Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

A Statistical Model of Human Pose and Body Shape

MPG-Autoren
/persons/resource/persons44590

Hasler,  Nils
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45557

Stoll,  Carsten
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45577

Sunkel,  Martin
Computer Graphics, MPI for Informatics, Max Planck Society;
International Max Planck Research School, MPI for Informatics, Max Planck Society;

/persons/resource/persons45312

Rosenhahn,  Bodo
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45449

Seidel,  Hans-Peter       
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hasler, N., Stoll, C., Sunkel, M., Rosenhahn, B., & Seidel, H.-P. (2009). A Statistical Model of Human Pose and Body Shape. In Eurographics 2009 (pp. 337-346). Oxford, UK: Blackwell.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-1982-E
Zusammenfassung
Generation and animation of realistic humans is an essential part of many
projects in today’s media industry.
Especially, the games and special effects industry heavily depend on realistic
human animation. In this work a
unified model that describes both, human pose and body shape is introduced
which allows us to accurately model
muscle deformations not only as a function of pose but also dependent on the
physique of the subject. Coupled with
the model’s ability to generate arbitrary human body shapes, it severely
simplifies the generation of highly realistic
character animations. A learning based approach is trained on approximately 550
full body 3D laser scans taken
of 114 subjects. Scan registration is performed using a non-rigid deformation
technique. Then, a rotation invariant
encoding of the acquired exemplars permits the computation of a statistical
model that simultaneously encodes
pose and body shape. Finally, morphing or generating meshes according to
several constraints simultaneously
can be achieved by training semantically meaningful regressors.