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Abstract

Significant interest in nanotechnology, is stimulated by the fact that materials exhibit quali-
tative changes of properties when their dimensions approach ”finite-sizes”. Quantization of
electronic, optical and acoustic energies at the nanoscale provides novel functions, with inter-
ests spanning from electronics and photonics to biology. The present dissertation involves the
application of Brillouin light scattering (BLS) to quantify and utilize material displacements
for probing phononics and elastic properties of structured systems with dimensions compa-
rable to the wavelength of visible light. The interplay of wave propagation with materials
exhibiting spatial inhomogenities at sub-micron length scales provides information not only
about elastic properties but also about structural organization at those length scales. In addition
the vector nature of q allows, for addressing the directional dependence of thermomechanical
properties. To meet this goal, one-dimensional confined nanostructures and a biological sys-
tem possessing high hierarchical organization were investigated. These applications extend
the capabilities of BLS from a characterization tool for thin films to a method for unraveling
intriguing phononic properties in more complex systems.
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1. Introduction

Moving forward in the development of new and miniaturized components in the age of nan-
otechnology, polymers have played integral roles in advanced materials fabrication in which
feature sizes are equal to or much less than the wavelength of visible light. The emerging fields
of microelectronics and photonics are largely predicated on the ability to construct mechani-
cal, electrical and optical devices with sub-micrometer dimensions. Polymers are increasingly
finding specialized applications in which the structures on nanometer scales create novel or
improved materials properties. In fact, a recent explosion of nanotechnology has taken place
across materials science, spanning from biomedical to microelectronics and photonic applica-
tions. Significant challenges exist for understanding how polymers behave when confined to
dimensions near their own size. From a theoretical perspective, surface and interface effects
start to dominate bulk properties in high surface area nanostructures. Experimentally, it is
difficult to probe such quantities as glass transition temperature or mechanical moduli of such
microscopic features. New opportunities for engineering at the nanoscale arise from these
size-dependent optical, electronic, magnetic, or mechanical properties [1, 2].

Just as quantum confinement introduces novel properties in semiconductors and metals [3, 4],
material confinement can induce qualitative changes in small molecule and polymeric glass
formers. Many properties subject to so-called ”finite-size” and chain confinement effects have
been studied, from mass density and thermal expansion to surface dynamics [5, 6] and glass
transition temperature [7–10]. In most polymers, a characteristic length scale is the diameter of
a chain molecule, with typical random coil end-to-end radius in the range of ∼5-50 nm. Thus,
it is expected that thickness dependent behavior appears in structures as large as 50-100 nm.
Evidence for dimension dependent properties of amorphous polymers has been observed in
measurements of the glass transition temperature, T𝑔. Several research groups have reported
that for thin films T𝑔 can be significantly different from the corresponding bulk value [7]. In the
bulk, transport properties such as diffusion coefficient increases by several orders of magnitude
in the narrow range of temperature over which the material undergoes a transition from a glass
to a rubber [11, 12]. Similarly, mechanical properties such as the Young’s modulus decrease by
two to four orders of magnitude over this same temperature range.

Although the dimension dependence of T𝑔 is now fairly well documented, less is known
about the relaxation behavior and mechanical properties of polymers that are likely also di-
mension dependent [13–16]. The elastic moduli of amorphous polymeric glasses have tradi-
tionally been characterized at length scales at which the material is treated as a mechanically
homogeneous continuum. Atomic-level studies of metallic glasses or polycrystalline materials
have shown that such systems become spatially and mechanically heterogeneous at atomistic
length scales. In the particular case of glassy polymers however, the length scale at which
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1. Introduction

mechanical heterogeneities occur is not known. These findings are of interest in light of re-
cent experimental observations related to the existence of dynamic heterogeneities in glasses,
which are believed to arise at comparable length scales. The origin of dynamic heterogeneities
is not well understood, but it is plausible to expect them to be driven by heterogeneities of the
stress. It is therefore of great interest to determine whether local mechanical properties are
correlated with the rates of local molecular relaxation.

One-dimensionally confined nanostructures represent potential candidates for studying these
effects. The dramatically increased surface-to-volume ratio and the restriction on the chain
conformation in the film thickness direction are believed to influence the mobility of the
molecules and consequently lead to different viscoelastic properties of the thin film compared
to the bulk . Interactions between polymers and interfaces become more pronounced when
confinement takes place at length scales near polymer’s equilibrium dimensions. The concept
of local density is often comprised in studies of polymer’s heterogeneities at interfaces [17]

and based on that, the presence of thin layers of different density and thus different stiffness
localized at the boundaries of the film have been reported [18]. This spatial discontinuity near
the polymer interfaces could result in a stress gradient that introduces orientation variation in
the thickness of the film, thus leading to a directional dependence of the elastic constants.

It has been realized that the properties of a material depend not only on its dimension but
also on its composition. The control and improvement of the physical properties often in-
volves processes from the simple combination of homogeneous phases to the complex fab-
rication of intricate structural designs, resulting in systems with effective properties signifi-
cantly different from those corresponding to the constitutive blocks. In addition a wide range
of novel phenomena has been realized related. For example, composite materials with spe-
cially designed periodic variation of dielectric constant, or photonic crystals [19–28], offer the
possibility of complete control over light propagation. Soon after the birth of this emerging
field of light manipulation, theoretical work embarked on the propagation of acoustic waves
in structures with periodic variations of density and/ or sound velocities, these structures are
coined phononic crystals [29–33] by analogy with their optical counterparts. A major effort is
the search for phononic bandgaps that forbid the propagation of acoustic waves within certain
energy ranges. Phononic crystals could achieve the same level of control over elastic energy
as photonic crystals do on light and semiconductors on electrons.

Recently, self-assembly and lithography techniques made it possible to fabricate and con-
trol periodic structures at nanoscale comparable to wavelength of light. Hypersonic phononic
crystals that operate at gigahertz (GHz) frequency regions are extremely interesting since
they possess potential for various simultaneous controls of light and sound. In most cases,
acousto-optical techniques have been employed to investigate the phonon dispersion relations
of hypersonic phononic crystals. The first experimental observation of a hypersonic phononic
bandgap in three-dimensional colloidal composite materials has been reported by Cheng et
al [34]. Tuning the bandgap was possible by using different infiltrate materials and particle
sizes. Furthermore, Still et al. have discovered two hypersonic phononic handgaps of differ-
ent coexisting nature in three-dimensional colloidal films [35]. One is a Bragg gap occuring
at the edge of the first Brillouin zone and the other is a hybridization gap of crystalline and
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amorphous films, which originates from interaction of particle eigenmodes with the acoustic
effective-medium band.

