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ABSTRACT

With the aim of determining the statistical properties of relativistic turbulence and unveiling novel and non-classical
features, we present the results of direct numerical simulations of driven turbulence in an ultrarelativistic hot plasma
using high-order numerical schemes. We study the statistical properties of flows with average Mach numbers ranging
from ∼0.4 to ∼1.7 and with average Lorentz factors up to ∼1.7. We find that flow quantities, such as the energy
density or the local Lorentz factor, show large spatial variance even in the subsonic case as compressibility is
enhanced by relativistic effects. The velocity field is highly intermittent, but its power spectrum is found to be
in good agreement with the predictions of the classical theory of Kolmogorov. Overall, our results indicate that
relativistic effects are able to significantly enhance the intermittency of the flow and affect the high-order statistics
of the velocity field, while leaving unchanged the low-order statistics, which instead appear to be universal and in
good agreement with the classical Kolmogorov theory. To the best of our knowledge, these are the most accurate
simulations of driven relativistic turbulence to date.
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1. INTRODUCTION

Turbulence is an ubiquitous phenomenon in nature as it plays
a fundamental role in shaping the dynamics of systems ranging
from the mixture of air and oil in a car engine up to the rarefied
hot plasma composing the intergalactic medium. Relativistic
hydrodynamics is a fundamental ingredient in the modeling of a
number of systems characterized by high Lorentz-factor flows,
strong gravity, or relativistic temperatures. Examples include
the early Universe, relativistic jets, gamma-ray bursts (GRBs),
relativistic heavy-ion collisions, and core-collapse supernovae
(Font 2008).

Despite the importance of relativistic hydrodynamics and
the reasonable expectation that turbulence is likely to play an
important role in many of the systems mentioned above, ex-
tremely little is known about turbulence in a relativistic regime.
For this reason, the study of relativistic turbulence may be
of fundamental importance to develop a quantitative descrip-
tion of many astrophysical systems. Furthermore, the compara-
tive study of classical and relativistic turbulence can be useful
also for a better understanding of classical turbulence. For in-
stance, the study by Cho (2005) of relativistic force-free tur-
bulence, i.e., MHD turbulence in the limit where the plasma
inertia and momentum are neglected, gave important insights in
the understanding of strong-Alfvénic turbulence. In particular, it
provided a first important confirmation of the model by Goldre-
ich & Sridhar (1995), whose prediction of a −5/3 slope for the
energy spectrum has been recently confirmed in classical MHD
by Beresnyak & Lazarian (2009) and Beresnyak (2011). To this
aim, we have performed a series of high-order direct numerical
simulations of driven relativistic turbulence of a hot plasma.

2. MODEL AND METHOD

We consider an idealized model of an ultrarelativistic fluid
with four-velocity uμ = W (1, vi), where W ≡ (1 − viv

i)−1/2

is the Lorentz factor and vi is the three-velocity in units where

c = 1. The fluid is modeled as perfect and described by the
stress-energy tensor

Tμν = (ρ + p)uμuν + p gμν , (1)

where ρ is the (local-rest-frame) energy density, p is the
pressure, uμ the four-velocity, and gμν is the spacetime metric,
which we take to be the Minkowski one. We evolve the
equations describing conservation of energy and momentum
in the presence of an externally imposed Minkowskian force
Fμ, i.e., ∇νT

μν = Fμ, where the forcing term is written
as Fμ = F̃ (0, f i). More specifically, the spatial part of the
force, f i, is a zero-average, solenoidal, random vector field
with a spectral distribution that has compact support in the low
wavenumber part of the Fourier spectrum. Moreover, f i, is kept
fixed during the evolution and it is the same for all the models,
while F̃ is either a constant or a simple function of time (see
below for details).

