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Dissipative optomechanics studies the coupling of the motion of an optical element to the decay rate of

a cavity. We propose and theoretically explore a realization of this system in the optical domain, using a

combined Michelson-Sagnac interferometer, which enables a strong and tunable dissipative coupling.

Quantum interference in such a setup results in the suppression of the lower motional sideband, leading to

strongly enhanced cooling in the non-sideband-resolved regime. With state-of-the-art parameters, ground-

state cooling and low-power quantum-limited position transduction are both possible. The possibility of a

strong, tunable dissipative coupling opens up a new route towards observation of such fundamental

optomechanical effects as nonlinear dynamics. Beyond optomechanics, the suggested method can be

readily transferred to other setups involving nonlinear media, atomic ensembles, or single atoms.
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Recent progress in the engineering of high-quality mi-
cromechanical oscillators coupled to high-finesse cavity
modes has paved the way towards sensing and control of
mechanical motion at the quantum limit [1–5]. The rapid
developments in the field of optomechanics bear important
implications for both applied and basic science, ranging
from applications in high-sensitivity metrology [6–8] and
quantum information processing [9–13] to fundamental
tests of quantum mechanics at large mass and length scales
[14–16].

In the conventional paradigm of optomechanics, the
interaction of the mechanical oscillator with a cavity
mode is dispersive in the sense that the cavity resonance
frequency experiences a shift depending on the displace-
ment of the mechanical oscillator arising from conserva-
tive radiation pressure or optical gradient forces. This
coherent dispersive interaction has been employed for
sideband-cooling to the quantum mechanical ground state
[17,18], as well as for the observation of optomechanical
normal-mode splitting [19–21] and optomechanically in-
duced transparency [22,23]. The complementary paradigm
of dissipative coupling—where the width �c of the cavity
resonance, rather than its frequency !c, is dependent on
the mechanical displacement x—was introduced very re-
cently in a theoretical study [24] in the context of electro-
mechanics. This situation, rather unusual for cavity
quantum electrodynamics, was shown [24] to give rise to
remarkable quantum noise interference effects which dra-
matically relax requirements for cooling to the ground state
without sideband resolution; it also allows reaching the
standard quantum limit (SQL) for the imprecision in posi-
tion measurements. While it is already clear that a strong
and tunable dissipative optomechanical coupling would

greatly enrich the toolbox of optomechanics, its full sig-
nificance for the quantum control of optomechanical sys-
tems, e.g., for ponderomotive squeezing [25], nonlinear
dynamics [26,27], or pulsed protocols [28], is yet to be
explored.
Unfortunately, an optomechanical setup having a strong

dissipative coupling in the absence of dispersive coupling
has not yet been found. Consider, e.g., a Fabry-Pérot
interferometer (FPI) of length L and resonance frequency
!c ¼ �nc=L (n 2 N), with one movable ideal end mirror
and an input coupler of transmissivity �, such that the
cavity linewidth is �c ¼ cj�j2=ð4LÞ. When the mirror
moves, the cavity length changes, and with it both !c

and �c. The corresponding shifts per zero-point fluctuation
x0 of the mirror oscillator, g! ¼ ð@!c=@xÞx0 and g� ¼
ð@�c=@xÞx0, quantify the strength of dispersive and dissi-
pative couplings, respectively. Their ratio is thus given by
the cavity’s quality factor, g!=g� ¼ !c=�c � 1, such that
the dispersive coupling dominates by far. A similar con-
clusion applies for a movable membrane coupled to a
single mode of a FPI. One may obtain g� ’ g! by coupling
the membrane to multiple [29,30] transverse modes, such
that both types of coupling contribute to the dynamics;
however, in such a setup, one cannot ‘‘switch off’’ the
dispersive interaction to take advantage of the quantum
noise interference effects present in a purely dissipative
coupling. This situation persists in the case of evanescent
coupling to microdisk resonators [31].
Here, we show that, in a Michelson-Sagnac interferome-

