English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A multi-decadal meridional displacement of the Subpolar Front in the Newfoundland Basin

MPS-Authors
/persons/resource/persons37283

Nunez-Riboni,  I.
Director’s Research Group OES, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37167

Haak,  H.
The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37193

Jungclaus,  J. H.       
Director’s Research Group OES, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37245

Lohmann,  K.
Director’s Research Group OES, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

os-8-91-2012.pdf
(Publisher version), 38MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Nunez-Riboni, I., Bersch, M., Haak, H., Jungclaus, J. H., & Lohmann, K. (2012). A multi-decadal meridional displacement of the Subpolar Front in the Newfoundland Basin. Ocean Sciences, 8, 91-102. doi:10.5194/os-8-91-2012.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-4E95-6
Abstract
Observations since the 1950s show a multi-decadal cycle of a meridional displacement of the Subpolar Front (SPF) in the Newfoundland Basin (NFB) in the North Atlantic. The SPF displacement is associated with corresponding variations in the path of the North Atlantic Current. We use the ocean general circulation model MPIOM with enhanced horizontal and vertical resolutions and forced with NCEP/NCAR reanalysis data to study the relation of the SPF displacement to atmospheric forcing, intensities of the subpolar gyre (SPG) and Meridional Overturning Circulation (MOC), and Labrador Sea Water (LSW) volume. The simulations indicate that the SPF displacement is associated with a circulation anomaly between the SPG and the subtropical gyre (STG), an inter-gyre gyre with a multi-decadal time scale. A sensitivity experiment indicates that both wind stress curl (WSC) and heat fluxes (which match LSW changes) contribute to the circulation anomalies in the frontal region and to the SPF displacement. An anticyclonic inter-gyre gyre is related to negative WSC and LSW anomalies and to a SPF north of its climatological position, indicating an expanding STG. A cyclonic inter-gyre gyre is related to positive WSC and LSW anomalies and a SPF south of its climatological position, indicating an expanding SPG. Therefore, the mean latitudinal position of the SPF in the NFB (a "SPF index") could be an indicator of the amount of LSW in the inter-gyre region. Spreading of LSW anomalies intensifies the MOC, suggesting our SPF index as predictor of the MOC intensity at multi-decadal time scales. The meridional displacement of the SPF has a pronounced influence on the meridional heat transport, both on its gyre and overturning components.