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Abstract Currently operating laser interferometric gravitational
wave detectors are limited by quantum noise above a few hun-
dred Hertz. Detectors that will come on line in the next decade
are predicted to be limited by quantum noise over their entire
useful frequency band (from 10 Hz to 10 kHz). Further sensitiv-
ity improvements will, therefore, rely on using quantum optical
techniques such as squeezed state injection and quantum non-
demolition, which will, in turn, drive these massive mechanical
systems into quantum states. This article reviews the princi-
ples behind these optical and quantum optical techniques and
progress toward there realization.
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1. Introduction

According to Einstein’s general theory of relativity [1], the
geometry of the space-time continuum is dynamical, and
interacts with matter. Non-axisymmetric acceleration of
matter creates oscillations of space-time geometry in their
vicinity, which propagate away at the speed of light, causing
“ripples” even at distant regions of space. These ripples
are called gravitational waves. Conservation of mass and
linear momentum dictates that gravitational radiation starts
at mass quadrupole order, in much the same way as charge
conservation dictates that electromagnetic radiation starts at
charge dipole order. In other words, a graviton has a spin of
2, while a photon has a spin of 1.

Depending on the choice of coordinate systems, the
physical effect of a gravitational wave on an array of freely
falling test objects, with spatial separation less than its
reduced wavelength Agw/(27), and light propagating be-
tween them can either be described by (i) a modulation of
the refractive index of space alone, or (ii) solely by a tidal
force field applied on the test masses. Similar to electro-
magnetic waves, a plane gravitational wave also has two
polarizations (due to the fact that gravitons are massless),
often denoted as + and x. Taking description (ii) above, a
plane gravitational wave propagating along the z axis dis-

torts a ring of free test objects on the x-y plane following
patterns indicated by Fig. 1. More quantitatively, we have
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where /. and hy are amplitudes of the gravitational wave

in 4+ and X polarizations, (x,y) denote a test object’s un-
perturbed position on the phase front before the gravita-
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Figure 1 The effect of a gravitational wave propagating into the
plane on a small ring of free test masses over a full gravitational
wave period T. The top series of diagrams shows the effect of a
gravitational wave in the hy polarisation. The bottom series of
diagrams shows the effect of a gravitational wave in the /iy polari-
sation.
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(a)

(b) (c)
tional wave arrives, (8x,8y) the displacement caused by
the gravitational wave, and double dots denote double time
derivatives. Note that masses of the objects drop out, as a
consequence of the Equivalence Principle.

The stiffness of space-time is enormous, even the most
violent events in the universe produce waves with incredibly
small strain amplitudes. One can appreciate this through
calculating the energy flux of a linearly polarized plane
gravitational wave:

dE 2
i = 162G )
dAdt 167G

where (...) denotes averaging over a period of the wave,
¢ =3x10%m/s is the speed of light, and G = 6.67 x
107" m3kg 's72 is the Newton’s constant of gravity. As
an example, events such as a supernova in our galaxy or the
collision of neutron stars within the local galaxy group will
generate waves with amplitudes of the order & ~ 10721, yet
their instantaneous energy flux in gravitational waves (as-
suming a frequency of 2 kHz) can reach ~ 60 W/m?, which
is slightly higher than the electromagnetic energy flux under
areading light.

Early attempts to detect gravitational waves searched
for gravitational wave (GW) induced excitations in the me-
chanical modes of solid bars of metal such as Aluminium or
Niobium, culminating in detectors reaching sensitivities on
the order of 10~!° in a very narrow band of frequencies cen-
tered about ~ 1 kHz [2]. Following the advent of the laser
in 1959 and the progress in laser interferometry, Weiss [3]
and separately Forward [4] proposed a gravitational wave
detector based on the Michelson interferometer (Fig. 2). A
passing gravitational wave will alternately stretch one inter-
ferometer arm whilst contracting the other arm (see Fig. 1)
differentially changing the phase of the light beams in the
2 arms. The phase change and hence GW signal is read
out on the interference pattern observed at the output port.
Some 30 years later, the Michelson interferometer, which
had such a profound impact on the development of special
relativity in the 19th century, is now poised to prove the
final prediction of Einstein’s theory of general relativity and
open an entirely new field of astronomy.

In order to reach the required sensitivities, all envi-
ronmental perturbations to the interferometer mirrors (test
masses) must be a significant factor smaller than the gravi-
tational wave signal. Since the gravitational wave signal is
related to the relative displacement of mirrors with separa-
tion L by 6x o< OhL, the mirror separation is made as large
as feasible to give the largest possible strain measurement.
With ground based detectors, the test masses must be hung

@

Figure 2 (online color at:
www.lpr-journal.org) The
effect of a gravitational
wave propagating into the
plane (in the A4 polarisa-
tion) on a Michelson inter-
ferometer.

(d)

from sophisticated isolation systems to eliminate the back-
ground seismic noise and in an ultra high vacuum system
to avoid refractive index fluctuations mimicking a signal.
Great effort is required to minimize electronics noise and to
avoid mirror feedback and control systems re-injecting noise
onto the signal. Classical intensity and frequency noise on
the laser beam has to be suppressed, aided by the common
mode rejection of a Michelson interferometer operating on
a dark fringe. Once all such technical noise has been made
negligible, three *fundamental’ noise sources remain: (1) di-
rect Newtonian coupling between the suspended test mass
and the local gravity environment sets the low frequency
limit to the performance of terrestrial detectors; (2) thermal
noise arising from the Brownian motion in a mechanical sys-
tem at non-zero temperature, which is typically distributed
amongst mirror vibrational modes; suspension modes and
coating modes; and (3) quantum noise arising from vac-
uum fluctuations in the electromagnetic field modes used to
continuously sense and readout the position of nearly free
test masses.

Fig. 3 shows the optical configuration an Fig. 4 the pre-
dicted sensitivity of the US Advanced LIGO [5] detec-
tors due to come on line in 2014. The target displacement
noise level of Advanced LIGO (aLIGO) is at a remarkable
4%x102 / v/Hz in its most sensitive band. With this per-
formance, gravitational waves should be regularly detected.
However, in order to reach cosmological distance scales and
be able to probe the beginnings of the universe, even this
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Figure 3 (online color at: www.lpr-journal.org) Schematic of the
optical layout of second generation detectors such as Advanced
LIGO. PM: power recycling mirror; SM: signal recycling mirror.
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sensitivity is not good enough; third-generation detectors
with yet another factor of 10 improvement are currently
being conceived.

Apart from a small frequency region around 100 Hz,
where thermal noise dominates, second generation detec-
tors such as aLIGO should be limited by quantum noise
across their entire frequency band from few Hz to few kHz.
Moreover, they will operate very close to the so-called Stan-
dard Quantum Limit [6], where the Heisenberg Uncertainty
Principle constrains the quantum-noise-limited sensitivity
of continuous measurements of the position of the 40 kg test
mass. This quantum noise is the focus of the remainder of
this article.

We begin with a brief overview of a gravitational wave
detector as a gravito-optomechanical transducer in Sect. 2,
before introducing the quantum nature of light and how
it influences the measurement in Sect.3. This leads to
the concepts of shot noise, quantum radiation pressure
noise, the standard quantum limit, squeezing and quantum
non demolition (QND). In Sects.4 and 5, we revisit the
gravito-optomechanical transducer to consider how motion
of the optomechanical oscillator can modify optical quan-
tum noise.

Section 5 briefly re-examines the physics from the view-
point of modes of a massive optomechanical oscillator in-
stead of sensitivity to gravitational waves. Radiation pres-
sure (RP) plays an important role not only in advanced GW
detectors, but in other optomechanical systems that use the
coupling between the mirror position and the radiation field
for cavity-assisted cooling [7-12, 14], to modify the dynam-
ics of the interferometer mirrors [16-25], and to produce
squeezing due to correlations between the shot noise and
radiation pressure noise [19,20]. The mirror oscillator is the
suspended mirror pendulum of GW detectors [24-26] and
related experiments [11,27], or nano- and micro-cantilevers
and membranes [7, 8, 10, 12—-15]. The key ingredients of
a system where radiation pressure dominates the dynam-
ics are: relatively high stored optical power that impinges
on a mirror oscillator that can respond to radiation pres-
sure; mirror oscillators with high mechanical quality factors
(Q), to mitigate thermal noise and provide long coherence

times; a low noise readout scheme to measure the mirror dis-
placement; and sufficiently strong optomechanical coupling
between the mirror and radiation field. This is the realm of
optical cooling in which oscillator motion approaches its
quantum ground state — macroscopic quantum mechanics
on a truly grand scale.

