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Self-organization without heat: the geometric ratchet effect
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We point out a surprising feature of diffusion in inhomogeneous media: under suitable conditions,
the rectification of the Brownian paths by a diffusivity gradient can result in initially spread tracers
spontaneously concentrating. This “geometric ratchet effect” demonstrates that, in violation of the
classical statements of the second law of (non-equilibrium) thermodynamics, self-organization can
take place in thermodynamic systems at local equilibrium without heat being produced or exchanged
with the environment. We stress the rôle of Bayesian priors in a suitable reformulation of the second
law accommodating this geometric ratchet effect.

I. INTRODUCTION

Can isolated thermodynamic systems self-organize? To
this question, most physicists would answer in the neg-
ative, because “the second law forbids it”. Moreover, if
asked to provide an example of a physical process pre-
cluding self-organization, many would mention diffusion.
The purpose of this paper is to show that not only can iso-
lated thermodynamic systems self-organize, but also that
one driving mechanism for this phenomenon is diffusion
itself. We argue furthermore that, although it does not
violate the second law of thermostatics, this effect does
provide a counter-example to various classical statements
to the effect that “the entropy of an isolated system can
never decrease”, including the Clausius-Duhem inequal-
ity of linear irreversible thermodynamics [1].
Our model system is simple and has been studied many

times: a gas of non-interacting tracers diffusing within a
structurally inhomogeneous medium. By “structurally”,
we mean that the inhomogeneities are not forced into the
systems by an external source of energy (a laser, heated
boundaries, an external stress, etc.), but are frozen within
the medium itself. The typical example we have in mind
is an inhomogeneous fluid or solid mixture with very slow
relaxation dynamics. We will give a concrete example of
such a system in the next section.
Using the Fokker-Planck diffusion equation [2], we

show that such inhomogeneous media can rectify the ran-
dommotion of tracers in such a way that the normal effect
of diffusion is reversed : instead of spreading to reach a
homogeneous equilibrium, the tracers of our setup tend to
concentrate in the region of space where their diffusivity
is lowest. This phenomenon takes place on macroscopic,

∗ smerlak@aei.mpg.de
† youssef@mathematik.hu-berlin.de

but finite time scales—essentially until the structural in-
homogeneities get smoothed out by their own diffusion
process.
This surprising effect is very analogous to the well-

known ratchet phenomenon [3, 4], whereby the fluctu-
ations of Brownian particles are rectified by a periodic
potential with broken spatial inversion symmetry, result-
ing in directed transport of the particles. The essential
difference between this effect and the one described in
this paper is the fact that, to have a non-zero net ef-
fect on the diffusive motion of the particles, conventional
ratchets must be kept away from equilibrium by an exter-
nal forcing, often temperature oscillations. This forcing
involves heat exchanges between the ratchets and their
environment, a situation that we exclude from our con-
siderations. To highlight this difference, we propose to
call the effect here described the “geometric ratchet ef-
fect”.1

The physics underlying the geometric ratchet effect is
the separation of two timescales : the one associated to
the diffusion of tracers, and the one associated to the
relaxation of the medium itself. This circumstance is
what allows the system to depart from the behavior ex-
pected for thermodynamic systems in local equilibrium
and lead to spontaneous self-organization. We will see
that it is possible to reformulate the second law of (non-
equilibrium) thermodynamics that is applicable in this
context by using a suitable relative entropy [5].
Our paper is organized as follows. In sec. II, we

introduce the physical mechanism underlying the geo-
metric ratchet effect, namely inhomogeneous (or “state-
dependent”) diffusion. We then spell out in sec. III the
conditions for self-organization of the tracers, and show

1 We understand the word “geometry” as referring to the material
“structure of space”: here the inhomogeneous diffusivity of the
medium.
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that these conditions can easily be met, for instance with
fluid mixtures. In sec. IV, we address the fate of the
second law in this situation, and consider in sec. V some
of the questions which may come to mind concerning our
prediction. Sec. VI contains our conclusions.