New technologies are finding ways to mimic the amazing functionality of biological nanos-
tructures. The packaging and release mechanisms of the capsid shells of viruses, as well as
their monodispersity, shape, size and multivalent, site-specific surface functionality make them
attractive for a broad array of applications, ranging from targeted drug delivery and gene ther-
apy, to templates for complex photonic (figure 1a) and electronic materials [36–41]. Cylindrical
viruses offer controlled, uniform anisotropy, an elusive characteristic for nanoparticles and
have been utilized as templates for metallic and semi-conducting nanowires and as scaffolds
for nanoparticle arrays with potential as data storage devices [42], light-harvesting systems[43],
and batteries [44, 45]. Studies of photonics in nature reveal diverse examples of sub- wavelength
structural features that create observed colors through thin layered or multilayered interfer-
ence, diffraction, zero order diffraction, and light scattering. Iridescent beetles (figure 1b),
butterflies, certain sea organisms, and many birds derive their color from the interaction of
light with the structure or morphology.

As advances in nanotechnology lead to novel materials properties, a realm of nano-bio-
technology is emerging, in which emphasis is being placed on understanding the structure-
function complex relationships of biological nanostructures. For example the strength and
toughness (among other remarkable properties such as torsional shape memory) of spider
dragline silk (figure 1c) outperforms the best synthetic fibers, yet, little is known about its
structure. The proper use of biological systems for various applications depends on a number
of characteristics, including the mechanical properties of the building blocks and their assem-
blies. As a template for material synthesis, the mechanical properties ultimately determine the
structure stability and durability, thus define the useful process and performance window of
these biological systems. As with polymeric nanostructures, development of analytical meth-
ods is necessary for accurate testing of mechanical properties of biological structures at the
nanoscale.

Novel applications at the nanoscale require reliable characterization of materials properties,
for both basic understanding and technological advancement. At the fundamental level, the
variety of findings for size-dependent properties are leading to stimulating discussions, ex-
periments and theories regarding confinement, molecular dynamics and the glass transition
phenomenon. On the practical side, nanostructures fabricated in the semiconductor industry
demand a reliable technique to characterize mechanical properties, as pattern collapse con-
tinues to hinder miniaturization. New bio-inspired technologies are investigating the use of
biological macromolecules and complexes (e.g. viruses) for self assembling templates. These
are just few examples of the astounding growth in nanotechnology that rely on the ability to
characterize materials properties at the level of single assembly units. The number of vari-
ables affecting the behavior of materials at the nanoscale creates a strong demand for reliable
metrologies to quantify mechanical properties.

It is the scope of the present thesis to introduce Brillouin spectroscopy as a versatile method
to obtain a multitude of information from the mechanical properties of nanostructures to elas-
tic wave’s propagation in inhomogeneous medium. Brillouin light scattering yields inelastic

5



1. Introduction

(I) (II)

a b

c

5 mm

800 nm

Figure 1.1.: a, Larvae of the greater maxmoth, Galleria mellonella, uninfected (right) and in-
fected (left) with WIV. The close-packed structure of WIV in the cell cytoplasm
(inset) causes the highly infected larva to display slight discoloration and very-
faint iridescence. b, Photographs of the beetle C. gloriosa. (I) The bright green
color, with silver stripes as seen in unpolarized light or with a left circular po-
larizer. (II) The green color is mostly lost when seen with a right circular polar-
izer.c,Scanning electronmicrograph of a dragline. The thread’s unusual torsional
propertiesprevent an abseiling spider from swinging, a movement that might at-
tract predators(inset).

frequency shifts of light energy scattered from thermally excited acoustic phonons with sub-
micron wavelengths 𝜆. Structures with critical dimensions near or below 𝜆𝑝ℎ𝑜𝑛𝑜𝑛 will display
a rich Brillouin spectrum of modes related to the mechanical properties of the structure. Al-
though wavelengths lie in the range of 500 nm, visible light is used to probe materials with
sub-100 nm dimensions. BLS avoids the complications of and improves upon techniques
that require physical manipulation of nanoscale materials or the use of short wavelength ener-
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gies. Probing the interplay of elastic energy propagation with meso and nanoscopic structures
would contribute to deeper insights into the fundamental problem of elastic wave propagation
in inhomogeneous systems.

The thesis is organized in the following way: Chapter 2 introduces the theoretical back-
ground of elastic wave propagation and the physical principles of the BLS method. The ex-
perimental technique used in this work is then reviewed. This includes instrumentation and
settings for Brillouin light scattering from bulk and confined systems where boundaries are
present. Chapter 3 presents the moduli directional dependence studies in thin films. In Chapter
4, the utility of Brillouin spectroscopy is extended from thin films to periodic polymer stacks.
Propagating and localized vibrations are observed that provide a means to monitor modulus
of single nanolayers as a function of thickness and periodicity. Furthermore the phononics
of a hybrid multilayer film are studied and compared to the behavior of the previous system.
Finally, Chapter 5 describes the use of Brillouin light scattering to measure the mechanical
properties of a biomaterial and gain information about its complex structural organization.
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2. Methodology

2.1. Elastic Waves in Solids

2.1.1. Basic Concepts

The deformation of a solid body under external forces is followed by structural arrangements
which originate from internal stresses that tend to restore the body to equilibrium [46]. The total
internal force on a closed volume V can be represented by

∫
V FdV, with F being the force per

unit volume and FdV the force on a volume element dV in V. By applying Gauss’s divergence
theorem we have

∫
V

FdV =

∫
𝑆

n𝝈𝑑𝑆 (2.1)

Here F is expressed as the divergence of a second rank tensor , the stress tensor 𝝈

F = ∇𝝈 (2.2)

The stress tensor completely characterizes the state of stress of the solid body at any given
point P. That is, compeletely defines the forces per unit area acting on the faces of a cubic
volume element located at a ponit P within the solid body. The distance between any two
infinitesimally adjacent points in the undeformed and deformed state is given by

𝑑𝑙 =
√
𝑑𝑥2𝑖 (2.3)

