a> =0
a=1
3
ZF(Z2a—1 — 320 s Zoa—1+ jZ2%) = 0 (75)

a=1

Expanding the quaternionic vector fields in the basis (1, j), we obtain equations
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on C7, which are contained in the system

Fa 4+ Y0y oy = 0 (76)
gPF5 =0 (77)

with @ given by the GS-invariant (4,0)-form
D — 2134 4 g,1256 | 7,3456 | 01875 | g 1467 | g 2367 | ;2457 (78)

By Theorem 2 we therefore have a system of equations which implies the Yang-
Mills equations in 14 dimensions.

Unlike the previous analogous cases, the equations (76) are not equivalent
to the set (75). The former set contains more equations than the latter. More
precisely, (76) includes, for instance, the three equations

Fo+Fss+ g = P+ Fss+Fey = Fri+Fys+ Fgr=0. (79)

Under the GS-invariant 4-form @, both real and imaginary parts of F,s split
into their 7- and 14-dimensional irreducible parts. The equations of the form
(79) imply that under (76) the real part is projected to the 14-dimensional piece
(7 equations) and the imaginary part is zero (21 equations). The real form of
the system (76),(77) is given by the set of 29 equations,

Fig+ Fog+ Fso + Fyg + F5p + Fose + Frg = 0
Fig + F34 + Fsg — Fgg — Foo — Fic 0
Fi3 — Foy — Fgo + Foo + Foa + F75 0
Fiy + Faoz — Fgq — Foo — Fea — F6 0
Fi5 — Fas — Fgp + Foo — Foa — Fr3 0
Fig + Fos — Fge — Fop + Fua + Fry 0
Fi7 — P35+ Fag — Fsa + Fop — Fuc 0
Fry — F36 — Fus + Foqg + Foc + Fup = 0 (80)
Frs =P = Frog—Foy = Frg—Fzg = 0
Fro — Fag = Fup— Fsq = Fre— Fgq 0
Fig— Iy = Fio—F3s = Fio— Fis 0
Fip— Fss = Fa—Fzg = Fyg—Fy9 = 0
F3, — Fy = Fy—Fs9 = F3 — Fyo 0
Fuo—Fsa = Fie—Fegs = Fao— Foo 0
F3o — Foo = Fae—Foo = Fse—Fgp = 0. (81)



These 29 equations correspond to the A = —1 eigenspace of the special demo-
cratic 4-form given by
Thy = A2 4 gp1256 4 g 1298 | 01200 4 god2cb 4 01375 4 g0 13bd
11308 4 go139a 4 godda8 4 01409 4 g0 1467 4 g ldde g g 1508
1 da9e 1 gpt5d0 | g 16e8 g2 1660 | godad6 | 701700 4 g laTe
1 2367 4 2308 4 22309 | go23de | 02457 4 02480 | 02409
1 g4y 2568 4 122569 | g 2ad5 | g, 2686 72669 | . 20d6
1 da207e 4 gp2aTb 4 303456 4 03498 | g,34a0 4 g, 34ch | 7, 3500
1 dgPac 4 g8 | g, 98d6 | g,36c0 4 g 36ba | g, 8367 | g, 03Tc
1 9145 | g 450 | goASba 4 g A60b | g d6ea y g 84d6 | g, 847c
1 9T 4 g 5698 | 105600 | g 56cb | go9aT5 4 g.8aT6 4 9076
1 da®0a 4 gy 8%be 4 8057 | go80db | g 8acd | g,90cd | ;. 9abd

+ dx(]abc + d.fll'187d —|—d$297d —|—d$307d + dflf4a7d +dl’5b7d + d.Z‘GC?d.
Its characteristic polynomial is given by
X(Tagy) = A+ DA =3)"(A+3)"(A = 5)7(A - 6) (82)

and the above 29 equations correspond to the projection to 62-dimensional
A= — 1 eigenspace.

