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Stochastic template placement algorithm for gravitational wave data analysis
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This paper presents an algorithm for constructing matched-filter template banks in an arbitrary
parameter space. The method places templates at random, then removes those which are “too close”

together. The properties and optimality of stochastic template banks generated in this manner are

investigated for some simple models. The effectiveness of these template banks for gravitational wave
searches for binary inspiral waveforms is also examined. The properties of a stochastic template bank are
then compared to the deterministically placed template banks that are currently used in gravitational wave

data analysis.
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I. INTRODUCTION

Gravitational wave interferometric detectors have re-
cently completed a science run in which a year of coinci-
dent data was taken at the design sensitivity [1,2]. The data
from this science run has been searched for gravitational
wave signals from compact binary inpsirals, unmodeled
transient sources, periodic sources and stochastic signals
e.g. [3-5]. For many of these searches, analysis of the data
from such detectors takes advantage of the fact that the
waveforms can be predicted in advance and thus used in
carrying out the analysis [6]

The commonly used detection strategy to search for
known signals in additive, Gaussian, stationary noise is
the method of matched filtering [7]. One correlates the
(whitened) detector data with a template (or filter), which
is the (whitened) expected signal waveform. The parame-
ters of the source (sky position and rotational frequency of
a spinning neutron star, the masses of the compact stars in a
binary system, etc.) are not known a priori, so the data
must be correlated with many possible expected signal
waveforms, which have different values of parameters.
The collection of these points in parameter space is called
a template bank or template grid.

The past two decades have seen the development of
methods [8—11] for setting up template banks which mini-
mize the computational cost in a search without reducing
the detectability of signals. For instance, a geometric
framework was developed [12-14] in the 1990s to address
the problem of template placement. This works quite well
when the parameter space is of a small dimension (2, 3, or
4 at most) [15-18]. The most important tool in this geo-
metric framework is a positive-definite metric which mea-
sures the fractional loss in (squared) signal-to-noise ratio of
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a putative signal (at one point in the parameter space)
filtered through the optimal filter corresponding to a nearby
point in the parameter space. The metric gives the parame-
ter space the geometric structure of a (possibly curved)
Riemannian manifold, which is often called the signal
manifold (in this paper we continue to refer to it as the
parameter space).

When the dimension of the parameter space becomes
large, there are problems with existing methods. First, even
for flat parameter spaces, there are no known optimal
placement algorithms for dimensions greater than 5 (the
analogue of the two-dimensional hexagonal lattice) [19]
(and references therein). Second, it is not clear how to
place templates in a curved parameter space. For example,
one cannot set up an optimal (equally-spaced) lattice on a
two-sphere unless the number of points is very small (for
example, 12). This issue becomes increasingly important
in parameter spaces with dimension greater than 2. Third, if
the parameter space includes irregular boundaries, or is
formed of regions with differing dimensions, it is ex-
tremely difficult to ““step around’ the parameter space in
a deterministic way that covers the parameter space com-
pletely but does not significantly over-cover it.

This paper gives a template placement algorithm that
works for any parametrized signal model in any number of
dimensions, provided that one can determine if two points
in the parameter space are a large metric distance apart,
and, if they are not, accurately calculate the metric distance
between them. The idea is simple. Pick points at random in
parameter space, rejecting any points that are too close to
those previously retained. Continue this process until no
new points are added because any newly selected random
points are close to previously retained points. We call this a
stochastic template placement algorithm, and the resulting
grid a stochastic template grid or stochastic template bank.

By construction, the stochastic template bank does not
over populate the parameter space. But does it properly
populate all regions? The answer depends upon the prop-
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erties of the signal manifold and its metric. It is very
similar to the question of whether the Monte Carlo ap-
proximation to an integral converges to the correct value.
And in the same way as with Monte Carlo integration,
these stochastic template banks appear to perform very
well in real-world applications.

This method is closely related to another way of creating
random template banks [20] in which the filtering stage is
not carried out, but has certain advantages. In particular,
fewer templates are needed to obtain a given degree of
coverage of the parameter space. However, the filtering
stage can become computationally expensive.

Some practical issues remain. The most convenient way
to generate a random template bank is to use computer-
generated uniformly-distributed random numbers as ran-
dom coordinate values in parameter space. However, the
distribution of the resulting points then depends strongly
upon the choice of the coordinate system. If global coor-
dinates can be found in which the determinant of the metric
is constant (or nearly constant) then choosing uniformly-
distributed random numbers for the coordinate values will
result in a uniform density of points. This is optimal. If not,
the random points should ideally be generated with a
probability density in coordinate space proportional to
the square root of the determinant of the metric in those
coordinates. (One can also pick a small number of points in
the space, and at each point define a local coordinate
system in which the metric is proportional to &,,, then
place many points uniformly in those coordinates.) In
practice, this is not necessary: this paper shows that a
stochastic template bank can still be effectively generated
by choosing uniform probability distributions for the co-
ordinate values, even if the determinant of the metric is not
constant on those coordinates. The only downside is addi-
tional computational cost as we discuss in Sec. III.