𝑑𝑙
′
=

√
𝑑𝑥

′2
𝑖 (2.4)

and by introducing the displacement vector u

u = r − r
′

(2.5)

with r, r
′

the position vectors before and after the deformation,we obtain

9



2. Methodology

𝑑𝑙
′2 = 𝑑𝑙2 + 2

∂𝑢𝑖
∂𝑥𝑘

𝑑𝑥𝑖𝑑𝑥𝑘 +
∂𝑢𝑖
∂𝑥𝑘

∂𝑢𝑖
∂𝑥𝑙
𝑑𝑥𝑘𝑑𝑥𝑙 (2.6)

For small deformations the higher order terms in equation 2.6 can be ignored, therefore

𝑑𝑙
′2 = 𝑑𝑙2 + 2

∂𝑢𝑖
∂𝑥𝑘

𝑑𝑥𝑖𝑑𝑥𝑘 (2.7)

Defining a second-rank tensor u𝑖𝑘 as

u𝑖𝑘 =
1

2

(
∂𝑢𝑖
∂𝑥𝑘

+
∂𝑢𝑘
∂𝑥𝑖

)
(2.8)

equation 2.7 becomes

𝑑𝑙
′2 = 𝑑𝑙2 + 2u𝑖𝑘𝑑𝑥𝑖𝑑𝑥𝑘 (2.9)

The tensor u𝑖𝑘 is called the strain tensor and from its definition is self evident that is a
symmetrical tensor, that is u𝑖𝑘= u𝑘𝑖

For a perfectly elastic body, Hook’s law can be generalized to state that each component of
stress is linearly related to each component of strain, namely

𝜎𝑖𝑘 = 𝑐𝑖𝑘𝑙𝑚u𝑙𝑚 (2.10)

where c𝑖𝑘𝑙𝑚 is a fourth-rank tensor called the elastic constant tensor or stiffness tensor. In the
most general case, c𝑖𝑘𝑙𝑚 has 81 components. The number of independent components in the
stiffness tensor is determined by the material symmetry and for general anisotropic materials
is reduced to 21 , as a result of the following symmetry relations,

𝑐𝑖𝑘𝑙𝑚 = 𝑐𝑘𝑖𝑙𝑚 = 𝑐𝑖𝑘𝑚𝑙 = 𝑐𝑙𝑚𝑖𝑘 (2.11)

For systems that exhibit transverse isotropic symetry, i.e. the in and out of plane elastic
constants are different, the above number is further reduced to 5. In that case the stiffness
tensor has the form

10



2.1. Elastic Waves in Solids

c =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑐11 𝑐12 𝑐13 0 0 0
𝑐12 𝑐11 𝑐13 0 0 0
𝑐13 𝑐13 𝑐33 0 0 0
0 0 0 𝑐44 0 0
0 0 0 0 𝑐44 0
0 0 0 0 0 𝑐66

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.12)

where the tensor component c66 is given by

𝑐66 =
1

2
(𝑐11 − 𝑐12) (2.13)

For an isotropic body, symmetry considerations show that the stiffness matrix has the fol-
lowing form

c =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑐11 𝑐12 𝑐13 0 0 0
𝑐12 𝑐11 𝑐13 0 0 0
𝑐13 𝑐13 𝑐33 0 0 0
0 0 0 𝑐44 0 0
0 0 0 0 𝑐44 0
0 0 0 0 0 𝑐44

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.14)

In fact, there are only two independent elastic constants as the following relation holds

𝑐11 = 𝑐12 + 2𝑐44 (2.15)

Conventionally two elastic parameters, the so-called Lame
′

coefficients 𝜆 and 𝜇 are often
used to describe the elastic properties of an isotropic body. Their relation to the elastic con-
stants is

𝜆 = 𝑐11 𝑎𝑛𝑑 𝜇 = 𝑐44 (2.16)

𝜇 is also called shear modulus , denoted by G. Some other elastic parameters are also often
encountered, e.g., the bulk modulus, the Young’s modulus and the Poisson’s ratio.

Bulk modulus K is a measure of the response of the material’s change in size due to isotropic
pressure, ans related to the Lame

′
coefficients by

11



2. Methodology

K = 𝜆+
2

3
𝜇 (2.17)

Young’s modulus E, also known as tensile modulus or modulus of elasticity, is defined as
the ratio of stress to strain components in a uniaxial direction of mechanical elongation or
compression. In terms of the bulk and shear moduli is expressed as

E =
9KG

3K + G
(2.18)

Finally ,the ratio of the lateral strain to the longitudinal strain is called the Poisson’s ratio,

𝜎 = −𝑢22
𝑢11

=
𝜆

2(𝜆+ 𝜇)
(2.19)

2.1.2. Infinite Isotropic Body

The equation of motion for an elastic body can be obtained by equating the resultant force due
to the internal stresses to the product of acceleration and mass per unit volume. By referring
to Eq. 2.2, we have

∂𝜎𝑖𝑘
∂𝑥𝑘

= 𝜌
∂2𝑢𝑖
∂𝑡2

(2.20)

where 𝜌 is the density and u𝑖 is the displacement vector. For an infinite homogeneous and
isotropic medium, after applying Hook’s law and adopting the Lame′ coefficients representa-
tion, the equation of motion is found to have the following form

(𝜆+ 𝜇)∇(∇u)− 𝜇∇× (∇× u)− 𝜌∂2𝑡 u = 0 (2.21)

In the case of a harmonic elastic wave of angular frequency 𝜔, the displacement vector u
can be written as

u(r, 𝑡) = 𝑅𝑒
[
u(r)𝑒−𝑖𝜔𝑡

]
(2.22)

and Eq. 2.21 can be reduced to the following time-independent form

(𝜆+ 𝜇)∇(∇u)− 𝜇∇× (∇× u)− 𝜌𝜔2u = 0 (2.23)

12



2.1. Elastic Waves in Solids

a b

Figure 2.1.: Propagation of a longitudinal and b transverse elastic plane waves.