We end with a review of the experimental achievements
relevant to gravitational wave detectors to date and the near
term outlook.

2. GW detectors - the optical response

As in any instrument a key design requirement is to maxi-
mize the signal to noise ratio. This is what determines the
instrument’s sensitivity. In this section we review interfer-
ometer configurations from the viewpoint of optimizing the
signal response/bandwidth combination and then address
the issue of minimizing quantum noise.

For illustrative purpose we consider the interferometer
configuration depicted in Fig. 3. The central element is the
optical cavity formed between mirrors that are hung from
pendulum suspension systems. Well above the suspension
resonance frequency the mirrors can be considered to re-
spond freely to changes in their separation, in particular
those arising from the passage of gravitational waves. Laser
light enters the cavity and undergoes multiple reflections off
the cavity mirrors sampling mirror motion each time, before
leaking out to contribute to the total field reflected by the
cavity. Thus the motion is read out as the change in phase of
the total reflected field. In the frequency domain, the mirror
motion transfers energy out of the carrier field, into phase
modulation sidebands, called the signal sidebands. Due to
the fact that gravitational wave induced motion reverses di-
rection after half a period, on light stored for longer than this
the induced phase will diminish. This sets the bandwidth
of the detector. It is determined by the cavity length and
the effective reflectivities of the mirrors. Typically, ground
based detectors are a few kilometers long and operate in the
acoustic signal frequency regime from 10 Hz to a few kHz
and so the bandwidth is often selected to be about 100 Hz.
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With a single cavity the GW signal will be swamped by
laser noise. By inserting a cavity in each of the orthogonal
arms of a Michelson Interferometer (MI) and operating
the interferometer on a dark fringe, laser noise and any
noise inducing signals common to both cavities will be
suppressed by the common mode rejection factor (related
to the fringe visibility, and typically of order 1/1000 for the
LIGO interferometers). However, due to their quadrupolar
nature, the GWs act differentially on the two arms. Thus, at
the antisymmetric port of the interferometer, the GW signal
coming from the arms of the MI add coherently.

A further benefit of dark fringe operation is that, from
the view point of the incident light, the MI appears to be
a mirror, reflecting most of the light back on itself. By
inserting a so called *power recycling’ mirror [28] this light
can be re-used, interferometrically building up the power
incident on the beam splitter (and therefore the cavities) and
thus enhancing interferometer response.

This configuration of a power recycled, arm cavity
Michelson interferometer is the layout adopted in the first
generation of multi kilometer GW detectors (LIGO and
Virgo). In the absence of noise, signal response is peaked
around the carrier frequency and rolls off with the arm cav-
ity bandwidth. The only way to increase the signal response
is to increase the laser power. For a review of progress in the
area see Willke [29]. In 1988, Meers [30] realised that the
signal response could be tailored by placing a mirror (SM in
Fig. 3) at the output port (dark fringe) of the Michelson in-
terferometer to form a cavity which could resonate the GW
induced signal sidebands. This process was called signal
recycling. Sample tuning curves are shown in Fig. 5. There
are two resonances clearly visible on each tuning curve. The
higher frequency peak is from the pure optical resonance
discussed here. The frequency of this pure optical resonance
is set by microscopic tuning of the signal recycling mir-
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Figure 5 (online color at: www.lpr-journal.org) Response curves
for a dual recycled Michelson interferometer showing optical
(higher frequency) and optomechanical (lower frequency) res-
onances for 2 different laser powers. Solid curves are plotted
with 10 times input power used in the broken curves. The two
traces at each power level correspond to different measurement
quadratures. The black curve with no peaks is the response at
the higher power level without signal recycling.

ror position. Enhancement at this resonance is determined
by the finesse of the signal recycling cavity, mainly set by
the reflectivity of the signal recycling mirror. Away from
the peak, response rolls off with signal cavity bandwidth.
The peak at lower frequency results from a radiation pres-
sure driven opto-mechanical interaction. This effect was
ignored in early analyses of signal recycling and resonant
sideband extraction (see below). It will be discussed in de-
tail in Sect. 5. Signal recycling is currently implemented
on GEO600 [31].

Refinements of signal recycling include replacing the
SM with an optical element whose reflectivity is vari-
able [32], such as a short cavity or Michelson interferometer.
This allows for tailoring of both the peak response frequency
and of the interferometer bandwidth. By tuning an output
cavity to the carrier frequency and making this element long
enough so that the storage time of the signal can approach
that of the storage time in the signal recycling cavity, the
coupled cavity response enables resonant enhancement of
both the upper and the lower GW sidebands.

In a major conceptual leap, Mizuno et al in 1993 [33]
realized that signal recycling could be used to broaden the
response of an interferometer. We have seen above that
signal response is proportional to the stored power in the
arm cavities. Ideally then we would like the cavity finesse
to be as high as possible. The problem is that if the sig-
nal sidebands are stored too long in an arm cavity, GW
induced phase change will average out. In an arm cavity
Michelson interferometer with SR, the carrier field build
up (storage) in the arm cavity is determined only by the re-
flectivity of the inboard arm cavity mirror. However, for the
signal sidebands this reflectivity can be varied by changing
the resonance condition of the signal in the SRC and hence
the signal storage time can be altered. We are thus free to
choose the in board mirror reflectivity as high as possible to
build up carrier power, then tune the SRC to achieve the re-
quired signal bandwidth. This is termed Resonant Sideband
Extraction (RSE).

The optical configuration chosen for second generation
detectors now under construction (Advanced LIGO and
Advanced Virgo) is that of an arm cavity Michelson interfer-
ometer with power- and signal-recycling. Third generation
detectors are likely to use variants of these techniques that in-
clude modifications that allow for quantum non-demolition
readout schemes.

3. Quantum states of light and shot noise

In a quantum statistical picture of light, the distribution of
photons from a perfect laser (no classical amplitude or phase
noise) obeys Poisson statistics in which the uncertainty in
an ensemble of n photons is given by the \/n. This error in
photon counting limits how small a mirror motion induced
change in the number of photons measured at the output of
a Michelson interferometer can be determined and is often
referred to as shot noise or imprecision.

A more useful picture for understanding the role of
quantum noise in a gravitational wave detector comes from

© 2011 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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quantizing the electromagnetic field into energy levels given
by E = (n+0.5) ho and realizing that in the absence of
photons (n = 0) there is still 0.5%® of energy in the electro-
magnetic vacuum modes. States of light are described by
the creation and annihilation operators @' and 4 from which
quadrature operators X; and X, corresponding to the real
and imaginary parts of the electric field are defined [34]:

5 (a—}-aT)_

(gt —
% =29, %= “le—a)

5 3)

The amplitude and phase quadratures represent non-com-
muting observable parameters. An operator for an arbitrary
quadrature, {, can be defined using a linear combination of
Xl and )?2

Xg =X cos{ +X,sin{. )]

Eq. (5) links the amplitude quadrature X; and the phase
quadrature X, to the Hamiltonian of the harmonic oscilla-
tor, also providing a normalization in such a way that the
quadrature variances for a vacuum state directly provide the
zero point energy [35]

A =ho(i+1/2) = ho(X? +X2), (5)

where 7 is Planck’s constant, @ the oscillator’s angular fre-
quency and 7 the photon number operator. Eq. (6) displays
the Heisenberg Uncertainty relation for the quadrature oper-
ator variances
o \2 o \2

(AX1)?- (A%)* > 5. ©)
For a coherent state that exhibits Poisson statistics, the vari-
ance is the same in each quadrature giving

AXy =A%, = 5. )

On a phasor diagram, a classical laser beam is repre-
sented by a phasor with a precise length representing the
amplitude and a well defined phase. In the quantum world,
Eq. (7) requires that the phasor carry a Gaussian distributed
noise at its end, representing a quantum uncertainty in its
quadrature values, as depicted in Fig. 6. Even in the absence
of the coherent “stick” i. e. a vacuum state, the “circle” of
quantum noise remains. In the frequency domain (Fig. 7),

@ x4 (b) X2

Figure 7 (online color at: www.lpr-journal.org) Two mode fre-
quency domain representation of quantum noise for a (displaced)
coherent state at optical frequency .. The quantum noise of the
carrier (c) at a Fourier frequency €; is given as the beat between
upper and lower sidebands at optical frequencies Q. + Q;, all
being in a vacuum state. Note, that the two sideband pairs shown
here are just examples of a continuous spectrum of Fourier fre-
quencies.

quantum noise is manifested through the beating of the co-
herent amplitude at carrier (zero) frequency, Q., with the
upper and lower quantum noise sidebands in vacuum states
at frequencies £€; [34].