II. INHOMOGENEOUS DIFFUSION

Diffusion is the most basic and universal relaxation
mechanism. Following directly from the central limit the-
orem, it arises in any situation where the path of the
relevant tracers (particles, defects, light waves, etc.) con-
sists of a large number of independent and identically
distributed2 random steps. As understood by Einstein
[6] and Smoluchowski [7], this results in the continuum
limit in the diffusion equation for the tracers probability
density p(x, t),

∂p

∂t
= D∆p, (1)

where D is the (positive) diffusivity. As a rule, this be-
havior is accompanied by an increase of disorder in the
system, expressing the loss of spatial information in the
process. If this spatial disorder is measured by the usual
positional entropy

Spos(t) = −

∫

dV p ln p, (2)

where dV is the spatial volume measure, a simple com-
putation using the diffusion equation (1) gives

dSpos

dt
= D

∫

dV
(∇p)2

p
≥ 0. (3)

This confirms that, in normal circumstances, diffusion
can only increase the disorder in a system. Anticipating
on our discussion in sec. IV, let us stress that the above
inequality is not per se a statement of the second law
of thermodynamics, even when it leads to the same con-
clusion (disorder increases): the second law is concerned
with thermodynamic entropies, which have contributions
from the dispersion of the particles in velocity space as
well as in physical space.
Now, one key assumption underlying the derivation

of the diffusion equation (1) is the homogeneity of the

2 The step probability distributions should have finite mean and
variance; other macroscopic equations arise when this condition
is dropped, e.g. with Lévy flights.

FIG. 1. Typical Brownian paths for FP-type systems, illus-
trating their “inhomogeneous but isotropic” character; repro-
duced from [12].

medium. This is necessary for the “identically dis-
tributed” condition which allows the central limit the-
orem to apply. Without this assumption, it is not clear
a priori what the equation for the probability density
p should be. In particular, if D = D(x) is a space-
dependent function because of slowly relaxing temper-
ature or mobility gradients (or both), one could envisage
(among other possibilities) a generalized diffusion equa-
tion with Fokker-Planck (FP) form

∂p

∂t
= ∆(Dp), (4)

or with Fourier-Fick (FF) form

∂p

∂t
= ∇ · (D∇p). (5)

Attempts to find the correct form for the diffusion equa-
tion in inhomogeneous media have led to a long-lasting
discussion in the literature, see e.g. [8–11]. Its conclusion
is that, in van Kampen’s words, “no universal form of
the diffusion equation exists, but each system has to be
studied individually” [8].
This notwithstanding, it is possible to get a general

intuition about the respective applicability of equations
(4) and (5) by means of microscopic random walks models
[11–13]. Since in the following we shall focus on the FP
equation, let us briefly describe one such model leading
to (4) in the continuum limit [11, 13]. Consider a (say
one-dimensional) lattice with spacing a, where a particle
can hop from each site to its nearest neighbors with equal
probability 1/2, and assume that the hopping rates Wn
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depends on the sites n. Then the particle population Nn

evolves according to

dNn

dt
= −WnNn +

1

2
Wn+1Nn+1 +

1

2
Wn−1Nn−1. (6)

Using standard manipulations, it is easy to see that in
the a → 0 limit the normalized density n(x = na, t) =
Nn/

∑

k
Nka satisfies the FP equation (4) with D(x) =

a2W (x)/2. (A more sophisticated microscopic model of
the FP equation, based on a random Lorentz gas with
varying free volume fraction, has been discussed recently
in [14].3)
The lesson we learn from this simple random walk

model is that the FP equation arises whenever the mi-
croscopic dynamics is inhomogeneous but isotropic, viz.
does not favor hops in one particular direction [12]; the
presence of such a microscopic bias, due for instance to
the vicinity of walls, results in either the FF equation
[15, 16] or some hybrid equation. An pictorial view of
typical Brownian paths for FP-type systems is provided
in Fig.
Let us emphasize that FP-type systems are not theo-

retical abstractions: the recent literature reports several
observations of inhomogeneous diffusion following the FP
equation. Among such systems, we can mention fusion
plasmas [17] or thermodiffusion at certain values of the
Soret coefficient [12].
For the sake of definiteness, let us describe explicitly

