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Abstract

In this thesis the Strang-splitting technique is used was a classical Monte Carlo
simulation imitating quantum effects for the propagation of a hydrogen atom in
a monochromatic laser field using dipole approximation. The pulse was imposed
onto the atom for one full laser period. The treatment was done in 3 dimensions
and without any changes to the potentials used (e.g. no soft-core potential). The
main goal is to determine the ionisation probability in order to bring high inten-
sity laser to proper use in science and technology as measurements of the intensity
of high intensity laser are experimentally challenging. A comparison with a sym-
plectic implicit and an explicit 3rd order Runge-Kutta scheme was able to show the
advantages the Strang-splitting has over both Runge-Kutta schemes used. The com-
parison to a quantum mechanical numerical solution yielding upper bounds for the
ionisation probability using the program Qprop could only partially verify the clas-
sical results obtained. However the problems that occurred are known and are not
to be attributed to the Strang-splitting. In summary the magnificent performance
of the Strang-splitting caused by its proterties (symplecticity symmetry-preserving,
time-reversibility preservation and first order invariant preservation) could be veri-
fied and more research possibilities were proposed.

Zusammenfassung

In dieser Arbeit wurde die Strang-splitting Methode in einer klassischen Monte Car-
lo Simulation, welche Quantenverhalten für die Propagation eines Wasserstoffato-
ms in einem monochromatischen Laserfeld in Dipolnäherung imitiert, implemen-
tiert und getestet. Die Dauer des Laserpulses wurde zu einer vollen Laserperiode
gewählt. Die Behandlung des Problems wurde in 3 Dimension durchgeführt und
keine Vereinfachungen am Potential (wie z.B. ein soft-core Potential) wurden durch-
geführt. Die Hauptintention war dabei die Bestimmung der Ionisationswahrschein-
lichkeit, um zu erreichen, dass sehr intensitätsstarke Laser vernünftig in Wissen-
schaft and Technik verwandt wedren können, da die Bestimmung der Intensität
für Laser hoher Intensität experimentell sehr schwierig ist. Ein Verglich mit einem
symplektischen impliziten und einen expliziten Runge-Kutta Verfahren dritter Ord-
nung zeigt die gewaltigen Vorteile des Strang-splitting gegenüber beiden verwand-
ten Runge-Kutta Verfahren. Der Vergleich mit einer quantenmechanischen numeri-
sches Lösung, welche mit dem Programm Qprop errechnet wurde und einen obere
Schranke für die Ionisationswahrscheinlichkeit lieferte, konnte die Ergebnisse mit
der klassischen Näherung nicht vollständig verifizieren. Jedoch sind die aufgetre-
tenen Probleme bekannt und sind nicht mit dem Strang-splitting in Verbindung
zu bringen. Zusammengefasst konnte die sehr ermutigende Leistungsfähigkeit des
Strang-splittings, ausgelöst durch seine Eigenschaften (Symplektizität, Symmetrie-
erhaltung, Zeitumkehrbarkeitserhaltung and Erhaltung von Invarianten erster Ord-
nung), erfolgreich demonstriert werden und weitere Forschungsmöglichkeiten wur-
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den vorgeschlagen.
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1 Introduction

Quantum Mechanics is able to analytically predict all stationary states of the hy-
drogen atom along with its time evolution. Furthermore hydrogen-like atoms or
hydrogen-like ions (i.e. systems with a number Z of protons and one valence elec-
tron) are also described by that model. A sufficient induced rise in the energy of
the electron can result in its ionisation prompting the escape of the electron. The
most popular experimental technique applied to bring about this process is the radi-
ation exposure of the atom. Especially electromagnetic radiation emitted by lasers is
used. As described in [1] current lasers can reach intensities more than high enough
to reach ionisation for hydrogen atoms and hydrogen-like atoms/ions. Furthermore
[2] mentions that it is experimentally challenging to determine the intensity of these
ultra-strong lasers. An approach is to use the ionisation processes in the form of the
determination of the ionisation probability of multiply charged ions. Many experi-
mental techniques have been employed to achieve measurements. Full control of all
parameters of the lasers is needed to bring them to proper use in engineering and
science. Additionally the creation of fitting designs and a proper understanding of
all interactions demand a theoretical formalism enabling simulations of these sys-
tems to predict key features, such as the dependence of the ionisation probability
of such an atom/ion on the laser intensity, in advance computationally. Depending
on the intensity and the type of atom/ion considered non-relativistic or relativistic
quantum mechanics is the theoretical framework to be used on the current scientific
level of knowledge.

The Dirac and the Schrödinger equations are the two equations of which either one
can be chosen to be describe the interaction processes of atoms and ions in strong
laser fields(Relativistic or non-relativistic treatment). It is in general not possible to
find an analytic solution to most of these systems. Consequently an approximate
analytical or numerical solution of these system has to be performed to achieve the-
oretical physical insight. Rigorous quantum mechanical solutions derived from the
Schrödinger or the Dirac equation are very challenging with respect to computa-
tional resources needed. Thus there are a number of classical approaches(often sim-
ulating quantum mechanical behaviour) to treat these systems. Consequently this
thesis will deal with one of these techniques in form of the classical Monte Carlo
method as suggested by Abrines and Percival in [3, 4]. In this method the quantum
mechanical states are replaced by ensembles of non-interacting classical particles
mimicking quantum mechanical behaviour by considering averages over enormous
numbers of trajectories. The treatment will be limited to the non-relativistic case in
this thesis. It is hence important to stay within the non-relativistic regime.

This thesis’ goal is to refine answers to the two fundamental questions arising in
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that context:

• To what extent is the employed classical method describing the actual quan-
tum mechanical dynamics?

• What methods need to be employed to solve the classical equations of motion
numerically without numerical artefacts?

In [5] Heiko Bauke et al. have already performed some of this analysis in respect to a
comparison between quantum mechanical and classical ionisation of hydrogen-like
atoms in strong laser fields. However, the analysis was only conducted on one- and
two-dimensional model systems with soft-core potentials. Hence, this thesis will
expand these investigations to three-dimensional model systems using the dipole
approximation as presented for example in [6]. The numerical solution of the clas-
sical equations of motion in this context mainly involves a solution to the classical
Kepler problem. Standard integrators can produce numerical artefacts while solving
this problem especially for trajectories that involve a low angular momentum. These
artefacts are caused by high velocities that the considered orbiting particle encoun-
ters in trajectory points close to the core it is orbiting. Consequently this is resulting
in an inaccurate rendering of the trajectory by most standard integrators with un-
adaptive time-steps. Therefore an artificial gain in energy is induced culminating in
entirely different dynamics not caused by physical but by numerical effects.

As a remedy to these problems a method described in [7] by Balaraman and
Vrinceanu will be employed involving a (classical) split-operator method. The
Hamiltonian function resulting from a particle in a combined Coulomb (Kepler)
and a laser is split into the analytically solvable pure Kepler part and the analyti-
cally or numerically solvable laser field-induced external field. Therefore, the solu-
tion should not be influenced by the low angular momenta problem encountered
by many standard integrators as the Kepler problem is solved analytically in ev-
ery time-step. Moreover, the laser field may be replaced by any perturbation possi-
ble which does not necessarily need to be small compared to the Kepler part of the
problem. Depending on the perturbation an analytical solution of the perturbation
may also be possible in some cases. Accordingly the numerical artefacts should be
much lower for this method than with standard integrators such as the Runge-Kutta
method. This thesis will employ the Runge-Kutta method as a point of comparison
as it is a widespread scheme and hence data is available for comparison. Also the
performance of the schemes is well known. In order to achieve a suitable compari-
son and investigate the quality of the mimicking of quantum mechanical behaviour
as well as the numerical solution’s, two additional simulations involving the same
problems will be carried out. Following this train of thought a Runge-Kutta inte-
gration of the classical equations of motion will be executed as well as a quantum-
mechanical simulation using the program Qprop as presented in [8].
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2 Theoretical formalisms used to describe
ionisaiton processes in hydrogen-like
atoms or hydrogen-like ions

Initially the theoretical concepts that were utilised in this thesis will be briefly pre-
sented in the following. The first subsection will deal with the general description
of ionisation processes in classical mechanics and quantum mechanics. Secondly,
the process and schemes used to create ensembles of non-interacting particles and
to propagate them in laser fields will be characterised. Lastly, a brief introduction of
the numerical schemes and techniques used will be given to complete the picture.

