English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Turbulence statistics above and within two Amazon rain forest canopies

MPS-Authors
/persons/resource/persons62467

Lloyd,  J.
Research Group Carbon-Change Atmosphere, Dr. J. Lloyd, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kruijt, B., Malhi, Y., Lloyd, J., Nobre, A. D., Miranda, A. C., Pereira, M. G. P., et al. (2000). Turbulence statistics above and within two Amazon rain forest canopies. Boundary-Layer Meteorology, 94, 297-331.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-CCAD-4
Abstract
The turbulence structure in two Amazon rain forestswas characterised for a range of above-canopystability conditions, and the results compared withprevious studies in other forest canopies and recenttheory for the generation of turbulent eddies justabove forest canopies. Three-dimensional wind speedand temperature fluctuation data were collectedsimultaneously at up to five levels inside and abovetwo canopies of 30–40 m tall forests, during threeseparate periods. We analysed hourly statistics, jointprobability distributions, length scales, spatialcorrelations and coherence, as well as power spectraof vertical and horizontal wind speed. The daytime results show a sharp attenuation ofturbulence in the top third of the canopies, resultingin very little movement, and almost Gaussianprobability distributions of wind speeds, in the lowercanopy. This contrasts with strongly skewed andkurtotic distributions in the upper canopy. At night,attenuation was even stronger and skewness vanishedeven in the upper canopy. Power spectral peaks in thelower canopy are shifted to lower frequencies relativeto the upper canopy, and spatial correlations andcoherences were low throughout the canopy. Integrallength scales of vertical wind speed at the top of thecanopy were small, about 0.15 h compared to avalue of 0.28 h expected from the shear lengthscale at the canopy top, based on the hypothesis that theupper canopy air behaves as a plane mixing layer. Allthis suggests that, although exchange is not totallyinhibited, tropical rain forest canopies differ from other forests in that rapid, coherentdownward sweeps do not penetrate into the lowercanopy, and that length scales are suppressed. This isassociated with a persistent inversion of stability inthat region compared to above-canopy conditions. Theinversion is likely to be maintained by strong heatabsorption in the leaves concentrated near thecanopy top, with the generally weak turbulence beingunable to destroy the temperature gradients over thelarge canopy depth.