The time component of the forcing term, F0, is set to be
zero, so that the driving force is able to accelerate fluid elements
without changing their total energy (in the Eulerian frame). Note
that this is conceptually equivalent to the addition of a cooling
term balancing the effect of the work done on the system by
the driving force. On the other hand, we impose a minimum
value for the energy density in the local-rest-frame, ρmin. This
choice is motivated essentially by numerical reasons (the very
large Lorentz factor produced can lead to unphysical point-wise
values of ρ) and has the effect of slowly heating up the fluid.
Furthermore, this floor does not affect the momentum of the fluid
and only the temperature is increased. From a physical point
of view, our approach mimics the fact that in the low-density
regions, the constituents of the plasma are easily accelerated
to very high Lorentz factors, hence emitting bremsstrahlung
radiation heating up the surrounding regions. The net effect is
that energy is subtracted from the driving force and converted
into thermal energy of the fluid, heating it up. In general ρmin
is chosen to be two orders of magnitude smaller than the initial
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energy density, but we have verified that the results presented
here are insensitive to the specific value chosen for ρmin by
performing simulations where the floor value is changed by up
to two orders of magnitude without significant differences.

The set of relativistic-hydrodynamic equations is closed by
the equation of state (EOS) p = (1/3)ρ, thus modeling a hot,
optically thick, radiation-pressure-dominated plasma, such as
the electron–positron plasma in a GRB fireball or the matter
in the radiation-dominated era of the early Universe. The
EOS used can be thought as the relativistic equivalent of the
classical isothermal EOS in that the sound speed is a constant,
i.e., c2

s = 1/3. At the same time, an ultrarelativistic fluid is
fundamentally different from a classical isothermal fluid. For
instance, its “inertia” is entirely determined by the temperature
and the notion of rest-mass density is lost since the latter
is minute (or zero for a pure photon gas) when compared
with the internal one. For these reasons, there is no direct
classical counterpart of an ultrarelativistic fluid and a relativistic
description is needed even for small velocities.

We solve the equations of relativistic hydrodynamics in a
three-dimensional periodic domain using the high-resolution
shock-capturing scheme described in Radice & Rezzolla (2012).
In particular, ours is a flux-vector-splitting scheme (Toro 1999),
using the fifth-order MP5 reconstruction (Suresh & Huynh
1997), in local characteristic variables (Hawke 2001), with a
linearized flux-split algorithm with entropy and carbuncle fix
(Radice & Rezzolla 2012).

3. BASIC FLOW PROPERTIES

Our analysis is based on the study of four different models,
which we label as A, B, C, and D, and which differ for the initial
amplitude of the driving factor F̃ = 1, 2, 5 for models A–C, and
F̃ (t) = 10 + (1/2)t for the extreme model D. Each model was
evolved using three different uniform resolutions of 1283, 2563,
and 5123 grid zones over the same unit lengthscale. As a result,
model A is subsonic, model B is transonic, and models C and D
are instead supersonic. The spatial and time-averaged relativistic
Mach numbers 〈vW 〉/(csWs) are 0.362, 0.543, 1.003, and 1.759
for our models A, B, C, and D, while the average Lorentz factors
are 1.038, 1.085, 1.278, and 1.732, respectively.

The initial conditions are simple: a constant energy density
and a zero-velocity field. The forcing term, which is enabled
at time t = 0, quickly accelerates the fluid, which becomes
turbulent. By the time we start to sample the data, i.e., at t =
10 (light-)crossing times, turbulence is fully developed and the
flow has reached a stationary state. The evolution is then carried
out up to time t = 40, thus providing data for 15 equally spaced
timeslices over 30 crossing times. As a representative indicator
of the dynamics of the system, we show in the left panel of
Figure 1 the time evolution of the average Lorentz factor for the
different models considered. Note that the Lorentz factor grows
very rapidly during the first few crossing times and then settles
to a quasi-stationary evolution. Furthermore, the average grows
nonlinearly with the increase of the driving term, going from
〈W 〉 � 1.04 for the subsonic model A, up to 〈W 〉 � 1.73 for
the most supersonic model D.