A quantum state is called a “squeezed state” [34] if
A}Q < 1 for an arbitrary field quadrature f(g. Here, { is the
squeezing angle. The greatest factor by which the variance is
below 1 is called the squeezing factor, often given on a deci-
bel scale. Squeezed states belong to the class of so-called
nonclassical states [34, 35]. In such states the detection
events of photons are not independent from each other, but
show quantum correlations. Figure 8 displays the noise dis-
tribution for an amplitude squeezed state with the same co-
herent displacement. In the frequency domain, the quantum
noise of the upper and lower sideband at Fourier frequency
Q is still random but mutually correlated within a sideband
pair. For an amplitude squeezed state, the sidebands are
amplitude modulation anti-correlated and phase modulation

x2 A

Figure 6 Single mode phasor representation showing (a) quantum noise for a coherent

state and (b) vacuum state.

Y

Figure 8 Phasor representation showing dis-
placed amplitude squeezed quantum noise.

www.lpr-journal.org
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Figure 9 (online color at: www.lpr-journal.org) Frequency do-
main representation of quantum noise for a displaced amplitude
squeezed state at optical frequency Q.. Squeezing is produced
by optical parametric amplification (parametric down conversion)
and increases the quantum noise at all frequencies Q. + Q;. This
noise is quantum correlated such that every sideband pair results
in a squeezed noise at a single-sided Fourier frequency Q;. Note,
that quantum correlations in the imaginary direction are displayed
by the (correlated) position of the symbol x within the uncertainty
circle, and quantum anti-correlations in the real valued direction
are displayed by the (anti-correlated) position of the symbol 4.

correlated, as depicted in Fig.9. Squeezing increases the
quantum noise at all frequencies Q. + Q;. However, this
noise is quantum correlated such that every sideband pair
results in a squeezed noise at Fourier frequency Q;.

Using the phasor picture we see that the difference in
phase between two phasors, i.e. the signal from an inter-
ferometer, can only be resolved to the width of the circle
of quantum noise each carries. For a coherent state, this
is referred to as the shot noise limit. In the early 1980s
Caves [36,37] went further in his analysis of a Michelson
interferometer to show that, when operating on a dark fringe,
the circle of quantum noise in fact comes from the vacuum
field which enters the interferometer through the open out-
put port. All noise entering with the pump laser (classical
and quantum) is common to both arms of the Michelson
interferometer and, therefore, does not transmit to the output
(dark) port (assuming perfect fringe contrast).

Interpreting quantum noise as coming from vacuum
fluctuations means that the size of the noise does not change
with laser power. As a result, it is clear that increasing
the laser power makes the coherent amplitudes larger and
hence the minimum resolvable phase difference between
two phasors becomes smaller. Increasing the laser power
reduces the influence of shot noise. A full analysis gives the
shot noise power spectral density for a simple Michelson
interterometer, Sl\élf, as [38]:

A hc

s - =
227 161 Iy

®)

We see that shot noise limited sensitivity (square root
of the power spectral density) scales with the inverse of
the square root of the laser power I and is independent of
frequency, i. e. it is white.

In fact, at the signal output port of a laser interferom-
eter, photo-electric detection acquires information about
just one quadrature of the output field. This quadrature is
the amplitude quadrature corresponding to the light’s phase
quadrature in the interferometer arms. Thus by replacing the
vacuum state with phase squeezed vacuum with respect to
the output’s amplitude quadrature, the light fields in the inter-
ferometer become entangled [39], a more precise measure-
ment of optical phase difference can be made, surpassing
the shot noise limit. Accordingly, the noise in the orthogonal
field quadrature is increased.

4. Radiation pressure noise, the SQL,
and beyond

The laser power cannot be increased without limit, how-
ever. Quantum back action, the impact of the measurement
on the device, in the form of quantum radiation pressure
noise intervenes [6,36]. In an interferometer with suspended
mirrors, photon pressure can move the mirrors. Radiation
pressure from the driving field is common in the Michelson
interferometer arms and does not generate a (differential)
interferometer signal. The relevant radiation pressure force
arises from the beat of the coherent drive with amplitude
vacuum fluctuations entering through the dark port. This
fluctuating force randomly differentially buffets the mirrors.
The resulting noise increases with the square root of the laser
power. Since it is anticorrelated in each arm, its effect does
not cancel at the beam splitter. At some power level, the ran-
dom motion induced by quantum radiation pressure noise
will dominate shot noise masking the GW-induced motion.

Measurement-induced back action starts to become im-
portant at a scale determined by the quantum mechanics of
the test mass. Fundamentally, this is because light couples
to the position x of a nearly free mass, whose Heisenberg
operators (denoted by the subscript H) at different times do
not commute:

_ in(t' —1)

" 9)

According to the fundamental postulate of quantum mechan-
ics regarding measurement, this means the observables x(¢)
and x(¢') cannot both be determined precisely without any
additional noise. Mathematically, this leads to

h|t2 —l‘1|

Ax(tr) - Ax(r2) > i

(10)
This non-commutativity then leads to the Standard Quan-
tum Limit. Suppose we measure the change in position
between two instants separated by 7, in order to measure a
gravitational-wave pulse during this time, we then have

(1)

xow ~ x(t2) — x(t)

© 2011 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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and

Axgw ~ \/Ax%(12) + Ax? (1)

7
> 2Ax(t2)-Ax(t1)2\/MTEAxSQL. (12)

A rigorous derivation gives the power spectral density of
the SQL as a function of angular frequency € for a simple
Michelson interferometer as:

gsoL_ 20

IR (13)

In an actual measurement process, non-simultaneous
measurability of x(¢) and x(z') is enforced by additional
noise arising from quantum fluctuations of the optical field.
In fact, Eq. (9) implies that, when coupled with an external
operator, the evolution of x must be “contaminated” by
fluctuations from the optical system:

dt
O+i |

Here £ is the Heisenberg operator of mirror position when
it couples to the optical system, £(?) is the “free evolution”
without coupling to measurement device, and £ (1) is the
radiation-pressure force acting on the mirror. Equation (14)
indicates the existence of the back-action noise, which arises
when the measurement system exerts a force back onto the
system being measured — in our case the fluctuating part
of F(I,
On the other hand, if the optical observable F has

B ED (). (14)

[ 0,501 #0. (15)
the test mass also influences the evolution of F, with
B0 =500+ [ a [0, 50 0] €00,
(16)

Equation (16), together with Eq. (14), shows that not
only does the measurement system injects noise — it also
modifies the dynamics of the system being measured,
through the coupled evolution of the non-fluctuating parts of
£ and £(D In the next two sections, we will address back-
action noise and modification of dynamics, respectively.

4.1. General discussion of the SQL

As stated earlier, in laser interferometers, back action noise
takes the form of radiation pressure noise, which arises
from photons randomly hitting the mirrors and creating
noisy motion. The full measurement result, assuming homo-
dyne detection [34] of an out-going field quadrature, can be
written in the frequency domain as,

¥(Q) =x(Q) + Z(Q) +

Ru(Q)7(Q).  (7)

Here x is the position of the mirror were there no measure-
ment, which in turn contains free motion of the mirror plus
gravitational-wave-induced motion; £ is shot noise, and .7
is radiation-pressure force. The quantity

1

Ry = —W (18)

is the response of a free mass to external force. The operators
% and .7 have the following commutation relations:

(20, 2] =[Z@),Z ()],

(19)
[Z(t), Z ()] = i8(t 1) .