Later in this paper, two examples are shown to illustrate
this: the placement of templates in a D-dimension cube,
and the placement of templates on the signal manifold of
gravitational wave chirps from inspiralling compact bi-
naries calculated in the first post-Newtonian approxima-
tion. In both cases, one can create stochastic template
banks using coordinates (polar and masses (m;, m,), re-
spectively) in which the determinant of the metric is not
constant. This incurs unnecessary computation cost, but it
works. Alternatively, one can create a stochastic template
bank using coordinates (Cartesian and chirp-time coordi-
nates (7, 73), respectively) in which the metric (and hence
its determinant) is approximately constant [11]. This works
better since it is computationally more efficient, but the end
result is the same.

The paper is organized as follows. Section II presents the
stochastic template placement algorithm. An implementa-
tion and results of testing are presented in Sec. III for some
simple cases where the number of templates is known
analytically. Section IV is devoted to the application of
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the algorithm to the case of gravitational wave chirps from
inspiralling compact binaries where the performance of the
stochastic template placement method is compared with
existing geometrical template placement algorithms.

II. STOCHASTIC TEMPLATE PLACEMENT
ALGORITHM

Let M denote a signal manifold of dimension D, with
d(x, y) being a positive-definite distance function. Here, x,
y € M are points in the manifold. Note that the signal
manifold M might cover only part of the space of possible
signals of a particular type, for example, one might only
want to lay a bank to search for binary inspiral signals
within a specific range of masses.
A template bank 7 is a set of n points taken from M:
T={x, ", x;x; € M} A template bank is said to
cover the signal manifold with radius A (or to be complete)
if every point in M lies within distance A of at least one of
the n points: Vy € M, d(y, x;) = A for at least one i €
-+, n
An optimal template bank of radius A would fulfill two
conditions. First, it would cover the signal manifold with
radius A. Second, it would contain the minimum number of
points. However, it is difficult to achieve this in practice.
The method proposed in this paper creates a template
bank according to the following algorithm:
(1) Let T be a list of n points from M. Initially, n = 0
and the list is empty. As points get added to this list,
they will be denoted by xy, - - -, x,.

(2) Pick a point z at random from M. If d(z, x;) > A for
all points in the list 7', then add z to 7" and increment
n by one. Else discard the point z.

(3) Repeat the previous step, until the list 7 stops
changing in length, or some other stopping criterion
is met.

A. Expected size of complete stochastic template banks

An important question to ask is at what point will this
iterative process terminate? This is determined by the
number of templates needed to completely cover the space.
To understand this, it is useful to first ask the more general
question, how large does a complete template bank (not
necessarily one generated by the algorithm above) need to
be? To try to understand these questions this subsection
begins by discussing upper and lower bounds on the size of
the stochastic bank. Two commonly used lattice algorithms
are then discussed and the performance of the stochastic
bank, at low dimension, is compared to these quantities.

In this discussion, we follow [20,21] and use thickness
(0) and normalized thickness () to assess the efficiency of
a specific template covering. Thickness is defined [21] as
the average number of templates covering any point in the
parameter space while normalized thickness is defined as
the number of templates per unit volume in the case where
the radius of the templates is unity. They are related by [21]
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where Vg is the volume enclosed by a D-dimensional
sphere of unit radius

27P/2

Vs = brio/

(2.2)
The advantage of using these quantities is that they are
independent of the size of the parameter space and inde-
pendent of the template radius. These quantities are also
directly related to the number of templates that will be
required [20] by

nAP

0:7)
Vv

where V is the proper D-volume of the parameter space

V= dPx
[,

and g is the determinant of the metric g;; on the manifold
M.

We also assume, in this section, that ‘‘boundary effects™
can be ignored. Except in pathological cases, this is true if
the total volume within distance A of dM is small com-
pared with the total volume of M.