Flow quantities such as the energy density, the Mach number,
or the Lorentz factor show large spatial variance, even in our
subsonic model. Similar deviations from the average mass
density have been reported also in classical turbulent flows of
weakly compressible fluids (Benzi et al. 2008), where it was
noticed that compressible effects, leading to the formation of

front-like structures in the density and entropy fields, cannot
be neglected even at low Mach numbers. In the same way,
relativistic effects in the kinematics of the fluid, such those
due to nonlinear couplings via the Lorentz factor (Rezzolla &
Zanotti 2002), have to be taken into account even when the
average Lorentz factor is small. The probability distribution
functions (PDFs) of the Lorentz factor are shown in the right
panel of Figure 1 for the different models. Clearly, as the forcing
is increased, the distribution widens, reaching Lorentz factors as
large as W � 40 (i.e., to speeds v � 0.9997). Even in the most
“classical” case A, the flow shows patches of fluid moving at
ultrarelativistic speeds. Also shown in Figure 1 is the logarithm
of the Lorentz factor on the (y, z) plane and at t = 40 for
model D, highlighting the large spatial variations of W and the
formation of front-like structures.

4. UNIVERSALITY

As customary in studies of turbulence, we have analyzed the
power spectrum of the velocity field

Ev(k) ≡ 1

2

∫
|k|=k

|v̂(k)|2 dk , (2)

where k is a wavenumber three-vector and

v̂(k) ≡
∫

V

v(x)e−2πik·x dx , (3)

with V being the three-volume of our computational domain.
A number of recent studies have analyzed the scaling of the
velocity power spectrum in the inertial range, that is, in the
range in wavenumbers between the lengthscale of the problem
and the scale at which dissipation dominates. More specifically,
Inoue et al. (2011) have reported evidences of a Kolmogorov
k−5/3 scaling in a freely decaying MHD turbulence, but have
not provided a systematic convergence study of the spectrum.
Evidences for a k−5/3 scaling were also found by Zhang
et al. (2009), in the case of the kinetic energy spectrum,
which coincides with the velocity power spectrum in the
incompressible case. Finally, Zrake & MacFadyen (2012) have
performed a significantly more systematic study for driven,
transonic, MHD turbulence, but obtained only a very small (if
any) coverage of the inertial range.

The time-averaged velocity power spectra computed from
our simulations are shown in Figure 2. Different lines refer to
the three different resolutions used, 1283 (dash-dotted), 2563

(dashed), and 5123 (solid lines), and to the different values of
the driving force. To highlight the presence and extension of
the inertial range, the spectra are scaled assuming a k−5/3 law,
with curves at different resolutions shifted of a factor two or
four, and nicely overlapping with the high-resolution one in
the dissipation region. Clearly, simulations at higher resolutions
would be needed to have power spectra that are more accurate
and with larger inertial ranges, but overall Figure 2 convincingly
demonstrates the good statistical convergence of our code and
gives a strong support to the idea that the key prediction of the
Kolmogorov model (K41; Kolmogorov 1991) carries over to
the relativistic case. Indeed, not only does the velocity spectrum
for our subsonic model A show a region, of about a decade
in length, compatible with a k−5/3 scaling, but this continues
to be the case even as we increase the forcing and enter the
regime of relativistic supersonic turbulence with model D.
In this transition, the velocity spectrum in the inertial range,
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Figure 1. Left panel: average Lorentz factor as a function of time for the different models considered. Note that a quasi-stationary state is reached before t ∼ 10 for all
values of the driving force. Right panel: logarithm of the Lorentz factor on the (y, z) plane at the final time of model D. Note the large spatial variations of the Lorentz
factor with front-like structures. The time-averaged PDFs are shown in the lower left corner for the different models considered.

(A color version of this figure is available in the online journal.)
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Figure 2. Power spectra of the velocity field. Different lines refer to the three
resolutions used and to the different values of the driving force. The spectra are
scaled assuming a k−5/3 law.

(A color version of this figure is available in the online journal.)

the range of lengthscales where the flow is scale-invariant, is
simply “shifted upward” in a self-similar way, with a progressive
flattening of the bottleneck region, the bump in the spectrum
due to the non-linear dissipation introduced by our numerical
scheme. Steeper or shallower scalings, such as the Burgers one,
k−2, or a k−4/3 one, are also clearly incompatible with our data.

These results have been confirmed in a preliminary study
where we pushed our resolution for model D, the most extreme
one, to 10243.