If the displacement vector u is expressed as the sum of two orthogonal vectors u= u𝑙 + u𝑡

such that

∇× u𝑙 = 0 and ∇u𝑡 = 0 (2.24)

Eq. 2.23 can be decomposed into two independent Helmholtz equations of motion

(∇2 + 𝑘2𝑙 )u𝑙 = 0 (2.25)

(∇2 + 𝑘2𝑡 )u𝑡 = 0 (2.26)

Here 𝑘𝑙= 𝜔𝑙/𝑐𝑙 and 𝑘𝑡= 𝜔𝑡/𝑐𝑙 are the wavenumbers of the longitudinal and transverse waves,
respectively. The solutions of these two equations represent two elastic waves which propagate
independently: the longitudinal wave with a phase velocity 𝑐𝑙 =

√
c11/𝜌 =

√
(𝜆+ 𝜇)/𝜌 ,

also called the longitudinal sound velocity; and 𝑐𝑡 =
√

c44/𝜌 =
√
𝜇/𝜌 the transverse or shear

wave with a phase velocity , also called the transverse or shear sound velocity.
For the longitudinal wave the particle displacement is in the direction of wave propagation,

while for the transverse one the particle displacement is perpendicular to the direction of
propagationas as shown in Fig.2.1 . The transverse wave has two possible polarizations which
are orthogonal to each other. Note also that the longitudinal wave involves changes in the
volume of the medium, i.e. dilatation or compression of a local volume element. On the other
hand, the transverse wave causes no volume change

2.1.3. Thin Layers

In the preceding discussion of the elastic wave propagation in an isotropic body, it was as-
sumed that the body is infinitely large so that the boundary effect can be ignored. However in
the case where the size of the specimen is comparable to the wavelength of the elastic wave,
the existence of the boundaries will have a substantial influence on the wave propagation and
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2. Methodology

Figure 2.2.: Coordinate system for elastic wave propagation in thin layers

hence cannot be neglected. Regarding the boundary effects, an important case of much the-
oretical and practical interest is wave propagation in supported thin layers. This section will
give a brief introduction to this subject.

Considering the following system consisting of a substrate and a thin layer on top as shown
in Fig.2.2, both the substrate and the layer are infinite in the directions parallel to their interface
and are treated as isotropic. It can be seen that the 𝑥3 = 0 plane is the interface between the
layer and the substrate while the plane 𝑥3 = ℎ is the free surface of the layer. To study elastic
waves in the thin supported layer, the wave equation 2.21 is still workable and has to be applied
to both the layer and the substrate. The major difference now is that the mechanical boundary
conditions must be taken into account. More explicitly, the continuity of the stress and the
strain at the interface (𝑥3 = 0) and the vanishing of the stress at the free surface (𝑥3 = ℎ )must
be satisfied, which leads to much more complicated wave propagation compared to the bulk.

It is easily appreciated from symmetry considerations that the waves of interest will be
”straight crested” in the sense that there are no variations of any of the displacement com-
ponents in a direction parallel to the free surface and perpendicular to the direction of prop-
agation. The direction of propagation will be taken as the 𝑥1 direction in Fig.2.2, thus the
disturbance has constant phase and amplitude for each component along any line parallel to
the 𝑥2 axis. However, the nature of the waves will be such that they decay with depth into the
substrate and in general become of negligible amplitude a few wavelengths below the inter-
face. In fact, this nature is in accordance with the assumption that the waves of interest are
surface or film excitations. Therefore one is seeking for straight-crested propagating waves of
the following form

𝑢𝑖 = 𝛼𝑗 exp(𝑖𝑘𝑏𝑥3) exp [𝑖𝑘𝑥1 − 𝑣𝑡)] (2.27)
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2.1. Elastic Waves in Solids

It will be seen below that b is in general complex and it gives, in this interpretation, the
variation with depth of the amplitude and phase of the partial waves measured on a ”plane
of constant phase”, namely, a plane perpendicular to 𝑥1. The 𝛼𝑗 (j=1, 2, 3) give the relative
amplitudes of the different components of each partial wave.

Substituting Eq.2.27 into Eq.2.21 results in the following relation between v, b and 𝛼 in the
isotropic substrate consideration

⎡
⎣Γ11 − 𝜌𝜈2 Γ12 Γ13

Γ12 Γ22 − 𝜌𝜈2 Γ23

Γ13 Γ23 Γ33 − 𝜌𝜈2

⎤
⎦
⎡
⎣𝛼1

𝛼2

𝛼3

⎤
⎦ = 0 (2.28)

where Γ11 = c44 b2 + c11, Γ12 = 0, Γ13 = (c11- c44)b, Γ22 = c44( b2 + 1), Γ23 = 0, Γ33 = c11
b2+ c44

In order to have nontrivial solutions, the determinant of the square matrix in Eq.2.28 must
be set equal to zero, which produces the secular equation of the form

∣∣Γ𝑟𝑠 − 𝛿𝑟𝑠𝜌𝜈2
∣∣ = 0 𝑟, 𝑠 = 1, 2, 3 (2.29)

The sagittal-plane displacements, 𝛼1 and 𝛼3 of Eq.2.27, are completely uncoupled in the
equations of motion from the transverse displacements, 𝛼2. Thus, Eq.2.29 separates into two
equations

(c44b
2 + c44 − 𝜌𝜈2)(c11b2 + c11 − 𝜌𝜈2) =0

c44b
2 + c44 − 𝜌𝜈2 =0

(2.30)

Similar equation as Eq.2.28 can be found for the displacement components in the isotropic
layer, involving layer material parameters referred to the same axes. In the final solution, all
the partial waves (Eq. 2.27) in the substrate and layer will have the same phase velocity. The
roots and corresponding eigenvectors for the two media are

I. For transverse motion in the substrate

𝑏(𝛼) = −𝑖 [1− (𝜈/𝜈𝑡
2)
]1/2

𝜶(𝛼) = [0, 1, 0] (2.31)

II. For transverse motion in the layer

𝑏(1) = +𝑖
[
1− (𝜈/𝜈𝑡)

2
]1/2

𝜶(1) = [0, 1, 0]

𝑏(2) = −𝑖 [1− (𝜈/𝜈𝑡)
2
]1/2

𝜶(2) = [0, 1, 0]
(2.32)
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2. Methodology

III. For sagittal motion in the layer

𝑏(5) = +𝑖
[
1− (𝜈/𝜈𝑡)

2
]1/2

𝜶(1) =
[
−b(5), 1, 0

]
𝑏(6) = +𝑖

[
1− (𝜈/𝜈𝑡)

2
]1/2

𝜶(2) =
[
0, 1, b(6)

]
𝑏(7) = −𝑖 [1− (𝜈/𝜈𝑡)

2
]1/2

𝜶(1) =
[
−b(7), 1, 0

]
𝑏(8) = −𝑖 [1− (𝜈/𝜈𝑡)