These relations guarantee that the full measurement result y
commutes at different times:

MOBIIE

The commutation relation (19) also gives rise to a Heisen-
berg Uncertainty relation among the spectra of 2 and .#

(20)

Sy xSz —|Sez|” > h*. (21)

Upon assuming uncorrelated sensing and back-action noise,

or Sz =0, we get
SyySzz >, (22)
and in this case,
Sy =Sy u+|Rul*Szz > 21|Ry| = S (23)

So far, we have seen that [x(¢),x(¢')] # 0 is connected
with R, # 0, which in turn gives the SQL. As a conse-
quence, one obvious way to defeat the SQL is to measure
a quantity A of the mirror that does commute at different
times, i. €.

[A(1),A(")] =

where A could be the momentum of the mirrors. Such a
quantity A is called a Quantum Non-Demolition (QND) ob-
servable. However, for a long time, it was not clear how we
can measure momentum of free masses in large-scale laser
interferometers. In Sect. 4.4, we will introduce speed meter
interferometers, which can be viewed as measuring momen-
tum, but only do so in an effective way. On the other hand,
the fundamental coupling of light to test masses has always
been through position, and, therefore, all configurations that
surpass the SQL can all be viewed as circumventing the
SQL by introducing correlations between the shot noise
% and radiation-pressure noise .% . We note that injecting
squeezed light can also result in beating the SQL [40-42].
In this case the correlation is introduced by correlating the
amplitude and phase quadratures prior to insertion into the
interferometer. Nevertheless, for historical reasons, these
interferometers are sometimes still referred to as QND in-
terferometers.

(24)
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Figure 10 (online color at: www.lpr-journal.org) Schematic

diagram of a Fabry-Perot Michelson interferometer showing the
input field quadratures, a = (ay, a3 ), into the detection port and
the output field quadratures, b = (b;, b, ), from the detection port.

4.2. Fabry-Perot Michelson interferometers

For a more concrete example, let us consider a Fabry-Perot
MI, as shown in Fig. 10. Upon writing electric field as
quadratures:

E(t) =/ 47;};?6 [a1(t)cosQct +ax(t)sinQet]  (25)

where @7 ¢ is the cross-sectional area of the beam of fre-
quency €., we can write down the input-output relation,
i. e., how the outgoing field quadratures (b1, b,) relate to the
incoming quadratures (a1,a;) at the detection port in the
presence of a gravitational-wave of amplitude 4 [43]:

by = ¥ a, (26)

. . h
by =e*P(ay— Ha))+ePVox— @21
hsqL
Here B = arctanQ /7y, where 7 is the bandwidth of the arm

cavity,

2y0° 3 8anl/ T
= —_— - ' 2
< Q2(Q2+ 7))’ © mLc ' (28)
and
8n
=1/ — 2
hsaL mQ212 29

where Iy is input power of the laser and .7; is the power
transmission coefficient of the cavity input mirror. The di-
mensionless quantity .2, proportional to the optical power
characterizes the measurement strength.

In Eqs. (26) and (27), the phase factor ¢2# arises from
the arm-cavity-induced time delay between incoming and

outgoing fields. We see that the phase quadrature of b con-
tains the signal and depends on both the phase and the
amplitude quadratures of the field entering the antisymmet-
ric port, a. In Eq. (27) for the phase quadrature: the term
proportional to £ arises from the mirror’s GW-induced mo-
tion phase modulating the carrier; the term proportional to
ap gives rise to shot noise; the term proportional to %" in
Eq. (27) is back-action noise.

In the case of the Fabry-Perot MI, for an input vacuum
state, the quadratures of the input field, (a;,a»), are uncor-
related. We have Sa,.aj = j» and we detect output phase
quadrature b, (the quadrature that contains signal), we have
an h-referred noise spectrum of

Sy = [1 + (30)

H 2

where the first term, inversely proportional to power, is shot
noise related, while the second term, directly proportional
to power, is radiation-pressure noise related. Together, the
total noise is limited by the SQL. One way to surpass the
SQL is to inject a squeezed vacuum state into the dark
port of the interferometer (input squeezing), for which the
ap — ¢ a) quadrature is squeezed. Because 7" is highly
frequency dependent, this quadrature will also be frequency
dependent. Qualitatively, at high frequencies, #* < 1, shot
noise dominates, and we need to squeeze ap, while at low
frequencies, radiation-pressure noise dominates, %2 > 1,
and we need to squeeze a;. Another way is to detect an
appropriate combination between b; and by,

by = bycos{ +bysing (31)
in such a way that the a; content of b; (which is shot noise)
cancels with the a; content of b, (which is back-action
noise). Any particular { can be implemented by using a
local oscillator with phase {. Here the optimal detection
quadrature also moves from b, to almost b;, when frequency
decreases. The optimal { is frequency dependent. Aside
from the matter of frequency dependence, both approaches
successfully circumvent the SQL by introducing correla-
tion between radiation-pressure and shot noise in the out-
going field.

4.3. Optical filters

In order to achieve the frequency dependence of the above
approaches to SQL-beating, Kimble et al. [43] proposed us-
ing detuned Fabry-Perot cavities as optical filters, which al-
low frequency-dependent rotations of quadratures by a sub-
stantial amount when the side-band frequency crosses reso-
nance. Known as variational readout, Purdue and Chen [44]
worked out the general frequency dependence realizable by
a series of such filters. In the case of Fabry-Perot Michelson
interferometers, in general two filter cavities are required
(Fig. 11), with detuning and bandwidth in the detection band
of the interferometer (around 100 Hz). Figure 12 compares
the sensitivity achievable without and with filter cavities.

© 2011 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 11 (online color at: www.lpr-journal.org) Schematic of
the layout of a power recycled Michelson interferometer with filter
cavities inserted between the output port and the Homodyne de-
tector. The filter cavities will both rotate the signal and the injected
squeezed noise into the optimum measurement quadrature
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Figure 12 (online color at: www.Ipr-journal.org) Sensitivity en-
hancement of a power recycled Michelson interferometer without
filter cavities (black trace), with 10dB squeezed light and filter
cavities (solid green trace); with 10 dB squeezing and variational
readout (solid red trace) and finally, 10 dB squeezing and vari-
ational readout but including small losses in the filter cavities
(broken blue trace).

A broadband nonclassical noise reduction beyond the SQL
can be achieved if the injection of squeezed light is com-
bined with additional narrowband optical filter cavities at
the interferometer dark port [43,45]. In order to achieve
such narrow bandwidth with a rather low optical loss (cru-
cial for maintaining quantum coherence in the squeezed
vacuum and the outgoing quadratures), these filter cavities
will have to be kilometers in scale. Even so, as we see in
Fig. 12, these interferometers are still significantly limited

by optical losses in the interferometer. As a rule of thumb,
the factor by which an interferometer can surpass the SQL
through back-action evasion is

VS > (7€) *hsqL

where e~ %" is the power squeeze factor, and € the total loss
of the interferometer, in power.

Due to the high cost of constructing km-scale cavities,
sub-optimal filtering schemes have been considered. For
example, Corbitt, Mavalvala and Whitcomb [46] considered
amplitude filters that only inject phase-squeezed vacuum at
high sideband frequencies, and amplitude-squeezed vacuum
at low sideband frequencies — using impedance-matched
cavities. This scheme is less susceptible to losses, intuitively
because it simply needs to direct the input squeezing around,
instead of having to rotate it with delicate phases. The am-
plitude filter scheme initially leaves one port where light
exits freely; Khalili [47] proposed to insert an additional
homodyne detection here as an auxiliary channel, further
improving this scheme.