All in all, this is one of our main results: the velocity power
spectrum in the inertial range is universal, that is, insensitive to
relativistic effects, at least in the subsonic and mildly supersonic
cases. Note that this does not mean that the Kolmogorov theory
is directly applicable to relativistic flows. We point out that
the velocity power spectrum is not equal to the kinetic energy
density in Fourier space, as in the classical incompressible case.
This is because of the corrections to the expression of the kinetic
energy due to the fluid compressibility (which is not zero) and
the Lorentz factor (we recall that the relativistic kinetic energy
is T = ρW (W − 1) � (1/2)ρv2 + O(v4)). For this reason,
the interpretation of the velocity power spectrum requires great
care. Finally we note that already in the Newtonian turbulence
the velocity power spectrum is known to have large deviations
from the k−5/3 scalings for highly supersonic flows. In particular,
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Figure 3. Compensated, third-order, parallel structure function computed for
the different models as functions of r/Δ. Note the very good match with the
classical S

‖
3 ∼ r behavior.

(A color version of this figure is available in the online journal.)

Kritsuk et al. (2007) reported spectra with scaling close to the
Burgers one. Similar deviations could also manifest themselves
in the relativistic case for higher values of the Mach number,
but these regimes are currently not accessible by our code.

5. INTERMITTENCY

Not all of the information about relativistic turbulent flows is
contained in the velocity power spectrum. Particularly important
in a relativistic context is the intermittency of the velocity
field, that is, the local appearance of anomalous, short-lived
flow features, which we have studied by looking at the parallel-
structure functions of the order of p:

S‖
p(r) ≡ 〈|δrv|p〉, δrv = [v(x + r) − v(x)] · r

r
(4)

where r is a vector of length r and the average is over space
and time.

Figure 3 reports the compensated, third-order, parallel struc-
ture function, S‖

3 , as functions of r/Δ, where Δ is the grid spacing.
Within the inertial range, classical incompressible turbulence
has a precise prediction: the Kolmogorov 4/5 law, for which
〈(δrv)3〉 = (4/5)εr , where ε is the kinetic energy dissipation
rate. This translates into S

‖
3 ∼ εr . As shown in the figure, the
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Table 1
Scaling Exponents of the Parallel Structure Functions Computed Using the ESS Technique and Analytical Predictions from the K41, SL, and Burgers Models

Model ζ
‖
1 ζ

‖
2 ζ

‖
3 ζ

‖
4 ζ

‖
5 ζ

‖
6 ζ

‖
7 ζ

‖
8 ζ

‖
9 ζ

‖
10

K41 0.33 0.67 1 1.33 1.67 2 2.33 2.67 3 3.33
SL 0.36 0.70 1 1.28 1.54 1.78 2.00 2.21 2.41 2.59
Burgers 0.41 0.74 1 1.21 1.39 1.56 1.70 1.84 1.96 2.08

A512 0.37 ± 0.01 0.70 ± 0.02 1 ± 0.02 1.27 ± 0.03 1.51 ± 0.02 1.72 ± 0.03 1.89 ± 0.04 2.04 ± 0.04 2.17 ± 0.03 2.27 ± 0.02
B512 0.36 ± 0.01 0.70 ± 0.03 1 ± 0.04 1.27 ± 0.05 1.50 ± 0.07 1.70 ± 0.08 1.86 ± 0.12 1.99 ± 0.16 2.10 ± 0.21 2.18 ± 0.26
C512 0.37 ± 0.01 0.70 ± 0.02 1 ± 0.03 1.26 ± 0.04 1.48 ± 0.05 1.68 ± 0.07 1.84 ± 0.09 1.98 ± 0.11 2.09 ± 0.13 2.19 ± 0.16
D512 0.38 ± 0.005 0.71 ± 0.01 1 ± 0.03 1.25 ± 0.03 1.46 ± 0.05 1.64 ± 0.07 1.79 ± 0.09 1.92 ± 0.11 2.04 ± 0.14 2.14 ± 0.16

structure functions are somewhat noisy at small scales, but are
consistent with the classical prediction over a wide range of
lengthscales, with linear fits showing deviations of ∼5% and an
increase of ε with the driving force.