2.1 Quantum mechanical treatment

2.1.1 Basic equations of motion

In non-relativistic quantum mechanics the Schrödinger equation is the equation gov-
erning the dynamics any system. Its time dependent form is

ih̄
∂

∂t
|ψ⟩ = Ĥ |ψ⟩ , (2.1)

where Ĥ is the Hamilton operator of the system and |ψ⟩ is the quantum state of the
system. This equation applies in all situations without exception. If only one particle
is considered the Hamiltonian is

Ĥ =
(p̂ − qÂ)2

2m
+ qΦ̂ , (2.2)

where p̂ is the momentum operator, Â is an arbitrary vector potential, Φ is an arbi-
trary scalar potential, m is the mass of the particle and q is the charge of the particle.
In the case that real space is used as a Hilbertspace the momentum operator is rep-
resented by −ih̄∇ and hence the Hamiltonian becomes

Ĥ =
(−ih̄∇− qA(r, t))2

2m
+ qΦ(r, t). (2.3)

2.1.2 Ionisation in strong Laser fields

A hydrogen-like atom or ion of charge Z is considered which consists of a nucleus of
charge Ze (e is the elemental charge) and a valence electron. The other electron shells
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are either non-existent or totally closed and hence are assumed to not contribute suf-
ficiently enough to the dynamics to be treated as well. If the pure atom is considered
one has a two particle Hamiltonian of the form

Ĥ = − h̄2

2me
∆e −

h̄2

2mnucleus
∆nucleus −

Ze2

4πϵ0|re − rnucleus|
. (2.4)

where ϵ0 is the dielectric constant of the vacuum (when vacuum is considered what
is assumed in this thesis) and r denotes the position vectors of the nucleus and the
valence electron respectively. Because the mass of an electron is 1836 times smaller
than the mass of a proton it can surely be assumed that the nucleus will almost be
stationary compared to the electron. Hence the Born-Oppenheimer approximation
is used for the nucleus in which it is considered to be stationary and is placed fixed
at the origin of the system. In the case of an hydrogen atom it is possible to use the
reduced mass to account for the actually non-fixed nucleus. However the contribu-
tion is small and it is more generally possible to treat problems. Consequently the
Hamiltonian transforms to

Ĥ = − h̄2

2me
∆e −

Ze2

4πϵ0|re|
. (2.5)

To model ionisations the external laser field needs to be included into the calculation.
This requires the inclusion of both the scalar potential Φ and the vector potential A
corresponding to the electromagnetic wave into the calculation as a potential and a
canonic momentum respectively resulting in the Hamiltonian

Ĥ =
(−ih̄∇+ eA(re, t))2

2me
− Ze2

4πϵ0|re|
− eϕ(re, t). (2.6)

However, in this thesis the so called dipole approximation will be employed. A good
summary of this method can be found in [6]. The method replaces the interaction of
the electromagnetic wave with the atom by the interaction of the atom with a scalar
potential at the origin ϕ = −E(0, t) · r where E(0, t) is the electromagnetic field of the
laser used. The vector potential is A = 0 in this approximation. Consequently effects
of the magnetic field are neglected as well as relativistic effects. As determined by
Reiss in [9] it is not necessary to lift the entirety of the dipole approximation for more
intense laser fields and/or shorter wavelengths. The result is that there is a regime
were only the magnetic field needs to be included, but not the relativistic effects
which begin in a regime with even higher intensity and/or shorter wavelength. The
Hamiltonian thus reduces to

Ĥ = − h̄2

2me
∆e −

Ze2

4πϵ0|re|
+ eE(0, t) · re . (2.7)

2.1.3 How can the ionisation probability be derived from a quantum
mechanical state?

It is not trivial to determine the ionisation probability of electron(s) in an atom or
ion even if its quantum mechanical state, a wavefunction in the case of a real space,

4



is known. Unlike in the classical case it is not valid, just to look at the total energy
of the particle. The wavefunction will always have some bound amount and will
hence yield a non-zero probability to find the electron in the atom as everywhere
else in the universe. Consequently the energy is not a reliable criterion as a high
ionisaiton probability might also be present when the particle still has a quantum
mechanically negative energy.

One possibility to get results is the determination of the probability not to find the
electron in any bound state

pion = 1 −
∞

∑
n=1

n−1

∑
l=0

l

∑
m=−l

⟨
ψ f

∣∣ ψnlm
⟩

, (2.8)

where |ψ f ⟩ is the final wavefunction and |ψnlm⟩ is a quantum state corresponding to
a bound state determined by its three quantum numbers. Of course it is not possible
to determine this infinite sum and a cut-off point must be chosen. The higher the
order of the cut that has to be done on the principal quantum number n, the more
precise the ionisation probability is determined.

Furthermore, it is possible to choose a different approach to the problem. One can
define a sphere with Radius R around the nucleus that establishes a border between
the atomic system and the outside world. Following this process the probability the
final wavefunction will yield outside of this sphere

poutside =
⟨
ψ f (r > R)

∣∣ ψ f (r > R)
⟩
= 1 −

⟨
ψ f (r ≤ R)

∣∣ ψ f (r ≤ R)
⟩

(2.9)

can be calculated and is an approximation to the ionisation probability pion. The
most serious problem of this scheme is the choice of R as quantum mechanics does
not give a proper border of an atom. One could choose a value higher than the ex-
pectation value of the absolute value of the position vector corresponding to some
excited state or take a point were the ground-state wavefunction or any bound state
wavefunction will yield a probability below a certain value. Hence, it becomes ev-
ident that many reasonable choices for R are possible that will, however, produce
different results.

2.2 Classical treatment

Abrines and Percival suggested and theoretically described a classical approxima-
tion to quantum mechanical ionisation processes in hydrogen or hydrogen-like atoms
in [4]. The general concept is the replacement of the quantum mechanical expecta-
tion values by the average of the corresponding classical property calculated from a
microcanonical ensemble of non-interacting classical particles.

The starting point of the classical description is the Hamiltonian function Hi(ri, pi, t)
representing the total energy of the ith particle in the system where ri is the gener-
alised space coordinate, pi is the corresponding canonical momentum and t is the
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time. The Hamiltonian formalism yields the equations of motion for the system

ṙi =
∂H
∂pi

, ṗi = −∂H
∂ri

(2.10)

from the Hamilton function. These equations exist for every particle (i.e. i times)
and the vectorial description is to be understood as equations of motion for every
component of the two canonical vectors ri and pi.

2.2.1 Concrete equations for an atom/ion in a strong laser field

The hydrogen-atom/hydrogen-like ion is characterised by the Keplerian two body
problem. Hence the convenient choice of a representation of the system via a cen-
ter of mass system using the reduced mass µ and the relative distance of the two
particles r is used. For additional convenience the center of the coordinate system is
chosen to be the center of mass in whose gravitational field the other mass is moving.

Again the dipole approximation will be used in order to model the effect of the
laser beam on the atom/ion. This results in the Hamilton function

H(r, p) =
p2

2µ
− α

|r| + eE(0, t) · r (2.11)

for the system considered. Hence the differential equations

ṙ =
1
µ

p ṗ = −α
r
|r|3 − eE (2.12)

govern the dynamics of the system. As an analytical solution is in general not possi-
ble numerical methods will be used.

2.2.2 Preparation of the initial state

Before the propagation the initial conditions for the classical particles in bound states
of the Kepler potential need to be determined. Abrines and Percival demand a
microcanonical ensemble from which the initial conditions are uniformly sampled
from. Additionally they mention that this induces the condition that the initial pa-
rameters determining the initial values need to be equally distributed on the 6 di-
mensional object in phase space which the microcanonical ensemble forms. A great
simplification for spherically symmetric problems such as the Kepler problem is
that in this case the Hamiltonian function is stationary and spherically symmetric
in phase space as well. In [4] Abrines and Percival in detail describe the resulting
energy and momentum distribution induced in a microcanonical ensemble. More-
over they deduce the uniform distribution of several quantities in this ensemble
in the case of a spherically symmetric potential thus proving that one can create a
microcanonical ensemble by uniformly distributing these parameters. Their efforts
give rise to an algorithm to sample initial conditions where a uniformly distributed
square of the angular momentum L2 is chosen as a basis.

The algorithm works as follows:
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• Sample a L2 uniformly from the interval (0, L2
max) where L2

max is the highest
possible value for the chosen energy

• Determine the point of closest approach (perihelion) for that L2

• Translate this state in time by an amount uniformly sampled from the interval
(0, T) where T is one period length corresponding to the E and L2

• Rotate the state in space via R(ϕ, θ, ψ) in the Euler angle succession where ϕ, θ
and ψ are sampled uniformly from the interval (0, 2π)

After running this algorithm all particles sampled form a valid microcanonical en-
semble which can be used to mimic quantum mechanical behaviour when a large
number of particles is sampled and averages of quantities are used to determine
properties.

2.3 Numerical methods employed

As an analytical solution is not possible for the problem considered, a range of nu-
merical methods will be employed and compared. Usually each method has certain
advantages and disadvantages depending on the problem to be solved. The main
goal is to have as little numerical artefacts as possible along with an accurate solution
with as little need of computational power as possible. Whereas some methods are
all-purpose methods, some are only applicable in certain cases and require certain
forms of the differential equations or e.g. the potentials involved. Hence the three
methods used in this thesis will be described in the following subsections.