Deleting all terms containing the 14th index d from the above equations
yields the 13-dimensional reduction, corresponding to a flow along a real pa-
rameter rather than the complex one chosen in (73). This is also a set of 29
equations, projecting the curvature to the 49-dimensional A = —1 eigenspace
of the corresponding reduction of the 4-form T{4). The reduced 4-form has
characteristic polynomial

X(Taz) = A+ DPA=3A+3)(A=5)2A—4)°(N + 1 —4)°. (83)

7 Oxidation to 16 dimensions

Analogously to the oxidations (47), (51) and (52) to eight real dimensions, we
may oxidise the system (76),(77) in C” to one in C® by taking g,5 to be the

C8-metric and the (4,0)-form ® to be given by the Spin(7)C-invariant,
O = A g 126 | 12T | B0 | g BT | g s6TS | g 1368 gy
4T L MOT | 188 | g 2367 | g 205T | g 2358 | g 2486 (gr)
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The corresponding system includes the flow equations based on (75),

F(Zy, Zvj — Zo) + F(Zr, Z1+ Zsj) + F(Zs— jZ4, Zs — Zsj)
F(Zs, Zsj — Z4) + F(Zy, Zs+ Zyj) + F(Zs— jZs, Z1 — Zaj) =
)

F(Zs, Zsj — Zs) + F(Zz, Zs+ Zsj) + F(Zy — jZy, Z3 — Z4j

3
F(Zs, Zs) + F(Zr, Z7) — ZF(Z2oc—l_jZ—2omZ2a—l_jZ—2a) =0

a=1

4
Z F(Zsa—1 — jZsa , Zoa—1+ jZ2a) = ((86)

a=1

The real form of the full system of equations with (4,0)-form & given in (85)
is given by

Fio+ F3y + Fse + Frg — Foo — Fyp — Fea—Fop = 0

Fi3 — Fyy — Fs7 + Feg — Foy + Fop + Fee — Fyr 0

Fiy + Foz + Fsg + For — Fo, — Fog — Fop — Fye 0

Fis — Fye + F37 — Fyg — Foo + Foqg — Fyue + Fyy 0

Fig + Fos — F3g — Fyr — Foqg — Foo + Fup + Fie 0

Fi7 — Fog — Fs5 + Fag — Foe + Fop + Foe — Fg 0

Fig + For + F36 + Fus — Fop — Foe — Fuqg — Fic 0

Fig + Foo + F3y + Fay + Fse + Fog + Fre + Fgp = 0

Frg—Fie = Fgo— Fop = b5 —F3. = Fgp—Fyy = 0

Fro—Fye = F3qg—Igq = Fae— Fry, = Fip — Fyg 0

Fog — Fig = Foe — Fsg = Fsp — Iy, = Fpyy— Fiye 0

Fie —Fs9 = Foqg— Feo = Fze— Fry = Fyy — Fyy 0

Fiy—Fog = Fsp—Fge = Foq — F3g = Fge — Iy 0

Fop—Fgqg = Fse — Fre = Fyg— Fo, = Fz9 — I, 0
Frp—Fge = Fsqg—Fse = Fiog—Fy = F3,—F,y, = 0. (87)

The corresponding 4-form T(16) € A’R' has characteristic polynomial

X(The)) = A+ D¥A=3)2 (A =7)° (A +5)", (88)

so the above 36 equations correspond to the vanishing of the imaginary part of
F,5 (28 equations), the 7-dimensional irreducible piece of the real part of F,pz
and the singlet trace condition on the (1,1)-curvature.
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Deleting all terms containing f, the 16th index, from the above equations
yields 36 equations in 15 dimensions which projects the curvature to the 69-
dimensional A = —1 eigenspace of the corresponding 4-form 7T{;5), which has
characteristic polynomial

M) = A+ 1P = 6)*(A —3) (2 + 30 —6). (89)

8 The reductions to 8 < d < 12

We now briefly comment on some reductions of the above 12-dimensional system
to the lower dimensions which were missed out in the discussion above.

d=11

Deleting all terms containing dz® in (59)-(61) yields a set of 17 equations in
11-dimensions. The correspondingly reduced four-form {11y := Ti19)|gzb—¢ has
characteristic polynomial