Although even in the classical compressible case, the 4/5 law
is not strictly valid, we can use it to obtain a rough estimate
of the turbulent velocity dissipation rate (Porter et al. 2002).
We find that ε, as measured from S

‖
3 or directly from 〈(δrv)3〉,

grows linearly with the Lorentz factor, in contrast with the
classical theory, where it is known to be independent of the
Reynolds number. This is consistent with the observations that in
a relativistic regime the turbulent velocity shows an exponential
decay in time (Zrake & MacFadyen 2011; Inoue et al. 2011), as
opposed to the power-law decay seen in classical compressible
and incompressible turbulence. An explanation for this behavior
might be that, since the inertia of the fluid grows linearly with
the Lorentz factor, an increasingly large rate of energy injection
is needed to balance the kinetic energy losses when the average
Lorentz factor is increased.

The scaling exponents of the parallel structure functions,
ζ

‖
p , have been computed up to p = 10 using the extended-

self-similarity (ESS) technique (Benzi et al. 1993) and are
summarized in Table 1. The errors are estimated by computing
the exponents without the ESS or using only the data at the
final time. We also show the values as computed using the
classical K41 theory, as well as using the estimates by She
and Leveque (SL; She & Leveque 1994) for incompressible,
i.e., ζ

‖
p = (p/9) + 2 − 2(2/3)p/3, and shock-dominated, i.e.,

ζ
‖
p = (p/9) + 1 − (1/3)p/3 (Boldyrev 2002), turbulence.

Not surprisingly, and as also observed in the classical case
for high Mach number flows (Kritsuk et al. 2007),3 as the
flow becomes supersonic, the high-order exponents tend to
flatten out and be compatible with the Burgers scaling, as
the most singular velocity structures become two-dimensional
shock waves. ζ ‖

2 , instead, is compatible with the SL model even
in the supersonic case. This is consistent with the observed
scaling of the velocity power spectrum, which presents only
small intermittency corrections to the k−5/3 scaling. Previous
classical studies of weakly compressible (Benzi et al. 2008)
and weakly supersonic turbulence (Porter et al. 2002) found the
scaling exponents to be in very good agreement with the ones
of the incompressible case and to be well described by the SL
model. This is very different from what we observe even in
our subsonic model A, in which the exponents are significantly
flatter than in the SL model, suggesting a stronger intermittency
correction. This deviation is another important result of our
simulations.

3 Note, however, that Kritsuk et al. (2007) also find significant deviations in
ζ

‖
3 from one, which we do not observe.

Figure 4. PDFs of the velocity vz for the different models considered (solid
lines). As the forcing is increased, the PDFs flatten, while constrained to be in
(−1, 1) (shaded area). Increasingly large deviations from Gaussianity (dashed
lines) appear in the relativistic regime.

(A color version of this figure is available in the online journal.)

One non-classical source of intermittency is the genuinely
relativistic constraint that the velocity field cannot be Gaussian
as the PDFs must have compact support in (−1, 1). This is
shown by the behavior of the PDFs of vz and plotted as solid
lines in the shaded area of Figure 4. Clearly, as the Lorentz factor
increases, the PDFs become flatter and, as a consequence, the
velocity field shows larger deviations from Gaussianity (dashed
lines). Stated differently, relativistic turbulence is significantly
more intermittent than its classical counterpart.

6. CONCLUSIONS

Using a series of high-order direct numerical simulations of
driven relativistic turbulence in a hot plasma, we have explored
the statistical properties of relativistic turbulent flows with
average Mach numbers ranging from 0.4 to 1.7 and average
Lorentz factors up to 1.7. We have found that relativistic effects
enhance significantly the intermittency of the flow and affect the
high-order statistics of the velocity field. Nevertheless, the low-
order statistics appear to be universal, i.e., independent from
the Lorentz factor, and in good agreement with the classical
Kolmogorov theory.

In the future we plan to pursue a more systematic investi-
gation of the properties of relativistic turbulent flows at higher
resolution.

We thank M.A. Aloy, P. Cerdá-Durán, A. MacFadyen, M.
Obergaulinger, and J. Zrake for discussions. The calculations
were performed on the clusters at the AEI and on the SuperMUC
cluster at the LRZ. Partial support comes from the DFG grant
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SFB/Transregio 7 and by “CompStar,” a Research Networking
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