2
]1/2

𝜶(2) =
[
0, 1, b(8)

] (2.33)

IV. For sagittal motion in the substrate

𝑏(𝑐) = +𝑖
[
1− (𝜈/𝜈𝑡)

2
]1/2

𝜶(1) =
[
−b(𝑐), 1, 0

]
𝑏(𝑑) = −𝑖 [1− (𝜈/𝜈𝑡)

2
]1/2

𝜶(2) =
[
0, 1, b(𝑑)

] (2.34)

where 𝜈𝑡 = (c44/𝜌)1/2 and 𝜈𝑡 = (ĉ44/𝜌)1/2 are the transverse sound velocities for bulk
waves in the substrate and the layer, respectively, while 𝜈𝑙 = (c11/𝜌)1/2 and 𝜈𝑙 = (ĉ11/𝜌)1/2

are the corresponding bulk longitudinal sound velocities. Notice that for the substrate only
values of b lying in the lower half of the complex plane are retained, as the solutions desired
(Eq.2.27 ) are to represent surface waves.

Under the isotropic assumption, it can be easily shown that the boundary-condition equa-
tions also separate into two uncoupled sets, one set involving roots 𝛼, 1 and 2 and hence the
in-plane (x1x2-plane) displacement components only, and the second set involving the roots
5, 6, 7, 8, c, and d and thereby sagittal-plane displacements only. Thus for the isotropic case,
the final solutions for elastic wave propagation in supported thin layers are divided into two
categories:

I. Love modes
II. Lamb modes

Love modes have only in-plane displacements, in contrast, only sagittal-plane displace-
ments are involved in Lamb modes. Their displacements are schematically depicted in Fig.2.3.
It is seen that only Lamb modes can cause interface or surface corrugation, which is important
for the determination of Lamb modes on an opaque substrate by light scattering techniques
thus the following discussion will be restricted to Lamb modes, since it is the Lamb modes
that have been probed in this work.
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2.1. Elastic Waves in Solids

a

b

Figure 2.3.: Schematic show of the displacements of the two uncoupled surface modes. a,
Love modes. b, Lamb modes.

The mechanical boundary conditions for the sagittal-plane displacements lead to the fol-
lowing equation:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b(5) −1 −b(5) −1 −b(𝑐) 1

−1 −b(6) −1 b(6) 1 b(𝑑)

1 − b(5)2 2b(5) 1 − b(5)2 −2b(5) −𝑟(1 − b(𝑐)2) −2𝑟b(𝑑)

2b(5) −(1 − b(5)2) −2b(5) −(1 − b(5)2) −2𝑟b(𝑐) 𝑟(1 − b(𝑐)2)

(1 − b(5)2)𝑒(𝑖𝑘b(5)ℎ) 2b(6)𝑒(𝑖𝑘b(6)ℎ) (1 − b(5)2)𝑒(−𝑖𝑘b(5)ℎ) −2b(6)𝑒(−𝑖𝑘b(6)ℎ) 0 0

2b(5)𝑒(𝑖𝑘b(5)ℎ) −(1 − b(5)2)𝑒(𝑖𝑘b(6)ℎ) −2b(5)𝑒(−𝑖𝑘b(5)ℎ) −(1 − b(5)2)𝑒(−𝑖𝑘b(6)ℎ) 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

c5
c6
c7
c8
c𝑐
c𝑑

⎤
⎥⎥⎥⎥⎥⎦

= 0

(2.35)

Substituting Eq. 2.33 and Eq. 2.34 into Eq. 2.35 and equating the determinant of the square
matrix to zero, one actually defines an implicit function, 𝜈, which is a function of kh, the
product of the wavenumber of the surface wave and the film thickness. This relation 𝜈=𝜈(kh),
is often referred to as the dispersion relation.

First, a special case will be considered, that is, the substrate has a free surface, or equiva-
lently, the layer thickness h=0. In this instance, kh is always zero. By referring to Eq. 2.35
it can be easily seen that all the exponential terms in the square matrix will vanish and be re-
placed by 1. Consequently, the solution 𝜈 for a given set of elastic parameters of the substrate
is a constant, which represents a non-dispersive mode, the so-called Rayleigh mode. Love
modes at this time degenerate into the horizontally polarized bulk shear waves propagating
parallel to the substrate surface.

With the presence of a layer on top of the substrate surface, h ∕=0, and the phase velocities
then become kh dependent. We consider two cases:

I. Layer stiffens the substrate (𝜈𝑡 > 𝜈𝑡)
II. Layer loads the substrate ( 𝜈𝑡 < 𝜈𝑡))

When 𝜈𝑡 > 𝜈𝑡, the layer is said to ”stiffen” the substrate because the presence of the layer in-
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Figure 2.4.: Silicon layer on ZnO substrate, the stiffening case. ZnO: 𝜈𝑙=6000 m/s, 𝜈𝑡=2831
m/s, 𝜈𝑅=2649 m/s; silicon: 𝜈𝑙=8945 m/s, 𝜈𝑡=5341 m/s, 𝜈𝑅=4890 m/s.

creases the surface wave velocity above that of the Rayleigh velocity of the substrate, whereas
when 𝜈𝑡 < 𝜈𝑡), the layer is said to ”load” the substrate because the velocity of the free-surface
Rayleigh mode on the substrate is decreased by the presence of the layer.

For the stiffening situation, it is characteristic for the dispersion curve (𝜈 ∼ kh) to start
from kh=0 at the substrate Rayleigh velocity and increase until the substrate shear velocity is
reached at a particular value of kh; for larger values of kh this mode of propagation does not
exist. For the material combination of this type, only one Lamb mode can propagate and that
only for a limited range of kh. An example of the dispersion curve of this type is given in Fig.
2.4 for a silicon layer on a ZnO substrate.

When the layer loads the substrate, a significant feature is the existence of an unlimited
number of higher order Lamb modes, sometimes also called Sezawa modes [47]. In this case,
the dispersion curve for the first Lamb mode, often referred to simply as Rayleigh mode, starts
with negative slope at the Rayleigh velocity of the substrate, for kh=0. As kh increases, the
phase velocity continues to decrease and for layer thickness large compared to the wavelength,
kh ≫1, it tends asymptotically to the Rayleigh velocity of a free surface of the layer material.
The higher order Lamb modes all have a low frequency cutoff at which the phase velocity is
equal to the substrate shear velocity. Their phase velocities also decrease with increasing kh
and have a high frequency asymptote at the layer shear velocity. An example of the dispersion
relation of this type of material combination is given in Fig.2.5 for a ZnO layer on a silicon
substrate.
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Figure 2.5.: ZnO layer on silicon substrate, the loading case. Only the first three Lamb modes
(R1, R2 and R3) are shown.