A simple theoretical lower bound on the number of
templates needed in any complete template bank is the
ratio of the volume of the parameter space to the volume of
a single template. The volume of a single template is the
D-volume contained in a ball of radius A is given by

(2.3)

(2.4)

Vtemplate = B(A) = VSAD- (25)

Hence the number of required templates is bounded below
by V/ Viemplaie- Alternatively, we can say that the thickness
of a complete template bank must be greater than unity or
that the normalized thickness must be greater than 1/V.
For the case of flat spaces, a great deal of work has been
carried out in trying to obtain better estimates of the
minimum possible thickness for a complete template
bank; it is clear, for example, that even in the two-
dimensional case, a complete template bank cannot have
a thickness of 1, there must be some overlap between the
templates. In [21], the best currently known theoretical
bounds on thickness are given and these are the values
that are shown as the lower bound in Fig. 1.

To try to obtain an upper bound on the thickness of the
stochastic template bank, one can consider the sphere-
packing problem, this is the question of how many non-
overlapping spheres can be packed into a certain volume.
Consider the packing problem with hard spheres of radius
A /2. Since the centers of any of these spheres are distances
of A or more apart, they are suitable locations for a
stochastic template bank. In Ref. [21], a bound is given
on the number of hard spheres of radius A/2 that can be
placed into a volume V. This can be considered as an upper

PHYSICAL REVIEW D 80, 104014 (2009)

107
106 L
;ﬁ 105 L
<
< 10'f
=
T 10%F
= 102f "
'54 X xoohtained
< 101 e - 9\1pper—bo\md
~ - - 010wnr—lmund
-+ Onyper—cubic
WX | S
10,1 2 2 n
0 5 10 15 20
Number of dimensions
FIG. 1. The theoretical upper and lower bounds on normalized

thickness of a stochastic template bank [21] and the normalized
thickness of known lattice algorithms as a function of dimension
as defined by Egs. (2.7) and (2.8). Also, the obtained thickness of
stochastic banks at dimensions less than 5.

bound on the number of templates that the stochastic
algorithm can place. Figure 2 also suggests that this bound
may be a reasonable estimate of the thickness of a com-
plete stochastic bank, it can be seen that the average
minimum distance between any template and the rest of
the bank is close to A, as it would be in the sphere-packing
problem. However, at least for low dimension (D <4),

Density

Hﬂﬂﬁmﬁﬂ

1.00 115 1.30
Smallest separation / A

FIG. 2. A histogram of the distribution of distances from a
template to the nearest template, in units of the closest possible
spacing A, for a simple three-dimensional example. The dis-
tances are clustered close to the minimum possible spacing A,
showing that the covering locations found by the stochastic
template placement method are close to the positions found by
packing spheres of radius A/2.

104014-3



1. W. HARRY, B. ALLEN, AND B.S. SATHYAPRAKASH

Fig. 1 shows that the a complete stochastic template bank
requires considerably fewer templates than this sphere-
packing upper bound.

It is also useful to compare this with the performance of
known lattice algorithms. In this work, two different lattice
algorithms are considered. The first is the hyper-cubical
lattice, where the hyper-cubes of the lattice are just small
enough to fit entirely inside a single ball of radius A. The
side length & of such a cube is given by

8 =2A(1/D)%3 (2.6)

since the longest diagonal of this D-cube is then 2A long.
Thus

DD/2

9hyper-cubic = 2—1) (27)

describes the normalized thickness of a template bank in a
hyper-cubic arrangement.

The second lattice algorithm considered in this work is
the A} lattice [19,21]. The two-dimensional A}, lattice is the
well-known hexagonal lattice. For this algorithm, the nor-
malized thickness is given by [20]

0y, =VDF I o2 AT

PHE, 2:8)

From Fig. 1, it can be seen that the A}, lattice requires less
templates than the hyper-cubic lattice in all dimensions
(except the trivial one-dimensional case). It is also the most
efficient lattice known in dimensions up to 20 [21]. This
figure also shows that the number of templates required to
create a complete stochastic bank is less than the hyper-
cubic lattice, but only when the dimension D is greater than
3. A stochastic template bank with full coverage, however,
will require more templates than the A}, lattice at least up to
four dimensions. We have no reason to believe that a
complete stochastic bank will be more efficient than the
A} lattice in any dimension.

One must consider however that these lattice algorithms
are only defined in the case of flat parameter spaces. The
stochastic algorithm, on the other hand, can be used in any
parameter space and it is in the cases where the parameter
space is not flat that we believe the stochastic bank would
be the most useful.

B. The convergence of a stochastic template bank

In real-world applications, it may not be necessary for
the template bank to be complete. It is therefore useful to
be able to understand the convergence of the iteration that
creates a stochastic template bank. This subsection is
devoted to trying to understand this convergence and com-
paring it to the method describe in [20].

To begin to understand how a stochastic bank converges,
it is necessary to define a covering fraction f € [0, 1]. The
covering fraction is the ratio of the volume of the subset of
M that lies within a distance A of the points in the
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template bank, to the total volume of M. The expected
number of trials required to add a new template to the list is
given by 1/(1 — f), as can be seen by considering the
template placement process as a form of Monte Carlo
integration.