ter (MSI) with a movable membrane [32,33], cf. Fig. 1, a
strong and tunable optomechanical coupling can be
achieved for which g! ¼ 0 but where the effective dissi-
pative coupling strength [20] can be of the order of the
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cavity linewidth. The idea is as follows: Consider the MSI
operated at a point where the transmissivity � of the
effective mirror is close to zero; � will then depend sensi-
tively on the membrane displacement x. Combining this
compound ‘‘MSI mirror’’ with a perfect mirror in its dark
port will result in an effective FPI whose linewidth depends
on x dominantly via � and not via the change in the
(effective) cavity length L; see Fig. 1. In contrast to a
true FPI, therefore, g� and g! have a different functional
dependence on x. This feature gives rise to a topology
(i) where the optomechanical interaction can be tuned at
will between being strongly dissipative or dispersive and
(ii) which can realize dissipative optomechanics leading to
ground-state cooling of the mechanical oscillator via quan-
tum noise interference, as discussed in Ref. [24]. The
distinctive signature of this interaction, an asymmetric
Fano line shape, is observable in the spectrum of the cavity
output field. We also report on the suitability of using this
system for (iii) sensitive position transduction.

This Letter is structured as follows. We shall first de-
scribe the physical model and write down the resulting
Hamiltonian and input-output relation. These are then used
to derive the equations of motion for the cavity field and
oscillator motion. The resulting dynamics is solved to
obtain the steady-state mechanical occupation number an-
alytically in the weak-coupling limit and also numerically
in both weak- and strong-coupling regimes.

Model.—The Hamiltonian including both dispersive and
dissipative effects in an opto- or electromechanical [24]
system can be written as [34]

ĤOM ¼ ð��þ g!x̂Þâyâþ!mb
ybþ

Z
d!!ay!a!

þ i

� ffiffiffiffiffiffiffiffi
2�c

p þ g�ffiffiffiffiffiffiffiffi
2�c

p x̂

�Z d!ffiffiffiffiffiffiffi
2�

p ðây!â� H:c:Þ: (1)

This Hamiltonian is written in a frame rotating at the
optical frequency of some driving field !d; � ¼
!d �!c is the detuning from cavity resonance (!c) whose

annihilation operator is â. x̂ ¼ ðb̂þ b̂yÞ= ffiffiffi
2

p
is the dimen-

sionless displacement, and b̂ is the annihilation operator

for the mechanical oscillator of frequency !m. The second
line in Eq. (1) provides the coupling of the cavity mode â to
the modes â! of the external field coupling into and out of
the effective FPI and will give rise to the finite width �c of
the resonance. The two terms proportional to x̂ describe the
shifts of the cavity resonance and width with mechanical
displacement, with strengths characterized by g!;�, respec-

tively. This Hamiltonian generalizes the dispersive-only
Hamiltonian that is considered in most works on optome-
chanical systems. Before we proceed to make the connec-
tion of Hamiltonian (1) and the physics of a MSI [32,33],
we note that the standard cavity-input–output relation must
be generalized to accommodate the effect of dissipative
coupling [34]:

â out � âin ¼ ½ ffiffiffiffiffiffiffiffi
2�c

p þ ðg�=
ffiffiffiffiffiffiffiffi
2�c

p Þx̂�â: (2)

This relation provides a boundary condition connecting
light leaving the effective FPI with light entering it, and
the intracavity dynamics. It can be identified with

the familiar relation âout � âin ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2�ðx̂Þp

, taking �ðx̂Þ ¼
�c þ g�x̂ and truncating the square root to first order in x̂.
The generalized optomechanical Hamiltonian (1) is real-

ized in the MSI shown in Fig. 1 operating close to a dark-
port condition, i.e., when most light is directly reflected at
the first beam splitter (BS). The whole system can then be
described as an effective Fabry-Pérot interferometer of
length L, operating in the good-cavity limit, formed be-
tween the perfect end mirror M1 and an effective end
mirror M; 2L is the length of the Sagnac mode
M1-BS-M2-M3-BS. The reflectivity � and transmissivity
� of M depend on the complex reflectivity R (r) and
transmissivity T (t) of the BS (of the micromirror), as
well as the displacement � of M from the midpoint of
M2-M3:

� ¼ �ðR2re2i� þ T2re�2i� þ 2RTtÞe�i argt; and (3a)