2.2. Light scattering

Visible light spectroscopies are useful tools for studying materials properties. For example,
molecular dynamics, chemical composition, and acoustic mode velocities can be analyzed
using light scattering. In bulk materials, spectroscopy techniques probe discrete energy levels
within a continuous distribution of energies based on selection rules. Energy levels within
nanostructured materials, in contrast, are quantized due to geometrical confinement. Material
length scales on the order of the excitation wavelength induce novel electronic, optical, and
phononic characteristics. Therefore, spectroscopy provides a logical means to study quantized
energies of nanostructures.

2.2.1. Fundamental light scattering theory

The optical property of an isotropic medium (nonmagnetic, nonconducting, nonabsorbing) is
usually characterized by the dielectric constant 𝜖0. This is an average value since the dielectric
constant associated with a local volume is actually fluctuating around 𝜖0 owing to the thermal
motion of the molecules of the medium. Taking into account possible anisotropy introduced
by the fluctuation of the relative orientations of anisotropic molecules, the local dielectric
constant, in its most general form, becomes a tensor quantity, and can be written as

𝝐(r, 𝑡) = 𝜖0I + 𝛿𝜖(r, 𝑡) (2.36)

where 𝛿𝜖(r, 𝑡) is the dielectric constant fluctuation tensor at position r and time t, I is the
second-rank unit tensor. For an incident plane wave of the form
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2. Methodology

E𝑖(r, 𝑡) = n𝑖E0 exp 𝑖(k𝑖r − 𝜔𝑖𝑡) (2.37)

where n𝑖 is a unit vector in the direction of the incident electric field, E0 is the field am-
plitude, k𝑖 is the wave vector, and 𝜔𝑖 is the angular frequency. The scattered electric field
E𝑠(R, 𝑡) at a large distance R from the scattering volume can be computed by demanding that
the total field E = E𝑖 + E𝑠 satisfy the Maxwell equations throughout all space.

The component of the scattered electric field at a large distance R from the scattering volume
with polarization n𝑠 , propagation vector k𝑠, and frequency 𝜔𝑠 is

𝐸𝑠(𝑅, 𝑡) =
𝐸0

4𝜋𝑅𝜖0
exp 𝑖𝑘𝑠𝑅

∫
𝑉

𝑑3𝑟 exp 𝑖(qr − 𝜔𝑡) [n𝑠 [k𝑠 × (k𝑠 × (𝛿𝝐(r, 𝑡)n𝑖))]] (2.38)

In Fig. 2.6 a large portion of the scattering volume V is indicated by the irregular region
in gray, O inside the scattering volume is the origin of the established reference coordinate
system. The detector of the scattered light is located at the position R with respect to the
origin, r is the position of an infinitesimal volume element inside the scattering volume, and
the distance vector between the volume element and the detector is given by R− r, here R ≫r
(2.6 a). The so-called scattering wavevector q is defined as the vector difference between the
wavevector of the incident light (k𝑖) and that of the scattered light (k𝑠), whose magnitude can
be readily calculated as follows by referring to 2.6 b

q2 = ∣k𝑠 − k𝑖∣2 = k2𝑠 − k2𝑖 − 2k𝑖k𝑠 = 2k2𝑖 − 2k2𝑖 cos(𝜃) = 4k2𝑖 sin
2 𝜃

2

q = 2k𝑖 sin
𝜃

2
=

4𝜋n
𝜆𝑖

sin
𝜃

2

(2.39)

In the above, the equality ∣k𝑖∣ ∼= ∣k𝑠∣ was used , since the incident wavelenght has negligible
changes in the scattering process.

In Eq. 2.38, the integration is performed over the whole space within the scattering volume
V, and it only influences terms in the integrand containing the space coordinates r. Eq. 2.38
can be then rewritten as

𝐸𝑠(𝑅, 𝑡) =
𝐸0

4𝜋𝑅𝜖0
exp 𝑖(𝑘𝑠𝑅−𝜔𝑖𝑡)

[
n𝑠

[
k𝑠 × (k𝑠 × ((

∫
𝑉

𝑑3𝑟 exp 𝑖qr𝛿𝝐(r, 𝑡))n𝑖))

]]
(2.40)

The term 𝐸0

4𝜋𝑅𝜖0
exp 𝑖(𝑘𝑠𝑅 − 𝜔𝑖𝑡) represents a spherical wave emitted from the origin O

in the scattering volume. The integral
∫
𝑉
𝑑3𝑟 exp 𝑖qr𝛿𝝐(r, 𝑡) accounts for the interference

effect between the wavelets emitted from different volume elements within the finite scattering
volume and is actually the spatial Fourier transformation of the dielectric fluctuation 𝛿𝝐(r, 𝑡)
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Figure 2.6.: Scheme of light scattering geometry. a, The relative position of the scattering
volume V and the detector,where the gray region denotes a large portion of the
scattering volume. The total scattered field at the detector is the superposition of
the fields radiated from all infinitesimal volumes d3r at position r with respect to
the center of the scattering volume. b, The light scattering process. The incident
light impinges onto the sample and is scattered in all directions. The position of
the detector determines the scattering geometry which further defines the scatter-
ing wavevector q= k𝑖-k𝑠. The polarizer and the analyzer are used to select the
polarization state of the incident and the scattered light, respectively.

𝛿𝝐(q, 𝑡) =
∫
𝑉

𝑑3𝑟 exp 𝑖qr𝛿𝝐(r, 𝑡) (2.41)

Eq. 2.40 then becomes

𝐸𝑠(𝑅, 𝑡) =
𝐸0

4𝜋𝑅𝜖0
exp 𝑖(𝑘𝑠𝑅− 𝜔𝑖𝑡) [n𝑠 [k𝑠 × (k𝑠 × (𝛿𝝐(q, 𝑡)n𝑖))]] (2.42)

or by working out the vector product Eq. 2.42 can be simplified

𝐸𝑠(𝑅, 𝑡) =
−𝑘2𝑠𝐸0

4𝜋𝑅𝜖0
exp 𝑖(𝑘𝑠𝑅− 𝜔𝑖𝑡)𝛿𝜖𝑖𝑠(q, 𝑡) (2.43)
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where 𝛿𝜖𝑖𝑠(q, 𝑡) = n𝑠𝛿𝝐(q, 𝑡)n𝑖 is the component of the dielectric constant fluctuation tensor
along the initial and final polarization directions.