(32)

4.4. Speed meter interferometers

Momentum of a free mass is a so-called QND observable,
and, therefore, could be measured without imposing back-
action. In the 1990s, Braginsky and Khalili [48] proposed
configurations in which speed of a free mass could be mea-
sured, yet these were not clearly implementable in large-
scale laser interferometers. In the first scheme, two res-
onators with initially the same eigenfrequency are weakly
coupled to each other, forming a system with two closely
split eigenfrequencies. When oscillator A is driven directly,
its response will slowly slosh into B, and slosh back, with
a 180-degree phase shift compared with the directly driven
signal. Such a sloshing makes the two-resonator system only
sensitive to position change (and hence speed) induced by
the driving force. An appropriate choice of sloshing time
scale and signal extraction time scale will give rise to a speed
meter at frequencies below the sloshing frequency. We shall
denote this the “two-resonator” scheme. In a second scheme,
opposite sides of the same test mass are sensed with a time
delay, therefore giving rise to speed measurement. We shall
denote this the “two-bounce” scheme.

Purdue [49] made the first attempt to convert the two-
resonator scheme into kilometer-scale interferometers, and
Purdue and Chen [44] designed the first practical version
of a speed meter, which consisted of an additional cavity
at the dark port of a MI. Chen then showed that the two
bounce scheme could naturally be realized by a Sagnac
interferometer with arm cavities and signal recycling. The
layout is shown in Fig. 13.

In essence, after the beam splitter the horizontal field
senses ETM1 at time ¢, and ETM?2 at some time later 7 + 7.
On the other hand, the vertical field first senses ETM?2 at
time, ¢, and ETM1 at some later time ¢ + 7. As the mirror
positions are sensed at different times, the resulting phase
difference is effectively a measure of speed.

www.lpr-journal.org
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Figure 13 (online color at: www.lpr-journal.org) Optical
schematic for a Sagnac speed meter comprising a Sagnac inter-
ferometer with ring cavities at two vertices.
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Figure 14 (online color at: www.lpr-journal.org) Sagnac speed
meter sensitivity. Straight line: locus of the SQL for a range of opti-
cal power; broken curve: the Sagnac speed meter beats the SQL
below 100 Hz; solid curve: Sagnac speed meter with signal recy-
cling beats the SQL below 200 Hz. Reproduced from [50], Fig. 6.

Chen [50] further showed that the resulting interferome-
ters have mathematically equivalent input-output relations,
both very similar to Eqs. (26) and (27), but with %" ap-
proximately a constant value for a broad frequency band,
instead of rising monotonically in the case of Fabry-Perot
Michelson interferometers. More specifically, for a speed
meter, we have

8603
(02— Q2)2+ Q282

A= (33)

where €, is the sloshing frequency, and 0 the signal extrac-
tion rate.

As is easily seen from the frequency-domain formula
(27), a constant .#” in a broad frequency band corresponds
to speed measurement over a broad frequency and (because
hsqr ~ 1/Q). Interestingly, just from Eq. (27), the speed
meter is not free from radiation-pressure noise: the mirror
still moves randomly, driven by radiation-pressure force.
However, in the region where % is constant, radiation-
pressure noise is easily canceled with shot noise, if we
detect the appropriate constant quadrature. This need for
canceling among radiation-pressure and shot noise can be
explained by the fact that whenever we couple to speed of
a free mass, its canonical momentum (which is conserved)
becomes different from its kinetic momentum by a term
involving the light field — and kinetic momentum is no
longer conserved. The quadrature which contains no back
action actually senses the canonical momentum, and in this
way the speed meter can be viewed as a QND device.

5. Radiation pressure modification of
mirror dynamics

So far, we have examined the interaction of the optomechan-
ical system with quantum noise. However, in the presence
of signal, it is possible for the mechanical system to be
resonantly excited, thereby increasing sensitivity. Classi-
cal radiation pressures forces play a central role in these
phenomena, and are discussed below.

5.1. Classical optical forces

If an optical cavity is exactly on resonance, the intracav-
ity power depends quadratically on small changes in the
length of the cavity, and the restoring force is only a second-
order effect on the dynamics of the cavity (see Fig. 15). The
constant (DC) radiation pressure is balanced through exter-
nal forces; consequently, only fluctuations of the radiation
pressure are considered. In an optical cavity that is detuned
from resonance, the intracavity power, and, therefore, the
radiation pressure exerted on the mirrors, becomes linearly
dependent on the length of the cavity, analogous to a spring.
The resulting “optical spring” has a spring constant in the
frequency domain given by [17,21]

[1+6/m - (/]
2
[1+ /7= (/] +4 @/

_2dP _ 1287l (8/7)
CcdL TPck

K(Q) =Ko
(34)

0

1
1+(5/Y)2] ’

where Q is the frequency of the motion, 4y = 1064 nm is
the wavelength of light, c is the speed of light, ¥ is the cavity
linewidth, .7 is the power transmission coefficient of the
cavity input mirror, and 6 and Iy are the detuning and input
power of the laser, respectively. Note the dependence of
Ky on the sign of 8. For 6 > 0 (in our convention), K > 0
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Figure 15 (online color at: www.lpr-journal.org) Intracavity power,
and optical restoring and damping forces as a function of detuning
of the laser from cavity resonance. Top panel: circulating power in
the cavity; Middle panel: optical stiffness given by the real part of
the total optical force; Bottom panel: optical damping given by the
imaginary part of the total optical force. Red detuning (to below
resonance) is the regime of cavity cooling, while blue-detuning (to
above the resonance) gives rise to the optical spring.

corresponds to a restoring force, while § < 0 gives an anti-
restoring force (see Fig. 15, middle panel).

The light in the cavity (for § < ¥) responds to mir-
ror motion on a time scale given by y~!. This delay has
two effects. First, for high frequency motion (Q = 7),
the response of the cavity, and the corresponding radia-
tion pressure, are reduced, and we see from Eq. (34) that
K(Q>7) ~ Ky (Q/y) 2. Second, the response of the cav-
ity lags the motion, leading to an additional force propor-
tional to the velocity of the mirror motion — a viscous force
with damping coefficient given by [17,21]

2K(Q)
My|1+(8/7)°—(Q/y)’°

rQ)= RNEE)

where M is the reduced mass of the two mirrors (see Fig. 15,
bottom panel).

The optical spring effect leads to a modified resonant fre-
quency and quality factor of the optomechanically coupled
system, given by

Ko/M
= 1*‘(()6/3/7’)27 (36)
_ 2\ 7
Ot = (1+(6/y) ) o (37)

Because the cavity response lags the motion of the mir-
rors, a restoring spring constant implies a negative damping.
We see that when both optical forces dominate their mechan-
ical counterparts, the system can become unstable (note that

Q. 1s negative). The optical spring resonance can be stabi-
lized either with electronic feedback [21], or with a second
optical field that responds on different time scales [11].

5.2. Opto-mechanics and signal
recycling interferometers

When a signal-recycling mirror is placed at the antisymmet-
ric port of the Michelson Interferometer (see SM in Fig. 3),
the differential optical mode may be detuned from reso-
nance. This detuning, together with increased optical power
(several hundred kilowatts in the arm cavity), makes the
optical spring an important effect in such interferometers.
Depending on the sign of detuning, the optical spring can
move the 1 Hz mechanical resonance of the pendulum up to
a few tens of Hertz. This is the origin of the low frequency
peaks shown in Fig. 5 [16,51]. The power dependent stiff-
ness of the optical spring is clearly evident in the shift of
the opto-mechanical resonance to higher frequency when
the laser power is increased. As mentioned in the previous
section, this resonance is unstable due to anti-damping and
must be controlled either via electronic or optical feedback.
Alternatively, for the opposite sign of detuning, an instability
will develop on a similar time scale.

Figure 16 shows sensitivity curves as the signal recy-
cling cavity is detuned away from the carrier resonance
(in the absence of all other noise sources). We see that the
sensitivity is improved around both the optical spring reso-
nance [16-25,51], and the pure optical resonance. Around
the optomechanical enhancement, the free-mass Standard
Quantum Limit is surpassed. Much of this improvement can
be most straightforwardly attributed to resonant enhance-
ment due to the spring constant.