� ¼ ½ðRT�e2i� � c:c:Þr� ðjRj2 � jTj2Þt�e�i argt: (3b)

Assuming the close-to-dark-port condition j�j � 1, a
quantization along the standard routes of cavity QED
[34] yields a Hamiltonian of the form in Eq. (1) with the
usual result �c ¼ �c=ð2LÞ lnj�j � cj�j2=ð4LÞ, as well as
dispersive and dissipative couplings

g! ¼ �2ð!cx0=LÞ½ðjRj2 � jTj2Þ þ � cosðargtÞ�; (4a)

g� ¼ � ffiffiffi
2

p
ij�jei�ð!cx0=LÞ½2RT þ � cosðargtÞ�; (4b)

where � � 0 close to resonance. These results guarantee
that the values of g! and g� can be controlled indepen-
dently by choosing � (i.e., positioning the membrane) and
the reflectivity of the central BS appropriately. The need
for a sharp resonance demands jRj � jTj. We note, how-
ever, that jRj � jTj is required to be able to set g! ¼ 0
with j�j> 0. In the following, we will specialize to this
most interesting case of a purely dissipative coupling.
We will provide experimental case studies below and

FIG. 1 (color online). (a) Topology of the Michelson-Sagnac
interferometer. (b) Effective cavity; the properties of M depend
on M.
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show that strong coupling, where j �ajjg�j � �c ( �a being
the intracavity amplitude), can be achieved for a moderate
driving power of a few hundred �W.

The next step in our investigation is to derive the

Heisenberg equations of motion for â, x̂, and p̂¼
ðb̂� b̂yÞ=ði ffiffiffi

2
p Þ. The Hamiltonian (1) implies a full and

rich nonlinear dynamics [35], including such effects as
bistability and self-induced oscillations, but in this new
context of dissipative optomechanics. Here, we will focus
on the linear dynamics by assuming a strong classical
driving field ain, which allows us to write the linear equa-
tions of motion for the fluctuations around the steady state
as [34]

_̂a ¼ ði�� �cÞâ� ffiffiffiffiffiffiffiffi
2�c

p
âin � g�ðain=

ffiffiffiffiffiffiffiffi
2�c

p þ �aÞx̂; (5)

_̂p ¼ �!mx̂� 2�mp̂� ffiffiffiffiffiffiffiffiffi
2�m

p
�̂

� ig�=
ffiffiffiffiffiffiffiffi
2�c

p ½ðain�âþ �aâyinÞ � H:c:�; (6)

and _̂x ¼ !mp̂, with the mechanical motion having the
damping rate �m. �a is the coherent part of the cavity field,

and �̂ ¼ �̂y, which models Brownian-motion–type noise
acting on the mechanical oscillator, is assumed to obey

h�̂ðtÞ�̂ðt0Þi ¼ ð2nth þ 1Þ�ðt� t0Þ, where nth is the thermal

occupation number in the absence of driving and h�̂i ¼ 0.
The condition for the c-number component ain of the input
field to be ‘‘large enough’’ is obtained by evaluating the
contributions of both components of the input field to
hâyâi. This linearization condition can be stated as
jainj2 � ½ðj�j þ!mÞ2 þ �2

c�=ð2�cÞ [34] and will be as-
sumed to be satisfied in the following. In the weak-
coupling limit, when jg�j2jainj2 � 4�3

c, we assume that
the cavity field follows the mechanical motion adiabati-
cally and solve the linearized dynamics to obtain the
steady-state mechanical occupation number:

hb̂yb̂i ¼ nth�m

��m

þ jg�j2
4 ��m

jainj2
�2 þ �2

c

� �cð2�� �!mÞ2 þ ��mð�2 þ �2
c þ �c ��mÞ

�c½ð�� �!mÞ2 þ ð�c þ ��mÞ2�
: (7)

In this equation, �!m and ��m are the optically shifted
mechanical oscillator frequency and damping rate, respec-
tively, whose expressions are rather involved and will not
be reproduced here [34]. The preceding relation is valid
even for moderately strong input powers, as can be shown
by comparing this analytical result with that obtained by
solving the above equations of motion exactly using the
method in Ref. [36]. In the ‘‘cryogenic optomechanics’’
limit, where �c � ��m � nth�m and �!m � !m, this result
simplifies to

hb̂yb̂i � jg�j2
4 ��m

jainj2
�2 þ �2

c

ð2��!mÞ2
ð��!mÞ2 þ �2

c

: (8)