2.3.1 Runge-Kutta method

This is one of the most famous numerical techniques used to solve ordinary differ-
ential equations of the form

dx(t)
dt

= f (x, t), x(t0) = x0, (2.13)

where x0 is the initial value of the (possibly vector valued) searched function x(t) as
presented in [10] which is the basis for this entire subsection. The general form of
any Runge-Kutta scheme is

ki(x, t) = f (x0 + h
s

∑
j=1

aijkj, t0 + cih) (2.14)

x(t + h) =x0 + h
s

∑
i=1

biki , (2.15)
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where h is the step size and aij, bi as well as ci are sets of real constants. The Hamil-
tonian equations of motion are obviously of this form and consequently the Runge-
Kutta method can be applied to the classical problem to be solved. Generally speak-
ing the Runge-Kutta method is a finite difference method acting iteratively on a grid
with certain combinations of forward and backward techniques. The estimation
of the error in each step is the name-giving feature of each Runge-Kutta method.
Within the Runge-Kutta method two approaches are known: The explicit schemes in-
volve the direct calculation of the constants ki in the system and the implicit scheme
contains an iterative calculation of those. [10]( page 192) derives a condition un-
der which Runge-Kutta methods are symplectic i.e. they conserve the phase space
volume. Furthermore, it becomes evident that only implicit Runge-Kutta schemes
can be symplectic. An implicit Runge-Kutta scheme known to be symplectic usu-
ally produce results excelling in long time stability and a more exact conservation
of energy because of the conservation of the phase space volume. In these cases
they are known to be advantageous over explicit schemes which can never be sym-
plectic. However the computational workload associated with them is known to be
a bit higher. Runge-Kutta integrators are known to suffer from numeric artefacts
originating in problems associated with high velocities of particles considered (e.g.
Keplerian orbits at points close to the force center). This induces an artificial gain
of energy. Moderately sized unadaptive time-steps are not able to properly render
the higher velocity and the particle will non-physically gain energy. Some implicit
Runge-Kutta integrators are not as prone to the problem because of their symplectic
nature. Adaptive time-steps also partially solve the problem. Regrettably implicit
Runge-Kutta schemes lose part of their symplectic nature when adaptive time-steps
are used. However, these problems do not contribute much to the error in most cases
(see e.g. [10] and [11]).

In the specific case of this thesis a symplectic implicit and an explicit 3rd order
Runge-Kutta scheme will be used i.e. the error in each step is of the order of O(h4)
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where h is the step size. The scheme coefficients and calculation formulas are

k1 = f
(

x +
5

36
hk1 +

2
9 −

√
15/15

hk2 +
5

36 −
√

15/24
hk3, t +

1
2 −

√
15/10

h
)

(2.16)

k2 = f
(

x +
5

36 +
√

15/24
hk1 +

2
9

hk2 + h
5

36 −
√

15/24
k3, t + 0.5h

)
(2.17)

k3 = f
(

x +
5

36 +
√

15/30
hk1 +

2
9 +

√
15/15

hk2 + h
5
36

k3, t +
1

2 +
√

15/10
h
)

(2.18)

x(t + h) =x(t) +
5

18
hk1 +

4
9

hk2 +
5
18

hk3 (2.19)

for the implicit scheme and
k1 =h f (x, t) (2.20)

k2 =h f
(

x +
k1

2
, t +

h
2

)
(2.21)

k3 =h f
(

x − k1 + 2k2, t +
h
2

)
(2.22)

x(t + h) =x(t) +
k1 + k3

6
+

2
3

k2 (2.23)

for the explicit scheme,

where t is the time where the current time the propagation is at. The coefficients
for the implicit scheme display the implicit nature of the scheme as the coefficients
to be calculated are needed in its calculation. Hence initial guesses and an iterative
solution are required.

2.3.2 Split-Operator

Split operator methods are widely employed in quantum mechanics and separate
the Hamilton operator in to two(or more) parts. In this thesis this technique will
be used on the Hamiltonian function of a classical system i.e. not the Hamilton
operator, but the Hamiltonian function is treated. This subsection is primarily based
on the outline presented in [7]. This description is inherently classical, however it is
easily possible to transfer some arguments to quantum mechanics. The basis of all
these schemes is the separability of the Hamiltonian function i.e.

H(r, p, t) = H0(r, p, t) + H1(r, p, t), (2.24)

where H(r, p, t) is the full scale Hamiltonian function of the system, H0(r, p, t) is
one (usually this is aspired to be analytically solvable) part of the separable sum of
the full scale Hamiltonian and H1(r, p, t) is another part of the separable sum. r, p
denote the general position and momentum coordinates and t denotes the time. In
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classical mechanics the time-evolution of a function z(r, p, t) defined over the phase
space is determined by its Poisson bracket with the Hamiltonian function

dz(r, p, t)
dt

= {z(r, p, t), H(x, p, t)} := DH , (2.25)

where {, } denotes the Poisson bracket. If a proper set of initial conditions z0 :=
z(r0, p0, t0) is given the trajectory of z(r, p, t) can be expressed as

z(r, p, t) = e∆tDH z0, (2.26)

where ∆t = t − t0. e∆tDH suggests a connection to the quantum mechanical time-
evolution operator of the Schrödinger picture. In case the mapping is known this
can be expressed analytically and, hence, the trajectory can be determined. In the
case of an separable Hamiltonian function the mapping can be expressed as

z = e∆t(DH0+DH1 )z0. (2.27)

As both DH0 and DH1 are not simple numbers it is not trivially possible to sepa-
rate the exponential function into a product of two exponential functions because
the commutator [DH0 , DH1 ] is not necessarily 0. The Baker-Campbell-Hausdorff for-
mula allows an expansion of the exponential function involving the commutators.
However, a simple decomposition is not in general suitable for numerical calcula-
tions. The easiest known integrator with numerically favourable properties is the so
called Strang-splitting which uses the approximation

e∆t(DH0+DH1 ) =e∆tDH1 /2e∆tDH0 e∆tDH1 /2 + O(∆t3) (2.28)

=e∆tDH0 /2e∆tDH1 e∆tDH0 /2 + O(∆t3) . (2.29)

The error of O(∆t3) can be derived from the expansion as shown in [7] and [10] page
86f. The factors of 1/2 represent coefficients originating from the expansion. Fur-
thermore an estimation of the integrals shown in [12] in equation (33.22) will lead
to a similar result. One can easily convince oneself that this is true in many other
pieces of literature or via a series expansion of the Strang-splitting. The expansion
assumes a small time step, hence care must be taken not to use step sizes too large.
Balaraman’s and Vrinceanu’s paper, in reference to [10], states the favourable prop-
erties of this integrator. It is known the be symplectic, symmetry preserving, time
reversibility preserving and first-oder invariant preserving. All these properties are
very favourable in long-time integration and should permit one to use it for the
propagation of hydrogenlike atoms in laser fields.

In the case of hydrogenlike atoms/ions in strong laser fields using the dipole ap-
proximation the splitting results in

DH0 =
p2

2m
− α

|r| called “Drift stage” as well as (2.30)

DH1 =eE(t) · r called “Kick stage” , (2.31)

10



where α is the Coulomb law constant( could also be any arbitrary 1/r potential con-
stant for different problems), e is the elementary charge and E(t) = Emax sin ωlt
(ωl angular frequency of monochromatic laser) is the time-dependent electrical field
strength of the laser used. In this thesis a field solely in the x-direction was consid-
ered to avoid calculation time becoming too large. This is a simple transformation
and does not change the physics. Furthermore first variant, shown in (2.29), of the
two equivalent ways of splitting is used as the Kepler stage is computationally more
expensive than the laser stage. There are many more higher order integrators of this
class which involve combinations of several Drift and Kick stages. [7] states sev-
eral of these and their expansion coefficients. Generally their error is smaller, but
not every combination is possible and not every valid combination has all desired
favourable properties.

In the special case of hydrogenlike atoms/ions in a strong laser field in dipole ap-
proximation we can always analytically solve both the Drift stage as well as the Kick
stage. Epsecially for the Keplerian part this is favourable as many standard inte-
grators such as the Runge-Kutta scheme tend to produce numercial artefacts when
solving this problem. This will furthermore boost the precision as no additional er-
rors from numerical methods used in the two stages will contribute to the total error.

2.3.3 Methods for drift and kick stages of the split operator scheme

The Split operator method demands a numerical or analytic solution to the “drift”
and “kick” stages. In the case considered here is an hydrogen atom in a laser po-
tential in dipole approximation. The classical Kepler problem consequently acts
as a drift and the scalar potential of a laser in dipole approximation acts as kick
stage. Hence both of them can be propagated analytically in this case. As easy as
it seems the drift stage actually needs an elaborate approach as it is the most time-
consuming part of the calculation as shown by Balaraman and Vrinceanu. To avoid
floating point calculations (for performance and precision reasons) and give an eas-
ier overview atomic units will be used thoroughly in this subsection.

Analytical solving method for the classical Kepler problem

The system is considered (as described before) in a center of mass system. The input
vector is the state vector containing the current (relative) positions and momenta of
the electron. The conserved quantities Energy E and the Runge-Lenz vector A (A in
this subsubsection describes the Runge-Lenz vector, not the vector potential) can be
kept (along with the angular momentum vector L of which the absolute value is con-
served) in the status vector to save calculation time. If they are not in the state vector
they will have to be computed at this point as an efficient algorithm to analytically
propagate the problem will make use of all conserved quantities. This is subsection
is based on the paper of Balaraman and Vrinceau along with own calculations for
the hyperbolic case. The parabolic case was treated as described in [13].
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In a first step the conserved quantities are calculated, if necessary, following the
equations

E0 =
p2

2µ
− α

|r| (2.32)

L =r × p (2.33)
A =p × L − µαer. (2.34)

Additionally the eccentricity given by ϵ = |A|
αµ is computed to determine the type of

classical Kepler orbit.

Orbit =


Circle, if ϵ = 0
Ellipsis, if ϵ < 1
Parabola, if ϵ = 1
Hyperbola, if ϵ > 1

(2.35)

These cases could also be divided by using the energy. As needed in all cases the

angular orbital frequency is calculated to ω =
(

2|E|
m

)3/2
1
α .