At the beginning of the iterative process, the template
bank is empty, and f = 0. After the first template is added
(and assuming that boundary effects can be ignored), the
covering fraction is f = €, where € = Viepiqe /V,which is
the fraction of the entire volume covered by a single
template. During the first iterative steps, while the number
of templates n in the bank is small n << 1/ €, the covering
fraction increases linearly with the template number ac-
cording to f = en = nViemprae/ V-

How does the covering fraction increase when n be-
comes larger? To understand this, it is helpful to first
consider the behavior that the covering fraction would
have in the case where the n points in the template bank
were simply selected at random from M, without any
consideration of whether or not they were closer together
than A. This case is considered in some detail in a recent
paper on random template banks [20]. (In contrast, this
paper uses the name stochastic template bank.) In that case,
since on average each additional template removes a frac-
tion € of the volume that is not already covered, one obtains

E(f(n)) =1 — exp(—en) (2.9)

or
E(f(®)) =1 —exp(—0) (2.10)

for the expectation value of the coverage. For small n, this

— 2 dimension
-~ 3 dimension
- 4 dimension
""" Random Bank
f=en

Fraction of space covered

0 1 2 3 4
Thickness
FIG. 3. The relationship between the covering fraction and the
thickness of the bank in two, three, and four dimensions. This is
also compared to what one would expect in the case of the

random template bank [20] as well as the case where no
templates overlap each other.
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gives a linear increase in the covering fraction, which also
describes the stochastic template bank.

Compared to the random template bank, on average, a
stochastic template bank gives higher coverage for a given
number of templates. This is illustrated in Fig. 3, which
shows the covering fraction as a function of thickness,
where the signal manifold M is a unit box in two, three,
and four dimensions. Thus, if it is desirable to minimize the
computation cost because a single template bank is going
to be used and reused many times, the stochastic banks
could offer a significant improvement compared with the
random ones. The graph does seem to indicate, however,
that the stochastic bank converges toward the random case
as dimension increases. Further investigation is needed to
demonstrate what level of improvement the stochastic bank
would have over the random bank at high dimension.

C. Computational cost of filtering templates

While the stochastic bank will provide a better coverage
for the same number of templates, one must incur an extra
computational cost to carry out the filtering stage of the
stochastic placement algorithm. This subsection investi-
gates what this computational cost would be as a function
of a number of templates and covering fraction.

If every random point was accepted as a template,
because it was farther than A from all previous templates,
then the computational cost would be

C=an(n—-1)/2 (2.11)

where « is the cost of computing the distance between two
points. This follows because the distance must be calcu-
lated between all possible pairs of templates, and there are
n(n — 1)/2 such pairs. This also correctly describes the
cost of stochastic template bank creation when the cover-
ing fraction is substantially less than one, and few potential
templates are rejected. But when the covering fraction
approaches one, the computational cost explodes, because
the dominant computational cost is the cost of rejecting
templates. This is shown in Fig. 4.

This also allows us to provide an estimate of the com-
putational cost. In practice, 100% coverage is not neces-
sary or desired. For a typical binary inspiral search, one
might be happy with a coverage f € [0.9,0.99]. For such
coverages the computation cost is bounded above by

2
o Nestimated
=7

)
which is obtained by assuming that the cost of adding the
last template is the same as the cost of adding every
template. This is an upper bound because the factor of
1/2 is larger than n(f = 1/2)/negimaed> and because the
computational cost of adding the earlier templates is
smaller than that of adding the final template.

The computational cost of this method grows faster than
the square of the number of templates. However, there is a

C= (2.12)
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FIG. 4. The computational cost (number of distance calcula-
tions) depends on the covering fraction.

modified version of this algorithm in development that has
a cost proportional to n logn.

This works by (conceptually) dividing the space into a
set of hyper-cubic cells whose linear size is 2A. Each
template is assigned to a particular cell. The algorithm
maintains an internal list of hyper-cubic cells, which con-
tain points separated by distances of less than 2A. When a
new random template is considered, its distance only needs
to be compared to the points in the same cell, and the 3P —
1 neighboring cells. The process of looking to see if there
are neighboring cells requires a binary search in an index
list, and accounts for the additional logn factor.

It is this prohibitive computational cost that has pre-
vented us from being able to test the stochastic template
bank in dimensions higher than 4 without boundary effects
becoming rather pronounced. With this improved version
of the algorithm, it is hoped that a test of the stochastic
bank in higher dimensions can be performed.