one concrete setup exemplifying our concept of “struc-
tural inhomogeneities” which has been studied experi-
mentally by van Milligen et al [9]. Prepare two mixtures
of water and gelatine 1 and 2 with different relative con-
centrations n1 and n2. Consider a closed, tube-like vessel
filled for the first half with a mixture 1, and for the second
half with mixture 2, in both of which an equal quantity
of food coloring has been dissolved. Because the pres-
ence of gelatine in water modifies the viscosity, the fluid
medium has inhomogeneous diffusivity, and one can check
whether the FP equation or some other equation applies
to the diffusion of the food coloring; van Milligen et al.
proved in [9] that the former is the case in their setup. In
Fig. 2 reproduced from this reference, the measured con-
centration of coloring across the vessel is compared to a
fit with the analytical solution of the FP equation (x = 0
is the boundary between mixtures 1 and 2): the match is
very good except close to the boundary, and can actually

3 In fact, [14] shows that the random Lorentz gas model can lead
to Fourier-Fick diffusion equations as well when the spheres’ radii
vary at constant free volume fraction. This paper also comments
on the tension between the FP equation and the principles of
statistical mechanics, with different conclusions from ours.

FIG. 2. The results of [9] for the diffusion of food coloring in an
inhomogeneous water-gelatine mixture: the dots are measured
values of the tracer concentration after 32 hours of diffusion
(with a homogeneous initial distribution), the solid line is a fit
with the analytical solution of the corresponding FP equation.

be improved by considering higher-derivative terms in the
underlying master equation (of which the FP equation is
an approximation), see [9].4

III. ANTI-DIFFUSION

The example of the water-gelatine mixture is particu-
larly striking, because it allows one to see with the naked
eye the most remarkable consequence of the FP equation:
the equilibrium distribution p∗(x) is not homogeneous,
but rather p∗(x) ∝ 1/D(x) (see Fig. 3 of the aforemen-
tioned reference). This striking property (which is some-
times argued to be impossible [15, 16], but was directly
observed in [9]) is precisely what drives the geometric
ratchet effect. Hence, from now on we focus exclusively
on inhomogeneous media with FP-type diffusive dynam-
ics.
Does the positional entropy of tracers always increase

in this setup? Using the FP equation, we find

dSpos

dt
=

∫

D∇p ·

(

∇p

p
+

∇D

D

)

dV. (7)

Hence, we see that dSpos/dt < 0 whenever ∇p and ∇D
have opposite directions and ∇D has sufficiently large
norm, over a sufficiently large region of space. These

4 Note that the FF equation would predict instead a flat concen-
tration profile, and therefore clearly not applicable in this case.
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FIG. 3. Numerical solution of the one-dimensional FP equation with Neumann boundary conditions, at three times t0 < t1 < t2
(left to right). The dashed curve (left axis) is the local diffusivity D(x) normalized to its maximal value; the thick curve (right
axis) are the probability densities p(ti, x), with x in arbitrary units. The amplitude of variation of D(x) is consistent with the
fluid experiment of Ref. [9].

are the conditions for diffusion to result in spatial self-
organization rather than increase of disorder.

A simple example demonstrating this phenomenon can
be obtained by constructing a (say spherically symmetric)
“trap”, in which D = D(r) is a monotonously increasing
function of some radial coordinate r, and taking a bump-
like initial distribution p0(r), with p0(r) mildly decreasing
with r. The numerical solution of the one-dimensional
FP equation in this case is plotted in Fig. 3, and the
function Spos(t) in Fig. 4: the probability distribution
clearly concentrates about r = 0, thus exhibiting what
may be called “anti-diffusion”. A direct check of this
effect could be obtained numerically, e.g. with a random
Lorentz gas model [14], or experimentally, e.g. a with a
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FIG. 4. The positional entropy (continuous curve, left axis)
and relative positional entropy (dashed curve, right axis) in
the “trap” of Fig. 3 as functions of time (arbitrary units).
The red dots indicate the times t0, t1, t2 plotted in Fig. 3.

suitably prepared water-gelatine mixture [9].

