Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A Moving Mesh Approach to Stretch-minimizing Mesh Parameterization

MPG-Autoren
/persons/resource/persons45777

Yoshizawa,  Shin
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons44112

Belyaev,  Alexander
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45449

Seidel,  Hans-Peter       
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Yoshizawa, S., Belyaev, A., & Seidel, H.-P. (2005). A Moving Mesh Approach to Stretch-minimizing Mesh Parameterization. International Journal of Shape Modeling, 11(1), 25-42. doi:10.1142/S0218654305000712.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-2597-0
Zusammenfassung
We propose to use a moving mesh approach, a popular grid adaption
technique in computational mechanics, for fast generating
low-stretch mesh parameterizations. Given a triangle mesh approximating
a surface, we construct an initial parameterization of the mesh
and then improve the parameterization gradually. At each improvement step,
we optimize the parameterization generated at the previous step
by minimizing a weighted quadratic energy where the weights
are chosen in order to minimize the parameterization stretch.
This optimization procedure does not generate triangle
flips if the boundary of the parameter domain is a convex polygon.
Moreover already the first optimization step produces a high-quality mesh
parameterization. We compare our parameterization procedure with
several state-of-art mesh parameterization methods and demonstrate
its speed and high efficiency in parameterizing large and geometrically
complex models.