0 0.2 0.5 2 5 10

1
2nQ /vy

Figure 16 (online color at: www.lpr-journal.org) Optomechanical
resonance enhancement with signal recycling. Black straight line
is the SQL locus. Red curve: no signal recycling; Blue, green
(dashed), and magenta (dash-dot) curves: varying detunings of
the signal recycling cavity.
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6. Quantum optics: Ponderomotive
squeezing and optical entanglement

Radiation-pressure-induced optical forces can be used to
generate squeezed states of the electromagnetic field [19,20,
43]. A simple picture of squeezing due to optomechanical
coupling can be understood as follows: amplitude fluctua-
tions of the optical field impinging on the low-mass mirrors
drive position fluctuations of the mirrors; as the light reflects
of the mirrors, these position fluctuations are imposed on
the phase of the optical field, thus correlating amplitude
and phase fluctuations of the light. These amplitude-phase
correlations lead to squeezing of the light. Mathematically,
this effect is contained in Egs. (26) and (27).

However, upon a more detailed consideration, from the
frequency dependence of ., it is evident that the squeezing
factor and squeezing phase generated this way are highly
frequency dependent, and not easily compatible with sen-
sitivity enhancement in gravitational-wave detectors. One
way of getting around this is to couple the mirror position
degree of freedom to an optical spring, which makes the
squeezing factor and squeezing angle constant below the
optomechanical resonance [19,20]. The fluctuations in the
cavity length due to external forces (such as seismic or ther-
mal noise) are also greatly reduced due to the optical spring.
It is this suppression factor, provided by the mechanically
lossless optical spring, that makes it possible to observe
quantum effects in the presence of classical noise that is
much higher than the free-mass SQL.

Entanglement is an intriguing property of quantum sys-
tems where if the joint state of a two-state system is such
that the state of each subsystem can be separately known,
the joint state is separable. If, however, the joint state is a
quantum superposition of (separable) states, and the two
constituent states cannot be independently identified, the
system is entangled. Prospects for producing and observ-
ing entanglement in macroscopic mechanical systems are
promising [52-57]. If more than one carrier field is injected
into the interferometer of Corbitt et al. [19,20], sidebands
around the outgoing carrier fields are entangled, since all of
them share the same modulation due to motion of the mir-
rors, which are, in turn, driven by each input sideband field.
In the presence of the optical spring, the mechanical con-
nection between the mirrors and the environment no longer
dominates the dynamics, and the system is largely immune
to thermal noise. The system can exhibit entanglement that
is robust against classical noises. In fact, the entanglement
generally exists as long as squeezing is available, which
does not require going below the SQL [58].

7. Macroscopic quantum mechanics

If the total classical noise budget is below the SQL, the in-
terferometer will be able to prepare macroscopic test masses
into nearly quantum states, e. g., entangled states, and even
states with non-positive-definite Wigner functions. Such
tests can also be shown to be able to survive for a nontrivial
amount of time, and then be verified by quantum tomogra-

phy.

7.1. Preparation of mechanical quantum states
7.1.1. Steady quantum states

Damping associated with the optical spring does not bring
the usual thermal noise, because the heat reservoir here
has a very low effective temperature. This has proven to
be an efficient means of cooling the translational motion
degree of freedom of macroscopic test masses, some times
referred to as “cold damping” [7,8, 10-12, 14]. Another type
of cold damping is by measuring the motion of the test mass
through the out-going optical field, and then use feedback
control to suppress its motion.
In both types of cold damping, in the classical regime,
this can be written as
Ty O

T Qo

where the temperature, or thermal occupation number, is
traded off against the quality factor of the mechanical oscil-
lator. In the quantum regime, even in absence of classical
noise, these types of damping each has its constraint. For
radiation-pressure cooling alone, one needs the “resolved
side-band limit”, in which detuning of the optical cavity
must be much larger than its bandwidth, while in the feed-
back cooling regime, measurement-induced decoherence
must be appropriately avoided.

For mirrors suspended as pendulums, damping alone
cannot be used to bring them into the quantum regime, due
to the usually high levels of noise near pendulum resonances.
For these objects, optical cooling and trapping is necessary.
Optical cooling and trapping is achieved by a double optical
spring, where one detuned optical field predominantly pro-
vides a restoring force, while another field with the opposite
detuning mostly provides optical damping [11,27]. The final
effective occupation number will be

Ter — Qetr Q0

To Qo Qe

where kg and 7 are the Boltzmann and Planck constants, re-
spectively, T.f is the temperature, and Q. is the frequency
of the oscillation mode. This allows a further suppression
factor of (Qefr/Q0)?. This technique has lead to the cool-
ing of a macroscopic 2.5 kg effective mass (the differential
translational mode of four 10 kg test masses) in the LIGO
detector in Hanford, where an occupation of ~ 200 has
been achieved [59].

(38)

N = kp Tefr ’
1 Qefp

(39)

7.1.2. State preparation vs. state collapse

Outgoing light from the optomechanical system usually con-
tains information about the test mass, which means: (i) test
mass quantum state is mixed with the state of light, and will
not be pure, (ii) measurement of out-going light can project
the test mass into pure states. A rule of thumb is that if the
classical noise limits are below the free-mass SQL, then
preparation of nearly pure quantum states are possible via
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state collapse [60,61]. The state prepared this way is not
deterministic: depending on the measurement result, the test
mass is projected into a different state. However, we can
know this state, if noise budgets are known, and the system
is a stable linear system, which will gradually forget its
initial state, and with final state only determined by the mea-
surement result and the noise budget. The formalism here
have also been used to make connections to optimal control,
and elaborate limits of feedback and radiation-pressure cool-
ing [62].

7.1.3. Mechanical entanglement

Simply being nearly pure does not offer much insight into
quantum mechanics. In linear systems driven by Gaussian
optical states and classical noise, mirror states we prepare
are going to be Gaussian. Nevertheless, interesting states
can already be obtained, e. g., quantum entanglement.

The concept of entanglement originated from a gedanken-
experiment by Einstein, Podolsky and Rosen (EPR) [63].
This experiment was set up to illustrate two interconnected
and nonintuitive features of quantum mechanics — so non-
intuitive that EPR take them as evidence that quantum me-
chanics is incomplete as a law of physics. The combination
of these two features is called entanglement, and has been
accepted as the defining feature of quantum mechanics.

The first feature is that, two quantum systems can be
more similar than each of them can be specified individually.
For example, for each of the two systems, we always have
Heisenberg Uncertainty relation among the accuracies to
which position and momentum can be described,

Ox1-0p1 >h/2, Oxy-8py>Hh/2 (40)
but we are nevertheless allowed to have
6<x‘x2>-6<”‘+p2> <h/2 1)
V2 2

which indicates a much higher level of correlation. The
second feature is that this higher level of correlation can
allow us, through making a quantum measurement, to in-
fluence the quantum state of an object which is at a space-
like separation, and therefore out of causal contact, from
the measurement.

Optomechanical experiments with classical noise bud-
gets below the free-mass SQL can also be used to gener-
ate entanglement among mechanical objects, as described
in [60]. The idea is actually very much analogous to the
original gedankenexperiment of EPR, in which two me-
chanical objects, well isolated from the environment, have
their common and differential modes measured with differ-
ent quantum-limited (i. e., classical noise below the SQL)
schemes (e. g., in terms of signal recycling gain, readout
quadrature, and input squeezing), in such a way that the
differential mechanical mode is squeezed in position, and
common mechanical mode squeezed in momentum — there-
fore realizing approximately an EPR state.

7.2. Verification of mechanical quantum states
7.2.1. Wigner function

In order to really demonstrate quantum mechanics, we must
have the capability to measure the quantum state of the
mechanical oscillator — more precisely, its density matrix.
This can only be done if we repeatedly prepare the oscillator
in the same state, and measure statistical distributions of
linear combinations of position and momentum. If we know
the distribution of

p(t)

maom

Xe =3(t)cos & + sin§ (42)

for each £, this can be used to recover the Wigner function
of the state, which in turn can yield the density matrix,
through

x+x

p(xax’) = /eip(X7XI)/2W <2p> dp (43)

7.2.2. Back-action-evading measurement of X

Although the distribution for X () we require is at an in-
stantaneous value, measurement must be made over a non-
zero period of time, because: (i) we only measure position
directly, and therefore must allow some time to let the veloc-
ity distribution affect position distribution, and (ii) sensing
noise for a infinitesimal data duration is infinite. This re-
quires us to measure the position of the mirror continuously
for a time interval, and use our knowledge of the device’s
dynamics to convert our measurement result into a mea-
sured value for a particular X (¢). In addition, in order not
to impose additional noise at the Heisenberg Uncertainty
level, we need to design a different optimized scheme that
is adapted to each quadrature we measure, instead of obtain-
ing different quadrature information only through filtering
data from the same device differently. One crucial approach
to such an optimization is time-domain back-action eva-
sion, achieved through measuring a time-dependent output
light quadrature [64].