III. TESTING THE ALGORITHM

This section investigates how the stochastic template
placement performs in dimensions less than 5 and how
this compares with geometrical placement algorithms. An
investigation of how the algorithm performs when the
distribution of initial seed points is not proportional to
the determinant of the metric is carried out as well as a
demonstration that the stochastic algorithm will perform
well in intrinsically curved parameter spaces.

A. Templates in flat spaces of different dimensions

First, consider a flat unit hyper-cube in D-dimensions,
with Cartesian coordinates and the metric g;; = 0;;. Each
coordinate lies in the range [0, 1]. A is chosen so that 1/€ is
equal to 10000.
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Figures 3 and 4 show the coverage, in two, three, and
four dimension, and computational cost as a function of the
number of templates in the bank. The coverage in Fig. 3
was computed using Monte Carlo integration with 20 000
sample points. The coverage is the fraction of these points
that are less than A from a template in the bank. To
generate Fig. 3 this process was carried out 100 times
and the mean of the values obtained was used. The same
method was used to generate the other results shown in this
paper.

Figure 1 compares the number of templates being con-
verged upon by the stochastic bank with the estimates and
the lattice algorithms as described in Sec. II. It can be seen
from this figure that the stochastic template banks perform
better than the naive hyper-cubic lattices as the dimension
D of the parameter space increases. This is what was
predicted in the previous section: the stochastic template
banks converge to ‘“complete” coverage with fewer tem-
plates than would be needed in a cubic lattice. Also, as
predicted, the A lattice is more efficient than the stochas-
tic bank when the stochastic bank has reached complete
coverage.

An interesting feature, which is more noticeable when
the number of templates in the banks is reduced, is that
they show effects due to the boundaries, especially notice-
able in the higher dimensions. This is easy to understand.
Any template located closer than distance A to the bound-
ary of the unit D-cube will have part of its coverage region
lying outside the cube. Consequently, if A is too large then
many of the templates will fail to produce the amount of
coverage that would arise if no boundaries were present.
Thus, a sign that boundary effects are appearing is that the

1.0

08 r

0.6 |

04 r

Fraction of space covered

02t

— 4 dimension
“““ Random Bank
f=en
0.0 L L L
0 2 4 6 8

Thickness

FIG. 5. As Fig. 3 but setting the value of N,yycr-pound t0 be 50.
By comparing the two figures, one can see how boundary effects
manifest themselves both by decreasing the initial slope df/dn
and by requiring a much larger number of templates than the
estimate.
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initial coverage grows more slowly with template number
than expected.

This effect can be seen in Fig. 5 where the initial slope
df/d® at ® = 0 is smaller than unity and also the final
thickness is much larger than the estimate, which was not
seen in Fig. 3. At what template radius A do boundary
effects become significant? This can be easily understood
by estimating the volume that lies within distance A of the
boundary of the D-cube. This is Via-poundary =V —
(V/P —2A)P = 2DAV'~1/P_Hence the initial coverage,
when O < 1, is

df VA-boundary
— =1-B————-—". 3.1

O A 61
Here, (8 is a numerical factor, of order 1/6 in three dimen-
sions, which measures the average fraction of volume of a
template that lies outside the cube, as the center of the
template moves through all positions in the A-boundary.

B. Choice of coordinate system and convergence of
template numbers

How does the convergence of the stochastic template
bank generation depend upon the distribution of the ran-
dom template candidates in the underlying parameter
space? This question is of practical interest because the
optimal distribution of the random points has a probability

proportional to the volume element +/det(g,,)d"x.
However, it can be difficult in practice to generate such a
distribution, whereas it is simple to generate random points
that have a uniform distribution in the coordinates.

For example, in two-dimensional flat space, one could
choose trial points with uniform probability distributions in
polar coordinates. This means that too many random tem-
plates are tested from the region near the origin, and then
rejected. However, they are soon rejected, as being too
close to points already in the template bank, and in the
end, the template points that survive have the correct
probability distribution proportional to dxdy = rdfdr.
This is shown in Fig. 6.

The only disadvantage of using a nonoptimal distribu-
tion of random points is that the computational cost of
generating the stochastic bank will increase. The added
computational cost can be easily estimated: it is propor-
tional to the square of the number of grid points which are
unnecessarily added and then subsequently removed. This
is bounded above by the ratio /g, . /.\/g,., Where the
maximum and minimum are taken over the entire parame-
ter space. More precisely, the factor is proportional to the
square of the average over the space of (,/g)/./g where the
angle brackets mean ‘““volume average”.