The time-correlation function of E𝑠 can be computed as

⟨𝐸∗
𝑠 (𝑅, 0)𝐸𝑠(𝑅, 𝑡)⟩ = 𝑘4𝑠𝐸

2
0

16𝜋2𝑅2𝜖20
⟨𝛿𝜖∗𝑖𝑠(q, 0)𝛿𝜖𝑖𝑠(q, 𝑡)⟩ exp 𝑖(−𝜔𝑖𝑡) (2.44)

The spectral density of the scattered light reads

I𝑖𝑠(q, 𝜔𝑠, 𝑅) =

∫
d𝑡 exp 𝑖𝜔𝑠𝑡 ⟨𝐸∗

𝑠 (𝑅, 0)𝐸𝑠(𝑅, 𝑡)⟩

=
𝑘4𝑠𝐸

2
0

16𝜋2𝑅2𝜖20

∫
d𝑡 ⟨𝛿𝜖∗𝑖𝑠(q, 0)𝛿𝜖𝑖𝑠(q, 𝑡)⟩ exp 𝑖(𝜔𝑠 − 𝜔𝑖𝑡)

=
𝑘4𝑠𝐸

2
0

16𝜋2𝑅2𝜖20

∫
d𝑡 ⟨𝛿𝜖∗𝑖𝑠(q, 0)𝛿𝜖𝑖𝑠(q, 𝑡)⟩ exp 𝑖(𝜔𝑡)

(2.45)

where 𝜔 = 𝜔𝑠−𝜔𝑖 is the frequency shift in the scattering process, and I0 = E2
0is the incident

beam intensity.
For a given scattering experiment, the proportionality coefficient in Eq.2.45 is a constant

and the scattering intensity is then determined by the integral which is the spectral density of
the dielectric constant fluctuations

I𝑖𝑠(q, 𝜔) =
∫

d𝑡 ⟨𝛿𝜖∗𝑖𝑠(q, 0)𝛿𝜖𝑖𝑠(q, 𝑡)⟩ exp 𝑖𝜔𝑡 (2.46)

If 𝛿𝜖𝑖𝑠(q, 𝑡) is time-independent, then has non-zero values only when 𝜔= 0. This means
that ”frozen” fluctuations (static optical inhomogeneities) can only lead to elastic scattering,
in which the frequency of the scattered wave coincides to the frequency of the incident wave.
The frequency changes only when 𝛿𝜖𝑖𝑠(q, 𝑡) varies with time.

From the above discussion it is easy to appreciate that the light scattering spectrum I𝑖𝑠(q, 𝜔)
directly measures the local dielectric constant fluctuations in a medium, which is in turn caused
by various thermal fluctuations, e.g. density fluctuations, and or orientation fluctuations for
anisotropic molecules. Therefore light scattering can in principle provide valuable information
about diverse dynamic processes in a system.

2.2.2. BLS theory

Brillouin scattering can be understood as the inelastic scattering of incident energy by ther-
mally excited elastic waves, or acoustic phonons, in a sample.It is often described as a scatter-
ing event following criteria for Braggs Law and the Doppler Effect.That is, the total momen-
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2.2. Light scattering

tum and energy between the incident energy and excitation (phonon), must be conserved in
the scattering process. These two conservation laws can be more easily appreciated by view-
ing the scattering event in terms of inelastic photon-phonon collisions. An incident photon
with energy h𝜔𝑖 and momentum hk𝑖 is inelastically scattered by a phonon of energy h𝜔 and
momentum hk in the scattering medium. During this process a phonon is either created with
the scattered photon losing the corresponding energy, or annihilated with the scattered photon
gaining the corresponding energy. Conservations of momentum and energy in the scattering
process require

hk𝑠 = hk𝑖 ± hq 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 (2.47)

h𝜔𝑠 = h𝜔𝑖 ± h𝜔 𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 (2.48)

The plus sign corresponds to the phonon annihilation (anti-Stokes scattering), while the
minus sign indicates the phonon creation (Stokes scattering). A phonon is an elastic analogue
of a photon, that is, a piece of quantized elastic energy and in the context of this thesis, phonons
are refered to high frequency (GHz) thermally excited elastic waves.

In a simple approach BLS can be pictured as constructive interference between multiply
reflected light beams by sound waves. To appreciate this, let’s refer to Fig.2.7 where the
interaction of the incident light and the propagating sound wave is schematically depicted
assuming a plane wave form with a wavelength Λ. The existence of such an elastic wave in
the medium modulates the local dielectric constant which also assumes plane wave form of
identical wavelength traveling along the same direction.

Due to the large discrepancy between the speed of light ( 3x108 m/s) and sound ( 3x105

m/s), at any given instant when a single light scattering event happens, the spatial variation
of the dielectric constant in the medium can be regarded as ”frozen”, i.e. static dielectric
inhomogeneities described by a spatial plane wave. The travel of the beam inside the medium
is then very similar to that in a periodic multilayer stack with periodicity Λ as shown in Fig.
2.7, where the light beam undergoes multiply reflections. The maximum reflected intensity,
or the scattering, will occur only when the condition for constructive interference is satisfied,
namely

2𝑛Λ sin
𝜃

2
= 𝜆𝑖 (2.49)

where, n is the refractive index of the medium, 𝜆𝑖 is the wavelength of the incident light in
vacuum, and 𝜃 is the angle between the incident and reflected beams. The Bragg condition,
Eq. 2.49, can be rewritten as
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Figure 2.7.: The scattering process can be regarded as constructive interference between mul-
tiply reflected beams at the interface between two adjacent ”layers”. Each ”layer”
has a thickness corresponding to the wavelength (Λ) of the sound producing the
”mutilayers”.

2𝜋

Λ
=

4𝜋𝑛

𝜆𝑖
sin
𝜃

2
(2.50)

Comparing Eq. 2.50 and Eq. 2.39 we have that

q =
2𝜋

Λ
(2.51)

Eq. 2.51 indicates that the wavevector k(k = 2𝜋/Λ) of the sound wave is equivalent to
the scattering wavevector q. By changing the scattering angle 𝜃, a different q is selected and
correspondingly different sound waves are probed by BLS. The equality q = k reflects the
exchange of momentum between the sound wave and the light during the scattering process.