IV. ON THE SECOND LAW

Does the geometric ratchet effect violate the second
law? To answer this question, let us carefully distinguish
three—nonequivalent—statements:

1. Second law of thermostatics (Clausius inequality):
if A and B are two equilibrium states of an isolated
macroscopic system with thermodynamic entropy
S(A) and S(B), and B can be reached from A by
an adiabatic transformation, then

S(B)− S(A) ≥ 0.

2. Second law of irreversible thermodynamics
(Clausius-Duhem inequality): the entropy produc-
tion rate σ(x, t) of an isolated continuous medium
in local equilibrium with dissipative fluxes ja(x, t)
and conjugate thermodynamic forces Xa(x, t)
satisfies

σ =
∑

a

ja ·Xa ≥ 0.

3. Law of entropy increase (folklore): the entropy of
an isolated system can never decrease.

These statements by no means exhaust what is meant by
the phrase “second law” in the literature (the book [18]
compiles 21 different statements). In particular, it is well-
known that the second law of thermostatics (statement
1.) has several other formulations, involving the notions
of exchanged heat or dissipated work.
Now, the second law of thermostatics [19] is clearly

not threatened by our setup, which is by nature out of
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equilibrium. What is at stakes here is the second law
of thermodynamics (statement 2.), namely the Clausius-
Duhem (CD) inequality. We now show that it is actually
violated by the geometric ratchet effect.
Assume from now on that the diffusivity gradients in

the medium are not due to temperature variations, but
rather to variations of the tracers’ mobility. This is the
case for instance in the experiment of Ref. [9] where food
coloring diffuses in a fluid with varying viscosity. In this
case, no heat transfer accompanies the diffusion of the
tracers, because no information leaks into internal degrees
of freedom during the process: being in local equilibrium
with the medium, their microscopic velocity distribution
remains Maxwellian with fixed temperature at all times.
Hence, the only dissipative flux is the particle flux

j = −∇(Dp) (8)

defined by the continuity equation ∂p/∂t + ∇ · j = 0.
The corresponding thermodynamic force is, according to
classical irreversible thermodynamics [1],

X = −∇
( µ

T

)

, (9)

where µ is the local chemical potential of the tracers and
T is the constant temperature. Since the latter are by
assumption non-interacting, the ideal gas formula gives

µ

T
= ln p+ constant, (10)

and therefore

X = −
∇p

p
. (11)

Dotting (8) with (9) then gives the entropy production
rate

σ = ∇(Dp) ·
∇p

p
, (12)

which is readily seen to coincide with the integrand of
equation (7). This confirms that in the absence of heat
transfer, the production rate of thermodynamic entropy
coincides with the time derivative of the positional en-
tropy Spos of the tracers. In this sense, the decrease of
the latter in our setup implies a (transient) violation of
the Clausius-Duhem inequality.
We note that the same conclusion would be reached

in the most recent versions of non-equilibrium thermody-
namics, such as “stochastic thermodynamics” [20], which
can also be applied to small systems with relatively large
fluctuations, and where “thermodynamic forces” cannot
be defined. Thus, for an ensemble of tracers diffusing

within a medium, Seifert defines a stochastic “system en-
tropy” whose ensemble average is given by the classical
formula (2), and “entropy production in the medium” as
the work received by the tracers from external forces [21]
(see also [22]). Hence, in the absence of such forces5 but
with a diffusivity gradient of the kind considered here,
the total Seifert entropy decreases, in contradiction with
his “fluctuation theorem” [21]. As the reader will have
anticipated, the key assumption underlying this identity,
as well as the results of [22], is the homogeneity of the
medium, and in particular D = const. We see here that
no such relation holds in inhomogeneous media—at least
not as such.
Let us now come to the law of entropy increase (state-