Table I shows the number of templates n as a function of
the number of trial points N for random template candi-
dates distributed uniformly in Cartesian and polar coordi-
nates. Also shown is the coverage of the template bank,
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FIG. 6. The distribution of trial points chosen uniformly in polar coordinates (left-hand panel) and the points that remain as templates
after the application of the stochastic placement algorithm (right-hand panel).

calculated using Monte Carlo integration as described in
the previous section.

This is very useful because in many cases, one does not
know coordinates in which the determinant of the metric is
constant. Of course, one could simply distribute points
with a probability density proportional to the volume
measure.

C. Templates on a sphere

So far, the paper has considered templates in a flat,
signal space. However, one can consider examples where
the signal manifold is not flat, but is curved. This introdu-
ces two new issues.

First, the distance between widely separated points can
no longer be easily computed. However, the only important
case is the one in which the points are nearby. In this case,
one can use the metric to approximate the distance at small
separations:

di* = gy (x)(xly — x)(xh — xf). (3.2)
Since the components of the metric can be expensive to
calculate, an efficient approach is to calculate and store
those components only for points that are included in the
template bank. Those metric components are then used for

the distance comparisons with potential new (randomly
chosen) template candidates.

Second, depending upon the choice of the coordinate
system, the determinant of the metric may be nonconstant.
In this case, an efficient approach would be to generate
random points with a probability distribution proportional
to the volume element 4/det(g,,)d” x. However, in practice,
one can generate points with any distribution in the coor-
dinates: the stochastic template placement algorithm sim-
ply rejects those points that are not needed, and produces a
distribution with the correct density proportional to
Jdet(g,,)dPx.

To demonstrate the performance of the stochastic tem-
plate placement algorithm on a curved manifold, consider a
unit-radius two-sphere S? with standard spherical polar
coordinates (6, ¢). The metric is

dl> = do* + sin’0d ¢>. (3.3)
Table II shows the number of templates n as a function of
the number of trial points N. The size of the templates has
been chosen so that the ratio € = Veppiae/V is the same as
for the unit cube examples given in the previous section. In
this case, the stochastic algorithm converges for a smaller
number of templates than for the unit cube. This is for the
reasons described above: since the unit sphere has no

TABLE I. Number of templates n and fractional coverage f with associated standard deviations as a function of the cumulative
number of trials N in the case of Cartesian (n) and polar (np) coordinates.

Cartesian Polar
N n T, f oy n T, f oy
1500 1397.1 1.0 0.1353 0.0003 13134 1.3 0.1246 0.0003
5000 3994.4 2.6 0.3632 0.0004 3613.9 2.6 0.3237 0.0004
15000 8494.5 3.9 0.6818 0.0004 7605.3 3.9 0.6140 0.0004
50000 13961.5 4.1 0.9221 0.0002 12979.6 4.0 0.8825 0.0003
150000 17307.8 4.0 0.9847 0.0001 16 676.6 3.6 0.9747 0.0001
500000 19365.5 3.1 0.997 46 0.000 04 190254 35 0.995 82 0.00005
1500000 20439.3 3.0 0.999 49 0.00001 20241.3 3.6 0.999 17 0.00002
5000000 211419 35 0.99990 0.00001 210234 32 0.999 87 0.00001
10000 000 21401.3 3.1 0.999971 0.000 003 213054 33 0.999948 0.000 005
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TABLE II. Number of templates n and coverage f as a func-
tion of the number of trials N on a sphere of unit radius.

N n a, f oy
1500.0 1330.3 1.2 0.1989 0.0004
5000.0 3688.3 2.8 0.4253 0.0004

15 000.0 7807.1 3.7 0.7027 0.0004
50000.0 13198.7 4.1 0.9192 0.0002
150000.0 16779.5 44 0.9836 0.0001
500 000.0 19 007.0 3.6 0.997 35 0.00003
1500 000.0 20171.6 3.6 0.99947 0.00002
5000 000.0 20906.6 3.8 0.99991 0.00001
10000 000.0 211829 4.0 0.999967 0.000 004

boundary, no templates lie partly outside the space, so
every template provides the largest possible coverage.

Figure 7 shows the distribution of 5000 candidate points,
chosen uniformly in spherical polar coordinates (6, ¢)
(left-hand panel). The points that survive and remain in
the stochastic template bank are shown in the middle panel.
A histogram of the distribution of the templates as a
function of € is also shown (right-hand panel). As ex-
pected, the density of templates is proportional to the
volume element sinfdfd¢: it is smallest at the poles and
the greatest at the equator.

