Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Virtual Klingler Dissection: Putting Fibers into Context

MPG-Autoren
/persons/resource/persons45428

Schultz,  Thomas
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45353

Sauber,  Natascha
Computer Graphics, MPI for Informatics, Max Planck Society;

Anwander,  Alfred
Max Planck Society;

/persons/resource/persons45606

Theisel,  Holger
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45449

Seidel,  Hans-Peter       
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schultz, T., Sauber, N., Anwander, A., Theisel, H., & Seidel, H.-P. (2008). Virtual Klingler Dissection: Putting Fibers into Context. In A. Vilanova, A. Telea, G. Scheuermann, & T. Möller (Eds.), EuroVis'08: Proceedings of the 10th Joint Eurographics / IEEE - VGTC Conference on Visualization (pp. 1063-1070). Oxford, UK: Blackwell.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-1D5A-E
Zusammenfassung
Fiber tracking is a standard tool to estimate the course of major
white matter tracts from diffusion tensor magnetic resonance imaging
(DT-MRI) data. In this work, we aim at supporting the visual
analysis of classical streamlines from fiber tracking by integrating
context from anatomical data, acquired by a $T_1$-weighted MRI
measurement. To this end, we suggest a novel visualization metaphor,
which is based on data-driven deformation of geometry and has been
inspired by a technique for anatomical fiber preparation known as
Klingler dissection. We demonstrate that our method conveys the
relation between streamlines and surrounding anatomical features
more effectively than standard techniques like slice images and
direct volume rendering. The method works automatically, but its
GPU-based implementation allows for additional, intuitive
interaction.