ϵ = 0 In the circle case the absolute value of the position and momentum vector are
constant. Hence the position and momentum vector are rotated ω∆t around
the angular momentum axis. This case is neccessary as the ellipsoid case in-
volves the eccentricity in a denominator and hence would produce singular-
ties.

ϵ ̸= 0 Because of the fact that they are needed and properly defined in all following
cases the semi-major axis a = α

2E , the direction of the pericenter e1 = A
ϵ and the

orbital plane perpendicular to it e2 = L×A
ϵ|L| are calculated.

0 < ϵ < 1 Initially here we need the eccentric elliptic anomaly of the initial position

u0 = arctan(1 + 2E,
√

−2E
µ r · L). In the following the transcendent Kepler’s

equation Kepler(ϵ, M) : u − ϵ sin u − M = 0 for the advanced time is solved
numerically for the later time i.e. Kepler(ϵ, u0 − ϵ sin u0 + ω∆t). As a normal
fixed point iteration involved problems Halley’s method, as presented in [14],
was used to numerically solve the equation. After that the positions and mo-
menta are updated via

r =a(cos u − ϵ)e1 + a
√

1 − ϵ2 sin ue2 (2.36)

p =−
√

αm
a

sin u
1 − ϵ cos u

e1 +

√
αµ − ϵ2

a
cos u

1 − ϵ cos u
e2. (2.37)

ϵ = 1 This is the parabolic case. As it was difficult to transfer the scheme used be-
fore, a scheme from a paper by Condurache and Martinui [13] was used. This
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paper uses a rescaled time τ(t). As we here update momentum and position
the v was replaced by p

µ , r0 etc. denotes the value of the quantity before the
time step ∆t is performed. Initially this value must be obtained from the equa-
tion

∆t = |r0|τ(t) +
τ2(t)

2µ
(r0 · p0) + α

τ3(t)
6µ

. (2.38)

Note that the paper incorrectly states 3 for the last coefficient. As iterative
techniques such as the fixed point methods are prone to not converge for third
order equations a technique to analytically solve third order equations from
[15] was used. After that the update was performed following

r =r0 + τ(t)|r0|
p0

µ
− A

2µ
(2.39)

p =
|r0|p0 − τ(t)A

|r| . (2.40)

ϵ > 1 This is the Hyperbolic case which can be seen as analogous to the elliptic case.
Most quantities initially calculated are involved in the equations. Likewise as
before the initial hyperbolic eccentric anomaly H0 = atanh( |r0|

ϵ|a| ) is calculated.
Then the hyperbolic Kepler’s equation HKepler(ϵ, M) : e sinh H − H − M = 0
is solved for the advanced time HKepler(ϵ, ϵ sinh H0 − H0 + ω∆t) using Hal-
ley’s method, as presented in [14], again. Following that step again the updates
are performed via

r =|a|(ϵ − cosh H)e1 + |a|
√

ϵ2 − 1 sinh He2 (2.41)

p =µ

√
αm
|a|

sinh H
ϵ cosh H − 1

e1 − µ

√
ϵ2 − 1

a
αµ

cosh H
ϵ cosh H − 1

e2. (2.42)

It is imaginable that this algorithm will use lots of computational power. The process
to find solutions to the transcendent equations along with the many calculations to
be performed in the updates result in the high running time. .

Analytical solving method for the dipole laser potential

This section is mostly based on Balaraman and Vrinceanus’s paper again.
If only the dipole approximation is used, only the momentum of the particle will

change. The potential for an electron is given by ϕ = E · r. Furthermore a monochro-
matic laser with orbital frequency ωl and peak electrical field strength Emax is as-
sumed. The change is given by

p − p0 =
∫ t0+∆t

t0

Fdt =
∫ t0+∆t

t0

Emax sin ωltdt = Emax(− cos ωl(t0 + ∆t) + cos ωl(t0).

(2.43)
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This process will be much less computationally expensive than the Drift stage. This
justifies the choice of the Strang-splitting method involving less Drift stages than
Kick stages.

2.3.4 Determination of ionisation probability in the classical Monte Carlo
method

In classical mechanics a particle orbiting a Keplerian potential is considered bound
as long as its total energy is below zero. Thus a single particle trajectory can be
considered ionised as soon as the total energy associated with it passes the border
of zero. Consequently this analysis has to be performed on the final energies of the
particle after propagation. As the Monte Carlo method employs ensembles of non-
interacting particles the partition of particles ionised has to be determined. Hence
the ionisation probability is given by

pion =
n(E > 0)

N
, (2.44)

where n(E > 0) is the number of particles from the current ensemble that have
positive energy after propagation and N is the total number of particles (samples) in
the current ensemble.

2.3.5 Qprop

Qprop is a program originally developed by Dieter Bauer as presented in [8] to nu-
merically solve a set of quantum mechanical problems. The set consists of prob-
lems with spherically symmetric unperturbed systems of atoms/ions later exposed
to laser fields in dipole approximation. This entire section will be heavily based on
[8]. Additionally the focus will primarily be set on the parts of the program used for
this thesis.

General description and numerical solution technique employed

As mentioned in the previous subsection (2.1) is the basic equation governing the
(non-relativistic) dynamics of all quantum mechanical problems. The Hamilton op-
erator for one particle is given by (2.2) if spin is ignored. For N particles the problem
becomes tremendously complicated as a 3N-dimensional Hilbertspace containing
an N-dimensional state (a wavefunction in real space). As even a numerical solu-
tion of this problem requires more computational effort than reasonably available,
several schemes have been developed( For example Hartree-Fock and Quantum
Monte Carlo methods). The additional complication is that (especially in atomic or
molecular systems) correlation interaction and Pauli exculsion principle need to be
obeyed. Qprop employs a scheme called Denstiy Function Theory (DFT) in its time-
depedent version (TDDFT). DFT uses the Hohenberg-Kohn theorem which states
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that the ground state of any electron system is uniquely defined by the electron den-
sity n(r, t) which is only dependent on the three space coordinates and time, NOT
on the number of particles N.

However in this thesis only the Hydrogen atom will be treated. Hence Density
Functional Theory is not needed to perform the required task. Qprop is also able
to solve the Time-Dependent Schrödinger equation via a imaginary and real time
propagation technique that will be summarised in the following.

Real time propagation algorithm

Qprop employs the technique of propagators in order to propagate states (quantum
mechanical states to be precise) in time. Equation (2.2) (implies the propagator

U(t1, t2) = T exp
(
−i

∫ t2

t1

H(τ)dτ

)
(2.45)

where T is the time-ordering operator. Hence in the special cases treated in Qprop
the wavefunctions evolve over time according to

ψ(r, t2) = U(t2, t1)ψ(r, t1) (2.46)

As usual in numerics the time-propagation is realised via consecutive small time step
evolution of size ∆t. Consequently a possible time-dependence in time ordering and
the possibly explicit time-dependence of the Hamiltonian can be ignored resulting
in the short-time propagator

U(t + ∆t, t) ≈ exp [−i∆tH(t + ∆t/2)] implying an evolution from t0 to t f (2.47)

as U(t f , t0) =
M−1

∏
i=0

U(ti + ∆t, ti) (2.48)

where ∆t = (t f − t0)/M (M is the total number of time steps performed). [8] con-
tains a detailed description of the approximations and techniques used to achieve
a diagonal and easily numerically treatable Hamiltonian including, e.g., the Crank-
Nicoloson approximation. As the detailed formalism is not the point of this thesis
Bauer’s and Korval’s paper is recommended to learn about that.

Imaginary time propagation

Qprop applies a propagation in imaginary time to determine the ground state of a
quantum system. Only a fairly little number of potentials allow it to determine an
analytical solution for the ground state of a system. Hence numerical techniques are
used. In many cases the fact is used that the ground state’s total energy is minimal
in the system. Qprop employs the propagator used for real time propagation with
the real time step replaced by an imaginary one i.e.

∆t → −i∆t . (2.49)
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As in [8] an outline why this technique determines the ground state will be given.
An unperturbed quantum mechanical system with bound states is considered.

Following the mathematics of Hilbert spaces an arbitrary quantum state |ψ⟩ (t) can
be expanded as

|ψ⟩ (t) = ∑
n

anexp(−iϵnt) |ψn⟩ , (2.50)

where an = ⟨ψn |ψ(t)⟩ is the expansion coefficient, ϵn is the energy of the n-th bound
state and exp(−iϵnt) is the time evolution operator exp(−iĤ) (where Ĥ is the Hamil-
tonian operator of the quantum system) in the Schrödinger picture inducing propa-
gation in time which has acted on |ψn⟩. Accordingly a propagation of one imaginary
time step results in the relation

|ψ⟩ (∆t) = ∑
n

anexp(−iϵn∆t) |ψn⟩ , (2.51)

where the initial time t0 is implied to be t0 = 0. The factor exp(−ϵn∆t) has an
extremal value for ϵn = ϵ0 i.e. the ground state energy. This implies that the ground
state decays slowest (if ϵ0 > 0) or blows up fastest (if ϵ0 < 0). As a result the
renormalised |ψ⟩ (t) converges to the ground state |ψ0⟩. Ergo any initial guess for a
state converges that way. Note that the initial guess, of course, has an influence on
the convergence rate, but [8] claims that the influence is not critical and that random
choices are sufficient.