IV. TEMPLATES FOR GRAVITATIONAL WAVE
CHIRPS

Binary systems of compact objects (i.e., black holes and/
or neutron stars) evolve by emitting gravitational radiation.
The loss of energy and angular momentum into gravita-
tional waves causes the two bodies to spiral in toward each
other, emitting a burst of radiation just before they merge.
Although there is no exact solution to the two-body prob-
lem in general relativity, an approximation method, called
the post-Newtonian formalism, has been used to compute
the amplitude and phase of the waves emitted in the
adiabatic inspiral phase to a very high accuracy [22-24]

PHYSICAL REVIEW D 80, 104014 (2009)

(for a recent review see Ref. [25]). Moreover, recent
progress in numerical relativity has provided a good
knowledge of the waveform even in the strong gravity
regime of the merger dynamics [26]. Thus, one can use
matched filtering to dig out astrophysical signals from the
noise background of an interferometric detector.

In general, the radiation from a binary is characterized
by as many as 17 parameters. However, some of these
parameters (the distance to the binary, the inclination of
the orbit relative to the detector, etc.) only affect the
amplitude of the waveform, which does not modify the
search template. Therefore, one would only need to place
templates in a lower-dimensional parameter space (say six
or seven dimensions). State-of-the-art template placement
algorithms deal only with a binary composed of nonspin-
ning objects (in which case templates are only needed in
the two-dimensional parameter space of the masses of the
component stars) or at best a simplified model of a binary
composed of spinning objects requiring one, or two, addi-
tional dimensions. Clearly, this is not satisfactory as there
is no reason to believe that an astronomical binary will
respect simplified models.

The goal of the stochastic template placement algorithm
is to address the problem of choosing templates on a
manifold of arbitrary dimensions. However, in this paper,
the algorithm is only applied to the case of a binary
consisting of nonspinning bodies where the results are
well known, thus facilitating a straightforward comparison
with established results. This algorithm has also been
applied in a recent search for spinning binaries in the first
year of LIGO’s fifth science run using templates placed in a
three-dimensional parameter space [27] as well as a five-
dimensional search for supermassive black holes in a mock
data challenge [28]. A similar, but independently devel-
oped, algorithm was also used in this mock data challenge
[29]. This algorithm was effectively the same as the one
described in this work but the author calculates the overlap
between points explicitly, instead of using the metric ap-
proximation as in this work. While this will more accu-

/

0.3

Density

3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
e

FIG. 7. Trial points chosen uniformly in the (6, ¢) coordinates (left-hand panel) and the templates on the surface of a sphere of unit
area that remain after the application of the stochastic template placement algorithm (middle panel). Also, the distribution of these
templates in #-coordinate (right-hand panel), where the solid line shows the expected distribution.
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FIG. 8. The distribution of templates placed by the hexagonal lattice algorithm in (7, 753) coordinates (left-hand panel) and the same
templates in (m;, m,) coordinates (right-hand panel). Clearly, the distribution is highly skewed in the latter coordinates.

rately determine the overlap, especially for overlaps not
close to unity, it will come at considerable additional
computational cost.

A. Choice of coordinate system

Begin by choosing a suitable coordinate system on the
signal manifold. The masses m; and m, of the component
stars are the most obvious coordinates on the manifold.
However, when one uses masses as the coordinate system,
the determinant of the metric will vary significantly over
this parameter space [15]. Because of this, a much higher
density of templates is needed in the low mass region than
in the high mass region.

A better coordinate system is chirp times [11], defined
by

5
0y = o (mMf1) 5,

e
= " (MF )23
128 02 =, (TMf)

.1

_ 6 _ b
27TfL’ 27TfL

4.2)

To

Using this coordinate system, the determinant of the metric
does not vary much over this parameter space. This can be
illustrated by looking at the distribution of templates in
both coordinate systems as shown in Fig. 8. The algorithm
used in this case [18], places templates first along the m; =
m, curve (the lower right boundary in the left-hand panel
and upper left boundary in the right-hand panel). This is
dictated by the fact that the region below the equal-masses
curve (in 7y, 73 coordinates) corresponds to binaries with
imaginary component masses.' The algorithm uses a hex-
agonal placement over the rest of the parameter space.

' Although the waveform, which depends only on the total
mass M and mass ratio v, which are real in that region, can be
generated in this part of the parameter space, it is unphysical and,
therefore, not of any interest.

B. Comparison of stochastic lattice with a square lattice

Let us now compare the stochastically generated tem-
plate bank with a hexagonal lattice and with a square
lattice. In this case, the template banks are created to cover
binary compact objects whose components have a mass
range of 1 to 10 solar masses such that any real signal
within this range of masses would have an ‘“‘overlap”
greater than 0.96 with at least one of the templates in the
bank. This overlap, defined by 1 — A2, is calculated using
the assumption made in Eq. (3.2) and the metric defined in
[17]. For the stochastic algorithm, the trial points are
placed uniformly in (7, 73) coordinates (and limited by
the restrictions on the masses). This is also compared to
trial points placed uniformly in (m,, m,) coordinates.