ment 3.). As such, this statement is manifestly too vague
to be challenged by any actual physical situation, for
“entropy” (or for that matter “disorder”) is not a well-
defined notion a priori [19]. As Baez puts it, “whenever
you’re tempted to talk about entropy, you should talk
about relative entropy” [23]. What our example shows is
that the positional entropy relative to the uniform prior
can decrease in a diffusion process, or in other words that
the latter can reduce a disorder conceived as “equiprob-
ability in space”.
Suppose now that “disorder” is defined as “p equals its

equilibrium distribution p∗”. The corresponding relative
positional entropy is

Spos(t | p
∗) = −

∫

p ln
p

p∗
dV, (13)

and using p∗ ∝ D−1, we check that

dSpos(t | p
∗)

dt
=

∫

(

∇(Dp)
)2

Dp
dV ≥ 0. (14)

Hence, the positional entropy relative to the equilibrium
distribution associated to the inhomogeneous medium
does increase, see also Fig. 4. This result means that
the “distance” between p and its final state p∗ can only
decrease in time, even when the latter state is actually
more “ordered” (the tracers are more concentrated) than
the former. This, in turn, is the proper formulation of
irreversibility in the present context.

5 One might argue that the variations of diffusivity are effectively
equivalent to a “force term” proportional to ∇D, and therefore
that it is not the case that the tracers do not exchange heat with
their environment. This is only half true: if ∇D does appear to
behave as an effective (one is tempted to say “entropic”) force as
far as the motion of the tracers is concerned, we must emphasize
that it does not produce work.
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Thus, what our observations show is not that the sec-
ond law of thermodynamics is “wrong”. Instead, it high-
lights a condition for its applicability in standard form
which had perhaps not been fully appreciated so far: it
applies when all the dynamical variables relax on the same
timescale. If some of them happen to be frozen in an
inhomogeneous state6 (such as the medium’s diffusivity
distribution here), it is possible that self-organization can
result without the need for an external energy source and
without internal heating; in this case, a consistent formu-
lation of the second law of thermodynamics should take
this prior into account. Similar conclusions were reached
by Banavar and Maritan in [24] following a line of thought
pioneered by Jaynes [25].

V. DISCUSSION

To avoid possible misunderstandings, we now list and
answer some questions which—we feel—are naturally
prompted by our argument.

a. How is this effect different from diffusion in a
(gravitational or electric) field? Simply by the fact that
there is no field in our setup! The concentration of tracers
in regions of low diffusivity happens without any external
forcing, and thus cannot be compared to a phenomenon
such as sedimentation. This is what makes the trap of
sec. III a ratchet instead of a mere potential well.

b. The tracers are clearly not isolated, so why call this
effect “self-organization”? The tracers are not, but the
system tracers + medium is. It is this composite system
which “self-organizes” in the process, and by assumption
the latter is isolated.

c. How is this effect different from gravitational col-
lapse or droplet formation in non-miscible fluids? Isn’t
that also “self-organization”? It is not, because the lat-
ter effects are driven by attractive interactions between
the tracers, and hence conservation of energy results in
the heating of the system. This means that, as the spa-
tial distribution of particles becomes sharper, the velocity
distribution becomes spreads out and compensates the
superficial “self-organization” of the system. Our sys-
tems, on the other hand, do not involve any interactions
between the tracers, and therefore do not lead to any
heating.

6 The reader can think of this situation as “partial ergodicity
breaking”, with some variables (here the tracers) evolving er-
godically in the background set by the other, non-ergodic ones
(the medium).

d. The FP equation (4) is only one of many inter-
pretations (Ito, Stratonovitch, Klimontovitch...) of the
microscopic Langevin equation. It is not canonical, and
other interpretations lead to different equilibrium solu-
tions. This is not an issue of interpretation: the main
physical consequence of the FP equation, namely the
fact that the equilibrium distribution is inhomogeneous,
has been observed in the lab. Which Langevin equation
and interpretation thereof one chooses to model diffusion
with, is a matter of personal taste.
e. Take a glass of water, cool it below the fusion point,