Hamiltonian for single electron atoms in linearly polarised laser fields

The Hamiltonian for a hydrogenlike atom/ion in a laser field is given by

H(t) = −1
2

∆ + VI(t) (2.52)

where VI(r) is the interaction with the laser field in dipole approximation and V(r)
is the central potential of the atom. The dipole approximation term is given as

VI(t) = −A(t)
∂

∂z
+

A2

2
+ zE(t) (2.53)

where A is the vector potential (restricted to the z direction) and E(t) is the electric
field of the laser. Either length gauge (only third term) or velocity gauge (only first
two terms) can be used. Depending on the electric field amplitude, other parameters
and the expected ionisation regime Qprop chooses one of the two, as one of them is
always advantageous considering the computational cost needed. For example it is
advantageous to treat heavy ions in length gauge, whereas it is more advantageous
to treat higher-order above threshold ionisation in velocity gauge.
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3 Numerical experiments

This chapter contains the results of the numerical experiments performed with the
explicit and implicit Runge-Kutta schemes, the Split-Operator scheme as well as
Qprop. The system considered will be a hydrogen atom in a monochromatic laser
field in dipole approximation. It was aspired to achieve results for all schemes that
can be compared with each other to properly rate their performance. It was taken
care that the parameters used are in the regime where the dipole approximation and
non-relativistic treatment are still valid (Information in Reiss’ paper [9]). The ex-
act experiment parameters and modi operandi for the evaluation will be presented
in this chapter as well. Moreover initial comparisons will be performed and some
conclusions will be derived.

3.1 Remarks on programs used

The Split-Operator method was implemented in a self-written C++ program whose
source code can be provided on request. The Runge Kutta method uses a similar
main program and the same algorithms to determine the starting positions as to be
seen in its source code in the appendix. The Runge-Kutta integrators were taken
from the TADS library composed by Heiko Bauke (For contact information see the
paper [5]). The program Qprop was used as offered by Dieter Bauer (see [8]). More
precisely the hydrogen example code was used and modified to fit the needs of these
experiments.

3.2 Split-Operator vs. Runge-Kutta

3.2.1 Parameters for the classical system and integrators

This section contains the comparative numerical experiments on the hydrogen atom
in the monochromatic laser field using the dipole aproximation. The first numerical
experiments involved a test of the Split-Operator technique and an explicit and an
implicit 3rd order Runge-Kutta scheme. The initial energy was chosen to E0 = −0.5 a.u.
and 100 000 samples were used. The laser wavelength was initially chosen to λ =
3000 a.u. ≈ 158 nm. The pulse duration was chosen to one full laser period trun =
Tlaser. The peak electrical field strength Emax was varied bet ween 0.0 a.u. and 1.0 a.u
in 50 steps. This is approximately 16 times as large as the ionisation suppression
barrier. As this experiment also partially is a performance test, the step size was
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varied to see differences in the performances of the different schemes. The main in-
terest is the ionisation probability, hence only the energies were recorded and used
to determine the number of ionised particles i.e. trajectories which end at E > 0.
The simulation time was chosen to one laser period and the step size was varied
from ∆t = 0.19635 a.u. to ∆t = 0.000 766 99 a.u. . The odd values of the step sizes
originate from the fact that the step sizes are fractions of the unperturbed Kepler
problems period.

3.2.2 Comparison of the preservation of the microcanonical ensemble for
a deactivated laser field

In order to verify to what extend the numerical solutions preserve the microcanon-
ical distribution initially created with a deactivated laser field histogram plots of
the energy distributions of all numerical integrators for a deactivated laser field for
different step sizes are plotted. The main goal is to determine to what extend the
problem, that the Runge Kutta scheme has a unphysical gain of energy for low angu-
lar momenta trajectories when numerically solving the Kepler problem, influences
the energy distribution. As the Split-operator scheme analytically solves the Kepler
problem there should be only a spread of energies in the order of magnitude of the
precision used. Ideally a microcanonical ensemble only contains particle of a single
energy.

Figure 3.1 shows histogram results for the zero electric field amplitude and the
largest step size. It becomes evident that the implicit as well as the explicit Runge-
Kutta scheme show a large number of particles that have an enormous amount of
energy during the pure Kepler propagation as to be seen in figures 3.1b and 3.1c.
This must be related to numerical problems associated with low angular momenta
in Keplerian potentials as a gain of that much energy is not physically possible given
the parameters of the system. The implicit scheme has a slight advantage in compar-
ison to the explicit scheme the amounts of energy gained by numerics is is smaller.
Not the different scales in the figures. However, it becomes evident that Runge-Kutta
schemes cannot properly integrate the system at such a large step size.

This error destroys the microcanonical distribution and makes the results unfit to
imitate quantum mechanical behaviour. For this step size the Runge-Kutta schemes
are usable to integrate the system without and consequently also with the laser field
as the microcanonical ensemble is already disturbed by the artificial energy gain. In
contrast to that the Split-Operator scheme shows a reasonable spread of energies.
The energy mostly only differs in the order of magnitude of the precision used. This
is to be expected as the Split-Operator method simply analytically solves the Kepler
problem for E0 = 0 a.u. and this must be independent of step size within error preci-
sion. For a step size roughly 2000 times smaller than the initial size the picture is not
much different. The two Runge-Kutta schemes still have the numerical artefact of
artificial energy gain as to be seen in figures 3.2b and 3.2c. The smaller step size low-
ered the number of such particles epsecially for the implicit Runge-Kutta integration
of the Kepler propagation. The Strang-splitting performing the analytical solution

18



(a) Split Operator

(b) Runge-Kutta, Implicit

Figure 3.1: Histogram of final energies for Emax = 0 a.u. and step size ∆t =
0.196 35 a.u., wave length of laser λ = 3000 a.u., Initial energy E0 = −0.5 a.u., 100 000
samples, Simulation time trun = Tlaser, CComparison between the Strang-splitting
Split-Operator scheme and the implicit and explicit 3rd oder Runge-Kutta methods
on a hydrogen atom in a monochromatic laser field using dipole approximation;
Note the different scales of each diagram, especially the Split-Operator figure 3.1a
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(c) Runge-Kutta, Explicit

Figure 3.1: Histogram of final energies for Emax = 0 a.u. and step size ∆t =
0.196 35 a.u., wave length of laser λ = 3000 a.u., Initial energy E0 = −0.5 a.u., 100 000
samples, Simulation time trun = Tlaser, Comparison between the Strang-splitting
Split-Operator scheme and the implicit and explicit 3rd oder Runge-Kutta methods
on a hydrogen atom in a monochromatic laser field using dipole approximation;
Note the different scales of each diagram, especially the Split-Operator figure 3.1a
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of the Kepler problem in this case generally shows the same picture as before in the
form of a small spread of energies around the desired energy indicating the canon-
ical nature of the ensemble. Additionally to the just mentioned fact figure 3.2a also
displays that the spread has become a bit larger. Actually there should be no depen-
dence on step size for numerical solutions, nevertheless even an analytical solution
is still rendered in the limits of a computational system. Finite number representa-
tion and calculations with it (especially floating point calculations) always give rise
to round of errors and truncation errors. A larger number of time-steps will induce
this errors to accumulate. Figure 3.3 shows the same plots for the smallest step size
used in this experiment. Again the picture is generally the same as for the other time
steps. The smaller step size decreases the number of particles that artificially gain
energy for numerical solution using the implicit and explicit Runge-Kutta scheme
as to be seen in figures 3.3b and 3.3c. However, there is still a significant amount of
these particles both for the implicit and explicit Runge-Kutta solution. There is little
change for the Split-operator solution apart from a quite tiny increase of the spread
related to finite number representation as to be investigated in figure 3.3a.

In summary the analysis of the histograms reveals that both 3rd order Runge-
Kutta schemes fail to preserve the microcanonical ensemble without an activated
laser field. Theoretically the energy should stay constant for a pure Keplerian poten-
tial over long periods of time. As the running time of the simulation is a full laser
period the Runge-Kutta schemes develop the problematic artificial energy gain quite
profusely as large numbers of Keplerian periods and the problems with low angular
momenta trajectories are augmented each period which can for example be seen in
[11]. For the initial energy E0 = −0.5 a.u. and the laser wavelength λ = 3000 a.u.
the running time of the simulation is to trun ≈ 411 000 a.u. which is about 65 412
Keplerian orbits at the chosen energy. All this induces the artificial energy gain re-
sulting in artificial ionisation of particles that will interfere with the actual ionisation
probability. The Split-operator Strang-splitting produces very satisfactory results in
this context as the problem is solved analytically. This avoids the problems that ap-
peared with the Runge-Kutta schemes entirely as ionsation is really induced by the
Kick stage of the Strang-splitting of the Split-operator method modeling the laser
field. Consequently only the pure numerical errors estimated for the splitting will
be present in the numerical calculation for a switched on laser field.