For this choice of parameters and for trial points placed
uniformly in both coordinate systems, the number of tem-
plates is plotted as a function of the number of trial points
in Fig. 9. Figure 10 shows the distribution of resultant
templates for both initial trial point distributions.

gO0OF A
o Phd
L.
’
0 4
= 6000 | R e
= ’ .
g /
= ’
B g !
Z 4000 F R
2 . .
=1 ,
= ’
= ’
z R
2000 F R
~ 4
N ,
N L4
Rt == Uniform in masses
e «+++ Uniform in chirp times
() -t - 1 1 1 1 1
10! 10? 103 10* 10° 10° 107 108

Number of Trial Points

FIG. 9. The number of templates as a function of the number
of random trial points is shown when the trial points are assigned
uniformly in (7, 73) coordinates as well as uniformly in
(m,, m,) coordinates.
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FIG. 10. The distribution of stochastically generated templates in (7, 753) coordinates (left-hand panel) and in (m;, m,) coordinates

(right-hand panel).

In this two-dimensional example, the stochastic algo-
rithm, in both cases, converges at about 7500 templates.
For comparison, with the same range of masses, a hexago-
nal lattice has 5914 templates and a square lattice has 8353
templates. This may seem to be in conflict with the state-
ment in Sec. II that the stochastic algorithm performs
worse than hyper-cubic lattices in two dimensions.
However, one must remember that the geometrical algo-
rithm used here begins by placing templates along the
boundaries, which is quite inefficient. One also must re-
member, that though this parameter space is close to flat, it
is not flat.

C. Efficiency of the stochastic bank

The quality or performance of a template bank can be
assessed by measuring the overlap between randomly si-
mulated compact binary signals in the relevant range of
parameters of the template bank in question. To test the
performance of the stochastic template banks, a set of
20000 signals (standard post-Newtonian waveforms of
type TaylorT3 [30]) was generated and the maximum
overlap of each over the entire template bank was calcu-
lated. In this case, templates with masses between 3 and 30
solar masses were used (a different mass range was used
here to produce less templates, thus making it easier to

show the results graphically) and an overlap of 0.95 was
used, equivalently, A2 = 0.05. The template bank was
generated from 60000 trial points placed uniformly in
(79, T3) coordinates.

The result of the test is shown in Fig. 11. One can see
that the stochastic placement algorithm struggles to cover
certain areas of this parameter space. If a larger number of
trial points had been used, the coverage would have been
better.

The areas of the parameter space with poor coverage
from the stochastic template bank are in regions of the
parameter space that are very thin, almost one-
dimensional. The hexagonal and square lattices also have
this difficulty but they have been specifically designed to
overcome this problem by placing templates along the
boundary of the space, especially along the m; = m,
curve. A stochastic placement algorithm can overcome
this problem in the same manner, or by increasing the
mass range of allowed templates. But both solutions
come with the cost of additional templates in the bank.

V. CONCLUSIONS

This paper presents a method for stochastically generat-
ing template banks in parameter spaces of arbitrary dimen-
sion and with arbitrary metrics. The relationship between

e

30
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20

30 /
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20 /
/
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FIG. 11.

4 6 8 08 0.85 0.9 0.95

The signals which had an overlap larger than 0.95 (gray crosses) as well as signals with an overlap less than 0.95 (black

circles) in (m;, m,) coordinates (left-hand panel) and (7, 73) coordinates (middle panel). Also, a histogram of the overlaps of all

injections with the stochastic template bank (right-hand panel).
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coverage and the number of templates required to reach
that coverage has been investigated for dimensions up to 4.
The performance of the stochastic placement algorithm has
been compared to lattice placement algorithms in flat
spaces and was found to only be marginally less effective
at dimension less than 4. The area where we believe this
algorithm would be of most use is in signal manifolds that
have a large intrinsic curvature, where lattice placement
algorithms can not easily be applied. Stochastic banks,
which cover less than 100% of the signal manifold, may
be useful for large dimensional manifolds, though further
investigation is needed to show that this is the case.

For cases where the number of required templates is
very high, the algorithm will become very computationally
expensive. In these cases other “random template banks,”
which do not use our filtering stage, might become more
practical [20]. Nevertheless, the stochastic template bank
will provide better coverage for a given number of tem-

PHYSICAL REVIEW D 80, 104014 (2009)

plates. The construction of stochastic template banks can
be made less expensive, however, by utilizing the fact that
it is not necessary to compute the distance between a trial
point and every template in the bank. This is a topic of
ongoing investigation.
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