8. Where are we experimentally?

Over the last 20 years there have been many fixed mir-
ror “benchtop” experiments performed as proof-of-principle
demonstrations, or to develop and test control strategies.
Configurations tested include power recycling [65], signal
recycling [66], resonant sideband extraction [67], and signal
recycling with variable reflectivity mirrors [32]. The use of
squeezing to reduce shot noise has been verified at mega-
hertz frequencies for power-recycled interferometers [68],
for signal-recycled interferometers [69], for twin signal-
recycling [70], in Sagnac interferometers [71], and in a sus-
pended mirror signal recycled interferometer [72]. In [73] it
was successfully demonstrated that a detuned filter cavity
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at the antisymmetric port of the interferometer can com-
pensate for the dispersion of the detuned signal recycling
cavity. The frequency response of speed meter configura-
tions has been experimentally verified [75]. Power recycling
has been implemented in LIGO [76], Virgo and GEO600.
Signal recycling and RSE have been demonstrated on sus-
pended interferometers including GEO600, the Caltech 40m
prototype [22] and the Garching 30m prototype [77] inter-
ferometers.

We have seen that quantum optics can be used to modify
the sensitivity of GW detectors in two ways: (1) By manipu-
lating the quantum light states entering the interferometer
(squeezed states); or (2) By direct dynamical modification
of the internal quantum state via interaction with the me-
chanical system. To observe such effects requires the gener-
ation of highly squeezed states of light in the GW detection
band (between 10 Hz and 10kHz); the ability to manipulate
the measurement quadrature; and an interferometer whose
noise floor is limited by quantum radiation pressure noise
at low frequencies and shot noise at high frequencies. In
this section we will review progress in these areas. To date,
no experimental observation of quantum radiation pressure
noise or the standard quantum limit has been reported.

8.1. Generation of squeezed light

In the past seven years there has been tremendous progress
in the development of squeezed light sources suitable for
use in GW detectors [39] . Prior to 2004, squeezed light had
not be produced at Fourier frequencies in the GW detection
band below 10 kHz and the squeezing factors observed were
rather modest. Today we are close to the first implementa-
tion of this technique in a large scale GW detector.

Squeezing is produced by correlating pairs of quantum
noise sidebands via the interaction of an intense laser field
with a nonlinear medium [34]. One of the most success-
ful approaches for continuous wave squeezed light gen-
eration is optical parametric oscillation (OPO). Common
second-order nonlinear materials like MgO:LiNbO3 and
periodically poled potassium titanyl phosphate (PPKTP)
can be used to produce broadband squeezing at the carrier
wavelength of today’s gravitational wave (GW) detectors
(1064 nm). A schematic layout of an squeezed light gener-
ation is shown in Fig. 17. A continuous-wave second har-
monic light field (green light at 532 nm) is focussed into
the crystal which is placed inside a cavity [78]. Parametric
downconversion of green photons produces pairs of corre-
lated infra-red photons at 1064 nm. When operated below
threshold, a squeezed vacuum state is produced. The cavity
can be either singly [78] or doubly resonant [79], increasing
the parametric process. The squeezed states are detected by
a balanced homodyne detector (HD) in which they are over-
lapped with an optical local oscillator field on a 50%/50%
beam splitter. Note that for squeezed light injection into an
interferometer, the local oscillator may also be provided by
the weak laser field leaking out the antisymmetric port of
the interferometer.

Modecleaner

HD

L
To GWD

Ooro

Figure 17 (online color at: www.lpr-journal.org) Schematic lay-
out for squeezed light generation. Frequency double light from a
second harmonic generator phase locked to the main red beam, is
focussed into a nonlinear cavity to pump the OPO. The emerging
squeezed vacuum, shown as the dotted red line, is directed either
to a homodyne detector to measure the degree of squeezing or in-
jected into the dark port of the gravitational wave detector (GWD).
The main red beam is passed through a modecleaning cavity to
match the spatial mode with that of the squeezed field, before
being combined with the squeezed vacuum for the homodyne
readout or sent off to the interferometer.

A necessary requirement for the application of squeezed
states of light in GW detectors is the ability to generate
squeezed states at audio-band Fourier frequencies. The first
such demonstration was achieved in 2004 by McKenzie
et al. [80] where a broadband squeezed field down to a
few hundreds of Hertz was generated. Their breakthrough
came with the realization that the dominant noise at audio
frequencies that degrades squeezed light generation couples
via the coherent laser field that was used to control the length
of the squeezed light laser resonator and angle of squeezing.
They avoided the use of a coherent locking beam at the
signal frequency by using a technique known as quantum
noise locking [81], where the inherent phase dependence of
the generated squeezed state is used to provide the locking
signal. Careful attention must also be paid to avoid noise
coupling via scattered light.

In an improved experiment in 2007, Vahlbruch et al. [82,
83] observed squeezing down to 1 Hz. A highly stable co-
herent control scheme was demonstrated in [73,74]. It relies
on a coherent control field that is frequency shifted by sev-
eral MHz with respect to the squeezed field and that is
also parametically amplified by the squeezed light source
thereby giving a phase reference for the parametric process.
Scattered and frequency shifted photons were identified to
be a major noise source at low frequencies in previous and
current experiments with OPO squeezers. Figure 18 shows
the current best performance by a squeezer in the audio GW
detection [84].

Injection of squeezed states into the output signal port of
an interferometer leads to a sensitivity increase equivalent
to a laser power increase of exactly the same factor. Note,
that optical power (photon) loss (?) increases the value
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for the squeezed variance according to V| = Vi (1 — %) +12.
For future GW detectors the reduction of optical loss will
therefore be increasingly important.

8.2. Squeezed light enhanced
suspended interferometers

With suitable squeezers now becoming available, programs
have been put into place to demonstrate the experimental
compatibility of squeezing with low noise suspended inter-
ferometry. Goda et al. injected squeezed states into a proto-
type gravitational wave detector and showed that a system
consisting of a squeezed light input and an interferometer
with suspended test masses can be sufficiently controlled in
order to gain a nonclassical sensitivity improvement [72].
Whilst an important demonstration for establishing the com-
patibility of squeezing enhancement with suspended-mirror
interferometer dynamics, this experiment showed modest
squeezing enhancement at frequencies above the GW band
and in a low sensitivity instrument.

To fully develop a squeeze injection source that is suit-
able for long baseline GW detectors, experimental programs
to inject squeezing into one of the 4 km long interferometers
of LIGO and into GEO600 are underway. The LIGO experi-
ment will test squeezed state injection down to 100 Hz and
will deploy an OPO geometry which should be less sensitive
to back scattered light [79, 85].

8.3. Towards the SQL

To date, no optical experiment limited by quantum radiation
pressure noise on a “free mass” has been built necessar-
ily implying that the SQL has yet to be observed in such
optomechanical systems. There are a number of projects
underway at Massachussetts Institute of Technology, in the
USA; the National Astronomical Observatory Japan, the Al-
bert Einstein Institute, Hannover, Germany, and in Australia
at The Australian National University and the University of

Western Australia, using optomechanical systems spanning
several mass scales. The effort is driven by the desire to build
more and more sensitive detectors, to prove technologies for
future generation GW detectors, to produce ponderomotive
squeezing, and to achieve the goal of cooling macroscopic
mechanical systems to their quantum ground states.