X(Tan) = A+ DA =25 (A =3)°(A = 4)*(X* + X — 4). (90)

d=10

Reducing the above 11-dimensional 4-form further to the 10-dimensional hy-
persurface defined, for instance, by 2% = 0 yields a 4-form with characteristic

polynomial
X(Thoy)) = A+ 1) (A =1)°(A = 3)°(A - 4). (91)

The A = —1 eigenspace corresponds to a set of 15 equations amongst the 45
curvature components. This case is the complex counterpart of the d = 5 case
discussed at the end of section 4.1. In C®, these equations take the form (9),(10)
with o, = 1,...,5 and the complex (4,0)-form given by the contraction of the
(5,0) volume form with a constant unit (0,1)-vector. This (4,0)-form is the
SU(4)-invariant volume form in the 4-dimensional complex space orthogonal to
this vector. Choosing, this vector, for instance in the direction of the z°-axis,

1234

we obtain ® = dz?3!, yielding the following equations on C°

Fii4+ Foys+ Fs3+ Fya+ Fs5 =0
Fig+ Fsg = Fi3+ Fia = Fiy + Fos =0

Fis = Fos = F35 = Fy5 = 0. (92)
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d=9

The most symmetric reduction of (92) to 9-dimensions, making 2° real, is a
trivial embedding of the Spin(7)-invariant set of equations (50) in 9 dimensions.

9 Some open questions

An intruiguing open problem is the relation of the 12-dimensional system to
sextonions and to the ‘missing row’ of the Freudenthal magic square related to
E% (see [12, 6]).

In the cases where the duality equations describe (partial) curvature flows,
it remains to be seen whether solutions in the bulk can always be seen as arising
from solutions on the initial value surface (boundary) of the flow. For instance,
to what extent can the known four-dimensional solutions of the self-duality
equations (21) be seen as arising from a flow which has a flat 3d connection as
its initial value, or do the known solutions of the 8-dimensional Spin(7)-invariant
equation [8, 9, 34] arise as a solutions of the flow equation (47) from solutions
(e.g. [33]) of the Go-invariant equation (41) on the initial value seven-fold.

Acknowledgements

This work has benefitted a great deal from innumerable discussions over the
last 30 years with Jean Nuyts. I acknowledge useful discussions with Andrea
Spiro and Gregor Weingart, as well as partial funding from the SFB 647 “Raum-
Zeit-Materie” of the Deutsche Forschungsgemeinschaft. I should like to thank
Hermann Nicolai and the Albert-Einstein-Institut for hospitality.

References

[1] A.L.Besse, Einstein manifolds, Springer-Verlag, Berlin, 1987

[2] C.Devchand, J.Nuyts, G.Weingart, Matryoshka of special democratic
forms, Commun. Math. Phys. 293 (2010) 545-562, arXiv:0812.3012

[3] C.Devchand, J. Nuyts, G. Weingart, Special Graphs, Int. J. Geom. Meth.
Mod. Phys. 3 (2006) 1011-1018, arXiv:math/0604558

24



[4]

[10]

[11]

[12]

[17]

E. Corrigan, C. Devchand, D.B. Fairlie, J. Nuyts, First order equations for
gauge fields in spaces of dimension greater than four, Nucl. Phys. B214
(1983) 452464

B.W. Westbury, Sextonions and the magic square, J. London Math. Soc.
73 (2) (2006) 455-474, arXiv:math/0411428

J.M. Landsberg, L.Manivel, The sextonions and E%, Adv. Math. 201
(2006) 143-179, arXiv:math/0402157

E. Kleinfeld, On extensions of quaternions, Indian J. Math. 9 (1967) 443-
446

D.B. Fairlie, J. Nuyts, Spherically symmetric solutions of gauge theories
in eight-dimensions, J. Phys. A17(1984) 2867-2872

S. Fubini, H. Nicolai, The octonionic instanton, Phys. Lett. B155 (1985)
369-372

Y. Brihaye, C. Devchand, J. Nuyts, Selfduality for eight-dimensional gauge
theories, Phys. Rev. D32 (1985) 990-994

D.V. Alekseevsky, V.Cortes, C.Devchand, Yang-Mills connections over
manifolds with Grassmann structure, J. Math. Phys. 44 (2003) 6047-6076,
arXiv:math/0209124

