Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Superresolution Reflectance Fields: Synthesizing Images for Intermediate Light Directions

MPG-Autoren
/persons/resource/persons44457

Fuchs,  Martin
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons44911

Lensch,  Hendrik P. A.
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons44144

Blanz,  Volker
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45449

Seidel,  Hans-Peter       
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Fuchs, M., Lensch, H. P. A., Blanz, V., & Seidel, H.-P. (2007). Superresolution Reflectance Fields: Synthesizing Images for Intermediate Light Directions. In D. Cohen-Or, & P. Slavík (Eds.), Eurographics 2007 (pp. 447-456). Oxford, UK: Blackwell.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-20DC-4
Zusammenfassung
Captured reflectance fields tend to provide a relatively coarse sampling of the
incident light directions. As a result, sharp illumination features, such as
highlights or shadow boundaries, are poorly reconstructed during relighting;
highlights are disconnected, and shadows show banding artefacts. In this paper,
we propose a novel
interpolation technique for 4D reflectance fields that reconstructs plausible
images even for non-observed light directions. Given a sparsely sampled
reflectance field, we can effectively synthesize images as they would have been
obtained from denser sampling. The processing pipeline consists of three steps:
(1) segmentation of regions where intermediate lighting cannot be obtained by
blending, (2) appropriate flow algorithms for highlights and shadows, plus (3)
a final reconstruction technique that uses image-based priors to faithfully
correct errors that
might be introduced by the segmentation or flow step. The algorithm reliably
reproduces scenes that contain specular highlights, interreflections, shadows
or caustics.