and wait—its entropy decreases. There is nothing myste-
rious about self-organization. The crystallization of wa-
ter does not take place unless the latent heat is evacuated
in some way, and this is of course not a mystery. The
point is that no such heat transfer between the system
(tracers + medium) and its environment is involved in
the geometric ratchet effect.
f. You have claimed but not showed that the diffusion

of tracers does not involve heat fluxes. These may make
the total entropy increase. The physics involved in our
setup is plain particle diffusion; if the latter came with
heat fluxes in inhomogeneous media, it would in homo-
geneous media as well—which is clearly not the case.
g. Transient violations of the second law are well

known, and in fact manifest e.g. in Seifert’s fluctuation
theorem 〈e−∆s〉 = 1, so what is new here? The tran-
sient violations of the second law observed in [26] and
quantified by the celebrated fluctuations theorems [27]
are fluctuations of small systems, which disappear in the
thermodynamic limit. On the contrary, the effect consid-
ered here is macroscopic, both in space and in time.
h. Violations of the H-theorem in real gases are well

known. Aren’t you confusing the latter with the second
law? We are not. The violations of the H-theorem
(monotonous increase of the single-particle entropy) first
discovered by Jaynes [28] are due to the interactions be-
tween the molecules of a real gas, which are not taken into
account in the single-particle distribution function. Here,
we have assumed that the tracers do not interact among
themselves. This is usually a very good approximation if
the tracers are sufficiently dilute.
i. Isolated systems are governed by the Liouville equa-

tions, which preserves the Gibbs entropy. So the en-
tropy of the system tracers + medium cannot decrease.
If that were true, then the entropy of the system tracers
+ medium would not increase in a normal (homogeneous)
diffusion process, which is an absurd conclusion. This ar-
gument is a version of the irreversibility paradox, which
plagues the whole of statistical mechanics (and not just
diffusion phenomena); we do not wish to address this
thorny issue here, and refer the reader to the vast litera-
ture on the subject (and in particular to [29]).
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VI. CONCLUSION

We have defined and illustrated the concept of “ge-
ometric ratchets”. Just like standard ratchets, these
are based on the rectification of thermal fluctuations
by an inhomogeneous background, and result in self-
organization; the main difference with the latter is that
geometric ratchets do not involve net energy variations
or heat transfers. We have argued that the geometric
ratchet effect—which has actually been observed [9]—
drives self-organization without heat exchanges: a phe-
nomenon which is generally believed to be impossible.
It is not difficult to imagine applications of diffusion-

driven traps such as the one discussed in sec. III. For
instance, if a thermally-conducting material could be en-
gineered in such a way that (i) its thermal diffusivity has
the above shape, and (ii) the corresponding heat equa-
tion takes the FP form (4), then we have shown that such
a system would behave as a heat sink. Similarly, we ex-
pect that light diffusion in a medium with continuously
varying index (see [30] for recent experimental develop-
ments in this direction) could result in a diffusive focusing
effect.
We have also discussed the implications of these sys-

tems for the second law of thermodynamics: although
they do not contradict any fundamental physical law, ge-
ometric ratchets do force us to reconsider statements such
as “the entropy of an isolated system can never decrease”.

We have argued that, in general, these must be qualified
by the reference to a suitable prior; without this caveat,
they are simply not true.
One tantalizing question that we have not addressed in

this work is whether useful work can be extracted from a
thermal bath by means of the geometric ratchet mecha-
nism. We leave this question open for further investiga-
tion, and close with Eddington’s beautiful words [31]:

“If someone points out to you that your pet
theory of the universe is in disagreement with
Maxwell’s equations—then so much the worse
for Maxwell’s equations. If it is found to be
contradicted by observation—well these ex-
perimentalists do bungle things sometimes.
But if your theory is found to be against the
second law of thermodynamics I can give you
no hope; there is nothing for it but to collapse
in deepest humiliation.”

M. S. thanks M. Polettini for useful critical comments
on a previous version of this manuscript, S. Carrozza and
T. Koslowski for inspiring remarks on the relativity of
entropy, H. Carteret for pointing out the similarity with
ratchets, and H. Haggard for suggesting the name “geo-
metric ratchet”.
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