This expression for hb̂yb̂i deserves some comments.
We recall that, in dispersive optomechanics, cooling is

optimized when the upper motional sideband is strongly
enhanced (� ¼ �!m) and the lower sideband is strongly
suppressed (!m � �c). In the present case, Fano-like in-
terference can be observed in the back action force noise

spectrum SF̂ F̂ð!Þ, cf. the inset of Fig. 2, where F̂ [the
second line in Eq. (6)] is the force operator acting on the
micromirror motion. This resonance neutralizes the lower
sideband when� ¼ !m=2; the Fano line shape also means
that optimal enhancement of the upper sideband requires
not !m � �c—indeed, that would be disingenuous—but

!m ¼ !opt
m ¼ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffi
13

p �5
3

q
�c � 0:6�c, which is much less

demanding than the sideband-resolved condition.
Figure 2 shows how the mechanical occupation number,
at the optimal detuning � ¼ !m=2 and with an input
power Pin ¼ 10 nW, changes as the ratio !m=�c is varied

and is minimized when !m � !opt
m .

Cooling.—Let us now turn our attention towards pre-
dicting the cooling performance of the model investigated
above. We shall call the following ‘‘system I’’: mechanical
oscillator effective mass m ¼ 100 ng, frequency
!m ¼ 2�� 103 kHz, and quality factor Q ¼
!m=ð2�mÞ ¼ 2� 106, such that the zero-point fluctuation

is x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ð2m!mÞ

p ’ 1 fm; jRj2=jTj2 ¼ 0:486=0:514;
jrj2=jtj2 ¼ 0:362=0:638; driving wavelength 	c ¼
1064 nm; and L ¼ 7:5 cm, which are experimentally
realizable [33] and yield �c ¼ 2�� 196 kHz and g� �
2�� 0:1 Hz (g�=x0 � 2�� 79 kHz=nm). We limit the
input power to the regime where heating from the power
absorbed is not the dominant process. An input power
of 10 mW corresponds to an effective coupling strength
G ¼ j �ajjg�j � 0:1�c. By starting from an environment
temperature Tenv ¼ 300 K, we can decrease the occupation
number by over 3 orders of magnitude, as illustrated
in Fig. 3(a).
Consider next a hypothetical, but still physically realiz-

able, situation (‘‘system II’’), where M has a smaller mass
(m ¼ 50 pg [29]), higher mechanical quality (Q ¼ 1:1�
107 [37]), and higher reflectivity (jrj2=jtj2 ¼ 0:818=0:182,

FIG. 2. Calculated steady-state occupation number for
system II. Throughout this plot, � ¼ !m=2 and Pin ¼ 10 nW.
Inset: Normalized back action force noise density, illustrating its
Fano profile, when !m � 0:6�c and � ¼ !m=2; the noise
density at ! ¼ �!m is zero.
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possible by patterning the membrane [38]), where BS
is more balanced (jRj2=jTj2 ¼ 0:496=0:504 and �c ¼
2�� 59 kHz), and thus g� � 2�� 2:6 Hz (g�=x0 �
2�� 65 kHz=nm). For this system, we can achieve the
strong-coupling conditionG * �c. If we also assume cryo-
genic operation at Tenv ¼ 0:3 K, we can see from Fig. 3(b)
that ground-state cooling is possible, despite the poor
reflectivity of the mechanical oscillator, and that !m � �c.