3.2.3 Results with activated laser field

Now the laser field is switched on according to the parameters mentioned at the
start of this section. Initially the ionisation probability resulting for the three differ-
ent numerical methods is determined and compared for different step sizes where
the electrical field amplitude Emax was varied from 0 a.u. to 1.0 a.u.. Afterwards the
energy distribution for Emax = 0.5 a.u. was analysed followed by a running time
analysis of all schemes in order to test the computational performance of the pro-
grams and relate them to the quality of the results obtained.
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(a) Split Operator

(b) Runge-Kutta, Implicit

Figure 3.2: Histogram of final energies for Emax = 0 a.u. and step size ∆t =
0.003 067 96 a.u., wave length of laser λ = 3000 a.u., Initial energy E0 = −0.5 a.u.,
100 000 samples, Simulation time trun = Tlaser, Comparison between the Strang-
splitting Split-Operator scheme and the implicit and explicit 3rd oder Runge-Kutta
methods on a hydrogen atom in a monochromatic laser field using dipole approxi-
mation; Note the different scales of each diagram, especially the Split-Operator fig-
ure 3.2a22



(c) Runge-Kutta, Explicit

Figure 3.2: Histogram of final energies for Emax = 0 a.u. and step size ∆t =
0.003 067 96 a.u., wave length of laser λ = 3000 a.u., Initial energy E0 = −0.5 a.u.,
100 000 samples, Simulation time trun = Tlaser, Comparison between the Strang-
splitting Split-Operator scheme and the implicit and explicit 3rd oder Runge-Kutta
methods on a hydrogen atom in a monochromatic laser field using dipole approxi-
mation; Note the different scales of each diagram, especially the Split-Operator fig-
ure 3.2a
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(a) Split Operator

(b) Runge-Kutta, Implicit

Figure 3.3: Histogram of final energies for Emax = 0 a.u. and step size ∆t =
0.000 766 99 a.u., wave length of laser λ = 3000 a.u., Initial energy E0 = −0.5 a.u.,
100 000 samples, Simulation time trun = Tlaser, Comparison between the Strang-
splitting Split-Operator scheme and the implicit and explicit 3rd oder Runge-Kutta
methods on a hydrogen atom in a monochromatic laser field using dipole approxi-
mation; Note the different scales of each diagram, especially the Split-Operator fig-
ure 3.3a24



(c) Runge-Kutta, Explicit

Figure 3.3: Histogram of final energies for Emax = 0 a.u. and step size ∆t =
0.000 766 99 a.u., wave length of laser λ = 3000 a.u., Initial energy E0 = −0.5 a.u.,
100 000 samples, Simulation time trun = Tlaser, Comparison between the Strang-
splitting Split-Operator scheme and the implicit and explicit 3rd oder Runge-Kutta
methods on a hydrogen atom in a monochromatic laser field using dipole approxi-
mation; Note the different scales of each diagram, especially the Split-Operator fig-
ure 3.3a
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Comparison of ionisation probability for different schemes and step sizes

The classical ionisation probability for the two Runge-Kutta and the Split-operator
(Strang-splitting) schemes for an hydrogen atom in a laser field in dipole approxi-
mation is comparatively shown in 3.4.

Initially it can be said that the ionisation probability is increasing in a saturat-
ing curve to 1.0 for rising electrical field amplitude Emax, which is to be expected.
The saturation of the ionisation probability is reached at roughly Emax = 0.3 for all
numerical schemes with the exception of the Strang-splitting scheme’s rate for the
largest step size. The ionisation probability stays almost constant at roughly 0.8 and
there is only a small rise to be see. The cause is that the step size is too large for
the numerical approxiation performed to be valid hence this unphysical behaviour
is displayed. Moreover one can see the sharper rise of the ionised amount begins
at two times the barrier-suppression Emax = Z2/16 a.u. . All curves with the excep-
tion of the lowest step-size for the Split-operator curve for the largest step size are
in agreement with the theoretical expectation that ionisation only starts for electric
field strengths higher than the ionisaiton suppression barrier and saturates to 1.0 for
high electric field strengths. However it is to be observed that the curvature is differ-
ent for the three schemes and quantitative differences, especially in the regime lower
than the ionisation supression barrier, are to be seen. The qualitative shapes of the
graphs for reasonable step sizes are what is also to be seen in [5].

In figure 3.4a it is clearly observed that the Runge-Kutta integrators produce a
higher amount of ionised particles than the Split operator scheme as displayed in
figure 3.4b in the regime below two times the ionisation suppression barrier and to
a smaller extend in the regime before saturation. The region below Emax = 0.1 has
a high amount of particles ionised that is not physically possible in the laser field
considered. Additionally the ionisation probability shows a strong dependences on
the step size for the numerical solution of the hydrogen atom in the monochromatic
laser field in dipole approximation using the Runge-Kutta schemes. The step size
still clearly has visible influences on the ionisation probability even at very tiny step
sizes for the Runge-Kutta numerical schemes.

This is the result of the artificial ionisation caused by the low angular momenta
problem the Runge-Kutta schemes suffer from. Artificial energy gain is induced
by this phenomenon as discussed in more detail in the previous subsection. Hence
the higher ionsation rate is a numerical artefact and implies a clear disadvantage of
both Runge-Kutta schemes when solving the combined Kepler potential and laser
field propagation. The unphysical gain of energy trajectories with low angular mo-
mentum artificially ionises particles. Moreover, the advantages of the symplectic
implicit scheme over the non-symplectic explicit scheme are to be seen, as the ex-
plicit scheme suffers more from the numerical artefact of too high ionisation prob-
abilitys. Much computational effort in the form of smaller step sizes needs to be
made in order to achieve reliable results. Even for the smallest step size the Runge-
Kutta schemes both still produce these numerical artefacts for Emax lower than two
times the barrier-suppression field strength and to a lower extend before saturation
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(a)

(b)

Figure 3.4: Ionisation probability pion over peak of electrical field strength Emax, wave
length of laser λ = 3000 a.u., Initial energy E0 = −0.5 a.u., 100 000 samples, Simu-
lation time trun = Tlaser, all step sizes in atomic units, Comparison between the im-
plicit and explicit 3rd oder Runge-Kutta method and Strang-splitting Split-Operator
scheme on a hydrogen atom in a monochromatic laser field in dipole approximation;
Note incomplete saturation for the largest step size for the Split-Operator scheme
(step size too large) and the unphysically high ionisation probability for lower elec-
trical field strength for the Runge-Kutta method; Also note the slightly different size
of x-axis for both figures
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Figure 3.5: Ionisation probability pion over peak of electrical field strength Emax,
wave length of laser λ = 3000 a.u., Initial energy E0 = −0.5 a.u., 100 000 samples,
Simulation time trun = Tlaser, all step sizes in atomic units, Comparison between
the implicit and explicit 3rd oder Runge-Kutta method and Strang-splitting Split-
Operator scheme all three using the smallest step size used on a hydrogen atom in a
monochromatic laser field in dipole approximation
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as displayed in figure 3.5. As the curve comes closer to saturation the agreement
between the Runge-Kutta numerical classical ionisation probability and the Split-
operator classical ionisaiton rate increases. Both schemes agree at least in the num-
ber of particles ionised. The agreement regime is to be found for Emax > 0.1 a.u. for
the tiniest step size used.

For the Split-Operator determined ionisaiton rate the picture is quite different as
observed in figure 3.4b. The ionisation probability only begins rising after the pass-
ing of the two times ionisation barrier-suppression point. For the largest step size the
saturation seems to tend to roughly 0.8 instead of the expected 1.0, indicating that
the step size is just too large to properly render the numerical solution. The cause for
this behaviour is that the expansion used to derive the Split-operator scheme that the
time step is small is no longer valid for this step size. For all other chosen step sizes
the expected saturation happens. Moreover there is very little change in the curve
for smaller step sizes hence it can be deduced that a step- size of about 0.006 a.u. al-
ready gives reliable results. Hence the quality of the results using the Split-Operator
method is better despite the fact that the order of magnitude of the numerical trun-
cation error derived should be higher for the Split operator scheme. The two Runge-
Kutta schemes have both an truncation error of O(∆t4) whereas the Split opera-
tor scheme (Strang-splitting) theoretically has an truncation error of O(∆t3). The
low angular momentum problem and the fact that the Split operator method em-
ployed (Strang-splitting) is symplectic, preserves the symmetry, time-reversibility
and the first order invariants of the system is the cause for this difference. Apart
from the symplecticity of the implicit 3rd Runge-Kutta scheme employed here do
not have these properties. The explicit Runge-Kutta scheme used even is not sym-
plectic Hence these results support the conjecture that the Split-Operator integrator
can achieve better results than a Runge-Kutta (explicit or implicit) integrator using
the same step size. The main cause is that the numerical artefacts associated with
low angular momenta not accounted for in the truncation error in the Runge-Kutta
schemes.

In summary the Strang-splitting produces reasonable results for all step sizes but
the largest, where the approximation used for the numerical integration is no longer
valid. The Runge-Kutta schemes both always display too high ionisation probabili-
tys below the saturation regime of the ionsaiton rate which heavily depends on the
step size. Quite tiny step sizes are needed to achieve results that are at least partially
usable. That almost no ionisation occurs below two times the suppression-barrier is
not rendered properly even for quite tiny step sizes for the numerically determined
ionsation rates using the Runge-Kutta methods. Consequently the Strang-splitting
numerical approach yields much more satisfactory results than the 3rd order explicit
and implicit Runge-Kutta schemes of the ionsaiton rate for an hydrogen atom in a
monochromatic laser field in dipole approximation.
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(a) Split Operator (b) Runge-Kutta, Implicit

Figure 3.6: Histogram of final energies for Emax = 0 a.u. and step size ∆t =
0.000 766 99 a.u., wave length of laser λ = 3000 a.u., Initial energy E0 = −0.5 a.u.,
100 000 samples, Simulation time trun = Tlaser, Comparison between the implicit and
explicit 3rd oder Runge-Kutta method and Strang-splitting Split-Operator scheme
on a hydrogen atom in a monochromatic laser field in dipole approximation; Note
the different scales of each diagram
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(c) Runge-Kutta, Explicit

Figure 3.6: Energy histograms for E0 = −0.5 a.u., 100 000 samples,
∆t = 0.003 067 96 a.u., Emax = 0.510 204 a.u.