Most of these experiments are predicated on a common
ingredient: an optical cavity comprising one large and easily
actuated mirror (for control) and a light mirror oscillator of
ultra high quality factor minimizing thermal noise, isolated
from vibrational forces sufficiently well that it responds
predominantly to radiation pressure forces. System parame-
ters are chosen such that thermal noise rolls off faster with
frequency than quantum radiation pressure noise, which
should enable the SQL to be observed in the 100 Hz to few
kHz band. Figure 19 shows the predicted noise budget for
a 10 m baseline SQL interferometer under construction at
the Albert Einstein Institute in Germany [86] . In principle,
the biggest impediment to reaching the SQL comes from
coating thermal noise [5]. In practice, attempts to operate
such optomechanical systems in the quantum regime have
been impeded by other noise sources such as thermal noise
from the attachment points of the suspended mirrors [87],
and instabilities such as torque instabilities [88].

In the absence of experimental systems dominated by
quantum radiation pressure noise, the physics behind the
quantum effects these systems seek to observe has been
tested using classical analogs [89], [90]. In such systems,
a cavity with a movable mirror is driven by amplitude and
phase modulated fields used to mimic quantum correlations.
For example, using the layout shown in Fig. 20, Mow-Lowry
et al. [90], imposed broadband amplitude (AM) and phase
modulation (PM) onto the carrier. The radiation pressure
force from the AM moved the mirror resulting in the con-
version of AM into PM. Adjusting the noise used to drive
one of the modulators provided a frequency independent
variable phase shift. Adjustment of this phase shift caused
the two modulation (noise) sources to add destructively as
shown in Fig. 21, mimicking beating the SQL. For details,
see [90].
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Figure 21 (online color at: www.lpr-journal.org)
Results from the experiment depicted in Fig. 20.
Traces (a) and (b) show the excess noise added
first through the amplitude modulator and sec-
ond through the frequency modulator. Trace (c)
shows the noise, originating from the two orthog-
onal quadratures, cancelling to improve the sig-
nal to noise ratio by approximately a factor of 10.
Trace (d) is the background noise, recorded with
no optical modulations added in the frequency
band shown. The spike, at 176 Hz, was a sig-
nal injected through the cavity PZT. Reproduced
from [90], Fig. 4.
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8.4. The optical spring and optical cooling

We have already established the central role of the opti-
cal spring in the optomechanical systems of GW detectors,
both for resonant enhancement of detector sensitivity, and
for quantum state preparation of the interferometer mirrors.
Preliminary evidence for observation of the optical spring
effect was first report by Dorsel et al. in 1983 [91]. The
first definitive observation of an optical spring mediated
resonance shift was reported by Sheard et al. in 2004 [18],
where a frequency shift of a few Hz was observed corre-
sponding to an optical spring stiffness of 150 N/m. Corbitt
et al. [92] demonstrated the optical spring effect using the
optomechanical system shown in Fig. 22. The 250 g input
mirror of a 0.9 m long cavity was suspended as a pendulum
with oscillation frequency of 1 Hz for the longitudinal mode.
The 1 g end mirror was suspended by two optical fibers 300
micron in diameter, giving a natural frequency 172 Hz for
its mechanical mode, with quality factor of 3200. In this
experiment, the radiation pressure force completely domi-
nated the mechanical forces on the 1 gram mirror shifting
its frequency to ~ 5 kHz (see Fig. 23). This frequency shift
corresponds to a stiffness of 2 x 10% N/m; the optical spring
provided greater stiffness than if the optical mode of the
cavity were replaced with a diamond rod of the same dimen-
sions. For details, see [92]. The optical spring effect in a
signal recycled interferometer was observed by Miyakawa
et al. [22] using the 40m prototype interferometer at Catech.

By modifying the delay between the radiation pressure
force and the mechanical response, the optical force can
be made viscous, enabling damping of the motion. Using

Frequency Length L~ - —
PDH 250 gram
e
sy s | %
AOM EOM
LASER %ﬂ O NE
FI HWP PBS PBS

Figure 22 Schematic of the experimental layout of the MIT optical
spring experiment [92]. Highly frequency- and intensity-stabilized
laser light is incident on a cavity where the 1 gram end mirror
is suspended as a pendulum. An acoustooptic modulator (AOM)
frequency-shifts about 10% of the light by one free spectral range
of the cavity. The two optical fields can be independently detuned
to create an optical spring and to provide optical damping. An elec-
trooptic modulator (EOM) applies phase modulation sidebands
used generate a Pound-Drever-Hall (PDH) signal for locking the
cavity to the laser frequency. Fl refers to a Faraday isolator. Re-
produced from [11], Fig. 1.

cavity optical delay and electronic feedback control, Corbitt
et al. [92] have cooled the pendular oscillation mode of a
gram scale oscillator from room temperature to 6.9 mK (see
Fig. 24). Recently, Wipf et al. [93] have cooled a gram-scale
oscillator to 0.8 mK, corresponding to 35000 phonon in
the oscillator mode. One of the great advantages of this
approach is that when the optical spring dominates the me-
chanical spring, the oscillator is decoupled from the thermal
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Figure 23 (online color at: www.Ipr-journal.org) Frequency response of the optomechanical oscillator of Fig. 22, as a function of
cavity detuning of a strong optical field, showing increasingly stronger optical springs, with the resonance shifted up to 5 kHz. A weaker
optical field detuned to the opposite side provided an optical damping force that stabilized the optical spring in curve (d), thus making
an all-optical trap for the 1 gram mirror. Measured transfer functions of displacement per force are shown as points, while the solid lines
are theoretical curves. The dashed line shows the response of the system with no optical spring. An unstable optical spring resonance
with varying damping and resonant frequency is produced when (a) 8, = 0.5y, 8, = 0; (b) 8, = 3¥, 8 = 0.5¥; (c) 6 = 37, 5c = 0;
and it is stabilized in (d) 8, = 3y, 8. = —0.3y; where &, is the carrier detuning, 8. is the sub-carrier detuning, and y is the resonant
linewidth. Reproduced from [11], Fig. 3.
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Figure 24 (online color at: www.lpr-journal.org) Optical cooling
data from the MIT experiment showing cooling of the peak to
6.9 mK. Reproduced from [11], Fig. 3.

environment and, therefore, decoherence times should be
much longer (see Sect. 7).

Mow-Lowry et al. [94] introduced the required delay
electronically via the feedback loop controlling the cavity
locking. They reported cooling from room temperature to
70 mK. Using a similar technique, but applied to electronic

feedback modification of the mechanical suspension “spring”

supporting the LIGO mirrors, Abbott et al. [59] reported
cooling the mechanical resonator to 1.4 uK, corresponding
to a mere 234 quanta in the longitudinal mode of a mechan-
ical oscillator with effective mass of 2.5 kg (see Sect. 7).

9. Summary

Laser interferometry has come a long way since Weiss [3]
and Forward [4] first proposed its use for GW detection. The
humble Michelson interferometer now forms the platform
for a host of concepts including power recycling, signal
recycling and resonant sideband extraction. Instruments are
being built with sensitivities limited by the quantum na-
ture of light spawning new ideas and concepts in quantum
metrology and quantum non demolition such as squeezing,
variational readouts and speed meters. The optical force
plays a central role in such systems leading to SQL beating
opto-mechanical resonances and the possibility of optical
cooling mechanical resonators to quantum ground states.
In this article we have reviewed the major ideas in laser
interferometry for gravitational wave detection and briefly
introduced the quantum formalism used to analyze such sys-
tems. We examined the connections with quantum optome-
chanics and macroscopic quantum mechanics. We brought
together the state-of-the-art as of 2010 in experimental veri-
fication and the quest to reach and then breach the SQL.
Future generation gravitational wave detectors are pre-
dicted to reach the SQL with 40 kg scale test masses. When
the SQL is reached this massive mechanical system will
exist in the ground state of the center of mass motion of
the optomechanical oscillator. Observation of quantum me-
chanical weirdness on truly massive human scales will be

within reach. Alternatively, new physics will have inter-
vened to mask the quantum from the classical world. Even
as these giant detectors set off a revolution in gravitational
wave astronomy, these exquisitely sensitive devices may
also revolutionize our understanding of quantum mechanics
on unprecedentedly large scales.
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