Position transduction.—Optomechanical systems are
one promising approach towards extremely sensitive posi-
tion transduction [1]. The coupling of a mechanical oscil-
lator to multiple cavity modes was recently explored in
Ref. [39]; a common feature of ‘‘multiple-light-mode–-
single-mechanical-mode’’ systems is a Fano-like profile
in SF̂ F̂ð!Þ (Fig. 2, inset). The corresponding antiresonance
allows one to reach the SQL for measurement imprecision
at a significantly lower input power than a single-light-
mode–single-mechanical-mode optomechanical system.
Indeed, let us quantify the achievable resolution of a posi-
tion measurement by the ratio N =S, where the ‘‘noise’’
N 2 is the contribution to the symmetrized homodyne
output spectrum evaluated at ! ¼ !m, �Soutð!mÞ, due to

âin, and the ‘‘signal’’ S2 is that due to �̂, normalized to the
free mechanical motion noise spectrum �Sfreeð!mÞ:

�S outð!mÞ ¼ N 2 þ S2 �Sfreeð!mÞ: (9)

At � ¼ 0 and under identical conditions, it can be shown
thatN =S reaches the same lower bound (the SQL) in both
dissipative (at a power P�) and dispersive (P!) cases, but

with P� ¼ ð2�=!mÞ2P!. In the sideband-resolved regime,
therefore, one can obtain significantly better position reso-
lution at low powers in comparison with the dispersive
case.
Comments.—We set g! ¼ 0 early on in this Letter,

which can be realized by placing M at a point where the
field intensity surrounding it is close to minimal, greatly
reducing the power absorbed Pabs by the membrane. For
the parameters in Fig. 3(a), using the ‘‘thermal link’’ from
Ref. [40], the membrane temperature rises by ca. 60 K at
Pin ¼ 1 mW. The resulting temperature rise has a signifi-
cant effect on the base occupation number of the micro-
mirror but still allows strong cooling of the micromirror
motion. It is a feature of our topology that the ideal position
of M corresponds to both where Pabs is greatly reduced
and where the competing dispersive optomechanics is
switched off.
Significantly, we note that this situation does not persist

in the case of the ‘‘membrane-in-the-middle’’ geometry. In
a single-transverse-mode model for this latter situation, the
dispersive and dissipative optomechanics cannot be inde-
pendently turned off and are both zero at the nodes of the
cavity field; this leads to a stronger restriction arising from
the power absorbed. Moreover, dispersive (dissipative)
optomechanical cooling requires �< 0 (�> 0); most
treatments of this geometry do not include the dissipative
optomechanics component of the dynamics [41] and (at
least within a single-mode model) may therefore overesti-
mate the cooling efficiency in the non-sideband-resolved
regime.
Conclusions.—In this Letter, we have presented an ex-

perimentally feasible realization of an optomechanical
system that can be fully tuned between strong dissipative
and dispersive dynamics. The cooling mechanism we pre-
sented works best in the non-sideband-resolved regime,
unlike the usual dispersive case. For an existing set of
experimental parameters, we predict a strong cooling effect
arising from a Fano-type resonance in the back action force
acting on the mechanical motion. In the case of more
optimistic parameters, we predict ground-state cooling of
the mechanical motion. In the opposite, sideband-resolved
regime, our system promises significantly improved posi-
tion measurement resolution. The usage of the proposed
implementation of a dissipative optomechanical coupling
for nonlinear (quantum) dynamics [26,27] and for pulsed
dynamics [28] remains to be explored.
Moreover, we believe that the topology of a MSI with a

highly reflective mirror in its dark port—the signal-
recycling configuration used in the context of gravitational
wave detectors [42,43]—and the resulting dissipative intra-
cavity dynamics provides attractive possibilities for other
fields in cavity QED, especially in combination with single
atoms or ensembles of cold atoms.
We thank H. Müller-Ebhardt for useful discussions. This

work was funded by the Centre for Quantum Engineering

FIG. 3 (color online). Full numerical solution for the occupa-
tion number hb̂yb̂i for (a) system I and (b) system II.

PRL 107, 213604 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

18 NOVEMBER 2011

213604-4



and Space-Time Research (QUEST) at the Leibniz
University Hannover.

*Corresponding author.
andre.xuereb@aei.mpg.de

[1] T. J. Kippenberg and K. J. Vahala, Science 321, 1172
(2008).

[2] F. Marquardt and S.M. Girvin, Physics 2, 40 (2009).
[3] C. Genes, A. Mari, D. Vitali, and P. Tombesi, in Advances

In Atomic, Molecular, and Optical Physics, edited by
P. R. B. E. Arimondo and C. C. Lin (Academic, New
York, 2009), Vol. 57, Chap. 2, p. 33.
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