Analysis of energy distributions for activated laser field

The histograms to be seen in figure 3.6 show the energy spreads for an amplitude
roughly half of the chosen maximum of Emax = 1.0 a.u. for the smallest step size
used. In 3.6a it is to be seen that the Strang-splitting shows a spread of energies
shifted to the right because of the laser field induced energy gain. Apparently some
particles have gained some energy, however this is not dramatic. The particles
ionised (i.e. with E > 0 a.u.) mostly reside in a regime of 0.0 a.u. < E < 0.2 a.u.
implying no physically impossible gain of energy. The microcanonical nature is,
of course, not present as the laser field supplies additional energy to the system.
Apart from some spread around the initial energy this histogram shows what is to
be expected after the laser field with Emax = 0.5 a.u. exposure on an ensemble of
non-interacting particles in a keplerian potential. On the contrary the two Runge-
Kutta schemes display a unphysical distribution of energies for an electric field am-
plitude of Emax = 0.5 a.u. as to be investigated in 3.6b and3.6c. Almost no particles
are still in the regime around the initial energy E0 = −0.5 a.u. and most particles
have a positive energy. The energy distribution calculated via the implicit 3rd or-
der Runge-Kutta scheme to be investigated in 3.6b shows that some particles have
gained an unphysical amount of energy. Nevertheless the amount of unphysical
gain is not in an extremely high regime. The symplectic nature of the employed
3rd implicit Runge-Kutta scheme prevents a more serious unphysical augmentation
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of energy. Oppositely the energy distribution determined by the explicit 3rd order
Runge-Kutta scheme, presented in 3.6c, shows a tremendous increase in the energy
of some particles compared to 3.6b. Moreover the number of particles with an un-
physically high energy gain is larger than for the implicit scheme’s energy distribu-
tion.

3.2.4 Performance tests on a local computer

The running times are the other issue which will be investigated. For that pupose
the absolute running time was recorded on the local Computer supplied for this the-
sis by the MPIK. The Computer has an Intel c⃝CoreTMi7 2600 (4x 3.5 GHz, HTTM)
and 16GB RAM. The reason why no more abstract research is made because the
simple number of calls performed is not really something that can be compared be-
tween the two schemes as much different routines and algorithms are called and
performed that vary in their execution time (e.g. fixed point iterations). Addition-
ally measurement on the MPIK’s cluster would have been difficult as the node(s)
used always contain different processors and surrounding hardware. The results
are comparable as the program’s used have the same structure and were run on the
same Computer which had no major other programs running. To achieve compara-
ble results other programs were not run as much as possible. The parameters to test
the running time were mostly set to those in the above simulations for a moderate
step size. In 3.1 one can see that the explicit Runge-Kutta scheme has the shortest
running time. This development is what one expects as the scheme has much less
demanding computations than the other two. However one must think of the fact
that the results it produces are very poor compared the the implicit scheme’s and es-
pecially the Operator-Splitting scheme’s results as shown in the analysis of the ioni-
sation probability graphs for different step sizes. Even for much higher step sizes the
explicit scheme shows problems especially for lower electric field amplitudes. The
running time of the Split-Operator method has a running time roughly 38% higher
than the explicit scheme. Nevertheless its results are much better than the explicit
Runge-Kutta scheme’s as seen in the analysis. As already mentioned the low elec-
tric field amplitude regime is rendered especially well. Moreover even the step size
this test was run on is enough to achieve satisfactory results. The implicit scheme
has an, comparably, immensely higher running time than the two other schemes. Its
results are a bit better than the explicit scheme’s, however the running time is much
increasing quite profusely with a gain in precision not high enough. The problems
in the lower electric field amplitude regime remain and smaller step sizes are not the
remedy for it as the analysis shows.

In summary the Split-Operator scheme shows great advantages over the two stan-
dard Integrator schemes. The running time is a bit higher than the one of easy
schemes, but on the contrary the results are much better. Even if the analytic so-
lution of the Kepler problem is computationally demanding it is still much faster
than symplectic schemes of the easiest kind and is able to produce much better re-
sults when employed in the Split-Operator technique. The Split-Operator scheme
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Scheme tprogram

Split-Operator 56.6 s
RK3E 40.8 s
RK3I 169.8 s

Table 3.1: Runtime table E0 = −0.5 a.u., 100 000 samples, ∆t = 0.006 135 92 a.u.,
Emax = 0.5 a.u.

is advantageous concerning both running time and satisfactory results implying a
good performance of the scheme.

3.3 Simulations with Qprop

In order to be able to compare the results achieved with the classical schemes to
a quantum mechanical approach, simulations with Qprop written by Dieter Bauer
were performed. As it almost entirely matches what is wanted in order to carry out a
simulation with parameters comparable to the classical results, the hydrogen example
provided in Qprop was used in a modified version here. Main changes were:

• The pulse duration was chosen to one laser period Tlaser

• The range of intensities was chosen exactly like in the classical experiments

• A term presumably describing the extension of the core as not needed for pure
hydrogen

• The frequency of the laser was adjusted to a value corresponding to λ =
3000 a.u.

The rest of the parameters were left at the default values provided with the example.
As described in 2.1 the projection onto the ground state that was initially calculated
using imaginary time-propagation yielding pGround was conducted. Hence an upper
bound for the ionisation probability can be found from the probability to find the
electron in a state higher as the ground state given by 1 − pGround.

3.3.1 Comparative experiment

The probability that the electron is not found in the ground state after propagation
dependent on the amplitude of the electrical field determined in the Qrpop simu-
lations are to be seen in 3.7. The general picture of a saturation curve is present in
this figure as it was in the classical simulations. However the saturation regime is
only reached at a peak electrical field strength Emax of about 3 a.u. . Furthermore the
curve stays almost constant in the regime below Emax = 0.1 a.u. . The absolute value
in this regime is that high because even particles only excited to the first excited state
of the hydrogen atom are not accounted for in the projection giving this quite high
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Figure 3.7: Probability 1 − pground not to find the electron in the ground state over
peak of electrical field strength Emax, wave length of laser λ = 3000 a.u. Simulation
time trun = Tlaser, 1s hydrogen ground state as determined by Qprop via imagi-
nary time propagation as starting state, trun = Tlaser, Qprop simulation using the
hydrogen example for a hydrogen atom in a monochromatic laser field in dipole
approximation;
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upper bound. To include more states one could determine wavefunctions of some
lower excited state and subtract the projection of the final state onto them as well.
As this would only opend a way to confirm wether the the quantum mechanical so-
lution matches the classical Monte Carlo method in the region Emax < 0.1 this was
not done here.

In order to compare the obtained upper bound for the ionisation probability, as
determined by the Qprop simulations, to the classical Monte Carlo simulations all
curves were plotted into one diagram in figure 3.8. This is easily possible as curves
depend on Emax. This figure qualitatively shows that the upper bound is qualita-
tively matching the behaviour of an almost constant rate below Emax = 0.1 a.u..
The non-constant behaviour of the ionisation probability approximated by a nu-
merical integration using a 3rd order implicit Runge-Kutta scheme as well as an
explicit Runge-Kutta scheme in this regime is caused by artificial ionisation pro-
cesses induced by high velocities of core-close trajectories. This is a well known
problem for the all Runge-Kutta methods and was proven to exist for the problem
at hand discussed in more detail in the previous section. Yet another result of this
problem is the higher ionisation probability of the Runge-Kutta integrators in that
regime compared to the ionisation probability of almost zero for the numerical in-
tegration using a classical Split-operator technique known as Strang-splitting. Fig-
ure 3.8 implies a consistence between classical and quantum mechanical approach
in the regime where Emax ≤ 0.1 a.u. as the lower bound for the ionisaton rate is
not surpassed by the classical simulations. The Strang-splitting determined curve
matches the qualitative behaviour of the upper bound more closely implying advan-
tages of that scheme. In all schemes the curves display an qualitative increase from
Emax = 0.1 a.u. onwards. It becomes evident, however, that the Qprop-determined
upper bound for the ionisation probability increases much more slowly than the clas-
sically Monte Carlo determined ionisation probability which shows a sharp increase
starting at the electric field amplitude just discussed. This effect continues and the
classical Monte Carlo ionisation probability surpasses the quantum mechanical up-
per bound at roughly Emax = 0.1 a.u.. The classical ensemble determined ionisation
rates than proceeds to saturate comparably quickly whereas the Qprop determined
upper-bound for the ionisation probability saturates a lot slower and a lot later. This
cannot be considered matching as the ionisation rate should not be higher than the
upper-bound determined by Qprop if the Qprop simulation is considered to be cor-
rect. The lack of the inclusion of higher excited states in the projection cannot explain
the quantitative disagreement as the inclusion of more excited states into the projec-
tion will only give a better upper bound for the ionisation probability that canot be
larger than the ground stater determined one. The reason might be problems that
are known to occur in the classical Monte Carlo method for certain wavelengths of
the laser pulse that lead to a earlier saturation than the quantum mechanical solution
yields. It is highly likely that this is indeed what is observed here as the qualitative
shape of the upper-bound matches the Monte Carlo determined ionisation proba-
bility. The result of an analysis determining the probability the final wavefunction
yields outside of some sphere around the nucleus would most probably yield sim-
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Figure 3.8: Ionisation probability pion over peak of electrical field strength
Emax/Probability 1 − pground not to find the electron in the ground state over peak
of electrical field strength Emax, wave length of laser λ = 3000 a.u. Simulation time
trun = Tlaser, 1s hydrogen ground state as determined by Qprop via imaginary time
propagation as starting state, trun = Tlaser, Qprop simulation using the hydrogen ex-
ample for a hydrogen atom in a monochromatic laser field in dipole approximation;
For the classical simulations: Initial energy E0 = −0.5 a.u.and 100 000 samples, step
size ∆t = 0.000 766 99 a.u.