R.S. Ward, Completely solvable gauge field equations in dimension greater
than four, Nucl. Phys. B236 (1984) 381-396

E. Corrigan, P. Goddard, A.Kent, Some comments on the ADHM con-
struction in 4k dimensions, Commun. Math. Phys. 100 (1985) 1-13

M.M. Capria, S.M. Salamon, Yang-Mills fields on quaternionic spaces,
Nonlinearity 1 (1988) 517-530

T.Nitta, Vector bundles over quaternionic Kdhler manifolds, Tohoku
Math. J. 40 (1988) 425-440

S.K. Donaldson, R.P. Thomas, Gauge theory in higher dimensions, in The
geometric universe: science, geometry, and the work of Roger Penrose,
ed. S.A. Huggett, et al., Oxford Univ. Press, 31-47 (1998)

G.Tian, Gauge theory and calibrated geometry I, Ann. Math. (2) 151
(2000) 193-268

25



[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

2]

[27]

[28]

[29]

[30]

[31]

K. Uhlenbeck, S.T.Yau, On the existence of Hermitian-Yang-Mills con-
nections in stable vector bundles, Commun. Pure Appl. Math., 39 (1986)
S257-5293

C.Devchand, J.Nuyts, Superselfduality for Yang-Mills fields in dimen-
sions greater than four, JHEP 0112 (2001) 020, arXiv:hep-th/0109072

E. Corrigan, P. Goddard, Construction Of Instanton And Monopole Solu-
tions And Reciprocity, Annals Phys. 154 (1984) 253-279

D. B. Fairlie, T. Ueno, Higher dimensional generalizations of the Fuler
top equations, Phys. Lett A 240 (1998) 132-136, arXiv:hep-th/9710079

T.Tao, Geometric renormalization of large energy wave maps,
Journées équations aux dérivées partielles (2004), Exp. No. 11, 1-32,
arXiv:math/0411354v1

M.F. Atiyah, R.Bott, The Yang-Mills equations over Riemann surfaces,,
Phil. Trans. Roy. Soc. Lond. A 308 (1982) 523-615

E. Witten, Quantum field theory and the Jones polynomial, Com-
mun. Math. Phys. 121 (1989) 351-399

C.N.Yang, Condition of self-duality for SU(2) gauge fields on euclidean
four-dimensional space, Phys. Rev. Lett. 38 (1977) 1377-1379

Y. Brihaye, D.B. Fairlie, J. Nuyts, R.G. Yates, Properties of the self dual
equations for an SU(n) gauge theory, J. Math. Phys. 19 (1978) 2528-2532

A.N.Leznov, FEquivalence of four-dimensional self-duality equations
and the continuum analog of the principal chiral field problem,
Theor. Math. Phys. 73 (1988) 1233-1237 [Teor. Mat. Fiz. 73 (1987) 302-
307]

S. K. Donaldson, Anti self-dual Yang-Mills connections over complex alge-
braic surfaces and stable vector bundles, Proc. Lond. Math. Soc. 50 (1985)
1-26

V.P. Nair, J. Schiff, Kahler Chern-Simons theory and symmetries of anti-
self-dual gauge fields, Nucl. Phys. B 371 (1992) 329-352

W.G. McKay, J. Patera, Tables of dimensions, indices and branching rules
for representations of simple Lie algebras, Marcel Dekker, New York, 1981

A L. Onishchik, E.B. Vinberg, Lie Groups and Algebraic Groups, Springer-
Verlag, Berlin, 1990

26



[32] A.Sudbery, Quaternionic analysis, Math. Proc. Cambridge Philos. Soc.
85 (1979), no. 2, 199-224

[33] M. Gunaydin, H.Nicolai, Seven-dimensional octonionic Yang-Mills in-

stanton and its extension to an heterotic string soliton, Phys. Lett. B
351 (1995) 169-172, arXiv:hep-th /9502009

[34] D.Harland, T. A.Ivanova, O. Lechtenfeld, A.D.Popov, Yang-Mills flows
on nearly Kahler manifolds and Gsy-instantons, Commun. Math. Phys.
300 (2010) 185-204, arXiv:0909.2730

27