ilar results as the projection methods as the same wavefunction is used as a basis
and excited states always have a bigger probability density in regions far away from
the core than the ground state wavefunction yields resulting in similar results. Only
tests with many wavelengths and parameters will be able to entirely enlighten this
problem.

In summary the comparision to results obtained by pure quantum mechanics was
regrettably not able to fully confirm the data obtained by the classical Monte Carlo
simulation. For numeric integrations other than the splitting techniques the method
employed using microcanonical ensembles of non-interacting particles is known to
work. As the splitting technique is consistent with the Runge-Kutta integrations if a
proper analysis of numerical artifacts is consistent the new splitting scheme can be
considered a success.
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4 Summary

The simplest variant of a symplectic classical operator-splitting technique, namely
the Strang-splitting, was used to analyse the ionisation probability of a hydrogen
atom in a laser field in dipole approximation using a classical Monte Carlo method
simulating quantum mechanical behaviour. The points of comparison were a clas-
sical Monte Carlo simulation using an explicit and a symplectic implicit 3rd order
Runge-Kutta scheme as an integrator as well as the quantum mechanical propaga-
tion of the groundstate of the hydrogen atom in a laser field using techniques imple-
mented in the program qrop. As the considered regime is still in the non-relativistic
range relativistic effects were thoroughly ignored. Furthermore all parameters cho-
sen induce that the relativistic corrections would be that small that it is perfectly
possible to neglect them.

Generally the Strang-splitting showed many advantages over the Runge-Kutta in-
tegration when solving the problem of an hydrogen atom in a monochromatic laser
field in dipole approximation. The main advantage is the analytical solution of the
Kepler problem as many standard integrators have difficulties. The main problem
that appeared with the Runge-Kutta integration were problems concerning an arti-
ficial gain of energy not induced by physical effects, but by numerics resulting in
ionised particles even without an activated laser field. This results might seem un-
expected at first as the 3rd order explicit and implicit Runge-Kutta schemes have a
smaller truncation error than the employed Strang-splitting revealing the fact that
the truncation error is not the only error occurring in numerical integrations. The ar-
tificial energy gain is known to be caused by low angular momentum trajectories that
involve high velocities at the part of the trajectory close to the core. Constant step-
size Runge-Kutta schemes incorrectly render the velocity changes, resulting in a dif-
ferent trajectory corresponding to a higher total energy. Adaptive step size schemes
are one remedy to these problems as the step size can be lowered, if the parame-
ters are set right, whenever a high velocity region is entered. The performance of
these schemes is, for example, researched in [11]. This analysis proved the adap-
tive schemes as quite advantageous. However research would be needed on how
well these schemes deal with long term integration. A problem is that the symplec-
tic properties of most implicit Runge-Kutta schemes are lost whenever non-constant
step sizes are used (see e.g. [10]). This problem does not seem to be as severe as
assumed (see again e.g. [11]) however the long term integration may hence turn
out problematic as symplecticity is one of the major properties needed for stable
long-term integration. A remedy to this issue is the development of symplectic nu-
merical techniques that use adaptive time steps. One possibility is a rescaled time
where the step size stays constant within the rescaled time, but not in real time.
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An example that was tested in [11] is described in [16]. The scheme outlined there
turned out to be most advantageous compared to all other unadaptive and adaptive
Runge-Kutta schemes. Another advantage was that standard Runge-Kutta integra-
tors could be used to numerically solve the transformed equations of motion result-
ing from the rescaled time. A comparison of these methods with the here employed
splitting approach will be an interesting subject for investigation. As the splitting
techniques have more advantageous properties for long term integration one would
expect them to be superior in terms of precision and running time to the symplectic
adaptive schemes if comparable truncation error schemes are used. However, solid
proof for that is required to actually confirm this.

Symplectic integrators are suited to perform long-time integrations as they pre-
serve the phase space volume (i.e. the total energy) when applied to systems de-
scribed by Hamiltonian mechanics. Unphysical gain or losses in energy can hence
be prevented to a certain degree because of the symplectic phase space volume con-
servation. This fact is advantageous for long term integration as gains or losses in
energy caused by numerics tend to accumulate over time.

On the one hand it was found that the splitting techniques showed clear advan-
tages over the Runge-Kutta schemes when determining the ionisation probability
of a hydrogen atom in a monochromatic laser field described in dipole approxima-
tion. On the other hand it was not successfully possible to compare and match the
quantum mechanical description to the classical description that uses a Monte Carlo
method in order to imitate quantum mechanical behavior. One problem is that a
deeper analysis of the quantum mechanical data obtained from Qprop is needed.
More higher excited states should be included in the projections of the final wave-
function onto the bound states as here only the ground state was used. This would
yield better information in the saturation regime, because if the electron is not in
the ground state it is not necessarily ionised. Similarly a different analysis involving
the probability to find the electron outside a sphere around the hydrogen nucleus as
used in [5]. Another possibility is that the ionised parts of the wavefunction were not
able to propagate away from the nucleus because the simulation was ended right af-
ter the laser pulse was over. However the upper bound for the ionisation probability
obtained using Qprop shows a clear discrepancy in the regime above an amplitude
of the electric field above Emax = 0.1 where the lower bound is much lower than the
Monte Carlo determined one. Additionally the saturation of the curve only occurs
for much higher Emax as for the Monte Carlo data. The problem definitely is not
the splitting technique used to solve the classical equations of motion as the Monte
Carlo method employed here is known to work in most cases ever since Abrines
and Percival suggested it in [4]. Nevertheless it is known that exactly the problem
of later saturation and much higher electric fields needed for ionisation is known
to occur for certain laser wavelengths combined with other parameters. It must be
assumed that the choice of parameters must have induced this problem. To properly
verify the correspondence many more experiments involving different wavelengths
should be carried out in the future.

Despite the fact that a total verification of the approximate equivalence of quan-
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tum mechanics and the Monte Carlo approach to determine ionisation rates was not
possible the test of the splitting technique can be considered a success as the prob-
lems that occurred are known and the general use of the Monte Carlo method in
that way is already proven. Especially the fact that the Runge-Kutta methods are
known to properly render the system encourages that the splitting indeed works as
it is clearly visible that the splitting technique’s results match the Runge-Kutta de-
termined ones. Differences in the low electric field amplitude could easily traced
back to known issues of the Runge-Kutta schemes. The splitting method is able to
numerically solve the problem in 3D without using things like a soft-core potential.
One could also include the magnetic field into the splitting as the vector potential
would only give additions to the Kick stage of the problem. An analytic solution of
the Kick stage may become difficult then, however efficient numeric techniques or
even a splitting into more parts could be employed.

4.1 Outlook

Apart from the task emerged after the data analysis to retest the equivalence to the
quantum mechanical solutions the next step is to use higher order splitting meth-
ods than the Strang-splitting to obtain even more accurate results. Care should
be taken that the higher order schemes also have the advantageous properties of
the Strang-splitting (symplecticity symmetry-preserving, time-reversibility preser-
vation and first order invariant preservation). Another interesting point of research
is the inclusion of the magnetic field into the calculation to see how much more com-
putational effort this costs. A boosting of the performance of the inclusion might be
possible if splitting techniques involving more than one part are used. Again care
should be taken to always chose schemes that have the ideal properties for long term
integration. The inclusion of the magnetic field will widen the regions the splitting
technique can be applied to as more parts of FIG. 1. of [9] become accessible.

To widen the accessible area in the diagram even further relativistic effects need to
be taken into account. In order to achieve an analytical solution to the 3-dimensional
relativistic Kepler problem needs to be found and implemented. The paper [17] is
a starting point to develop such an algorithm. This would enable one to employ
a proper relativistic treatment. A scheme like that would be very advantageous as
numerical solutions obtained from the Dirac equation or the Klein-Gordon equation
tend to be a lot more demanding considering computational resources than the nu-
merical solutions of the Schrödinger equation. Moreover only the more demanding
relativistic calculations need to be performed and not a combination of quantum me-
chanical calculations mixed with relativistic ones. The implementation and deeper
analysis of a scheme like that would be very beneficial.
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