The traveling sound wave has a certain phase velocity, say 𝜈, therefore the frequency f𝑠 of
the scattered light seen by the detector suffers a Doppler shift, that is

f𝑠 = f𝑖(1± 2
𝜈

𝑐
sin
𝜃

2
) (2.52)

where f𝑖 is incident light frequency and 𝑐 = f𝑖𝜆𝑖/𝑛 is the velocity of light within the scatter-
ing medium. The plus and minus signs correspond to the two possible propagation directions
of the sound wave: one is toward the detector (+) leading to an increase in the frequency of
the scattered light (anti-Stokes scattering), the other is away from the detector (-) leading to a
frequency decrease (Stokes scattering). Eq. 2.52 can be further simplified to
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f𝑠 = f𝑖 ±
2𝜈

𝑐

4𝜋𝑛

𝜆𝑖
sin
𝜃

2
)

= f𝑖 ±
𝜈

2𝜋
𝑞

(2.53)

In terms of angular frequency

𝜔 = 𝜔𝑠 − 𝜔𝑖 = ±𝜈𝑞 (2.54)

From the above it is clear that in the scattering spectrum I𝑖𝑠(q, 𝜔) there is a doublet centered
at the frequency 𝜔 = ±𝜈𝑞. Since q is also the wavenumber of the sound wave (Eq. 2.51)
traveling at a speed 𝜈, then 𝜔 naturally becomes the angular frequency of the sound wave.
Therefore Eq. 2.54 reflects the energy exchange between the sound wave and the light.

2.3. Utilities of Optical Spectroscopy

The frequency shift involved in BLS generally ranges from 109 to 1011 Hz. This is rather small
compared to the incident laser frequency in the visible spectrum which lies on the order of 1014

Hz. To achieve such a high spectroscopic resolution, the frequently encountered diffraction
grating spectrometers widely used in Raman scattering and fluorescence spectroscopy do not
suffice. Spectrometers based on the Fabry-Perot (FP) interferometer have to be used. The
FP interferometer, capable of providing extremely high resolving power, is the most crucial
element of the whole BLS experimental setup.

2.3.1. Standard Fabry-Perot Interferometer

The FP interferometer is a multiple beam interferometer and in its simplest configuration
consists of two planes, parallel and highly reflected surfaces separated by some distance d. If
the enclosed gap (usually is air) can be mechanically varied by moving one of the mirrors, it’s
referred to as an interferometer. When the mirrors are held fixed and adjusted for parallelism
by screwing down some sort of spacer, it’s said to be an etalon.

In practice, two semisilvered or aluminized glass optical flats form the reflecting boundary
surfaces. The introduction of a thin metal layer is to increase the reflectivity, as we have
seen already that high resolving power can only be achieved with large r. In the absence
of light absorption, the equation tt

′
+ r2 = 1 holds. Since in most cases it is the reflected

and transmitted beam intensity that are concerned, another two useful parameters are defined,
the reflectance R, the reflected fraction of the incident intensity, and the transmittance T, the
transmitted fraction of the incident intensity. It can be easily shown that R = r2. Following
the energy conservation, obviously we have R + T = 1. In reality, there is always some loss
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Figure 2.8.: Optical transmission function of a single-pass Fabry-Perot mirror.

of energy, e.g. transformation to heat. If the absorbed fraction, referred to as the absorptance,
is denoted by A, the above relation then becomes R + T + A = 1.

The single-pass transmission function of a planer mirror Fabry-Perot interferometer can be
expressed as

𝑇 =
𝑇0

1 + (4𝐹 2/𝜋2) sin2(2𝜋𝐿/𝜆)
(2.55)

where 𝑇0 is the overall single-pass transmission, F is the effective single-pass finesse, L
is the mirror spacing and 𝜆 is the wavelength of light. Eq.2.55 indicates that the FP only
transmits light with wavelengths 𝜆, satisfying the relation

𝐿 =
1

2
𝑚𝜆 (2.56)

for an integer m. The optical transmission function is illustrated in fig.2.8
The width at half-maximum 𝛿𝜆, as indicated in Fig.2.8 describes how rapidly the intensity

drops off on either side of the maximum. To a very good approximation, represents the small-
est phase increment separating two resolvable peaks, which actually determines the resolving
power of a FP interferometer. Another quantity of particular interest is the ratio of the separa-
tion of adjacent maxima to the peak width at half-maximum, known as the finesse F = 2𝜋/𝛾.
Over the visible spectrum, the finesse of most ordinary FP instruments is about 30. In practice,
the finesse cannot be made much greater than about 100 due to limitations on the quality of
mirror substrates and coatings, as well as deviations of the mirrors from plane parallelism.
Note that as the finesse increases, the width at half-maximum decreases, thus the higher the
resolving power is, but at the expense of the transmission intensity.

The FP interferometer is used as a high resolving power spectrometer by varying the spacing
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𝑑 between the two mirrors so as to select light transmission at different wavelengths. Since
the maximum transmission happens at 𝛿/2 = (𝑘0𝐿/2), m=1,2,3,, where 𝛿 the phase difference
between adjacent rays, we have

𝑚𝜆0 = 2𝑛𝑓𝑑 cos 𝜃𝑡 (2.57)

where 𝜆0 = 2𝜋/𝑘0 is the light wavelength in vacuum. For nearly normal incidence,cos 𝜃𝑡 =
1 , then

𝑚𝜆0 = 2𝑛𝑓𝑑 (2.58)

For a given spacing d, the transmitted light does not necessarily have the same wavelength
because the change in wavelength can be compensated by the corresponding change in the
integer number m. This makes an unambiguous interpretation of the spectrum impossible,
unless it is known a priori that the spectrum of interest entirely falls into a certain wavelength
span (Δ𝜆0)𝐹𝑆𝑅, the so-called free spectral range (FRS). For a fixed d, differentiating Eq.
2.58 leads to

(Δ𝜆0)

𝜆0
= −Δ𝑚

𝑚
(2.59)

The separation between the two adjacent transmission maxima (Fig.2.8) is 2𝜋, and the cor-
responding change of m is 1, namely, Δm=1. Therefore, Eq.2.59 becomes

(Δ𝜆0)𝐹𝑆𝑅

𝜆0
= − 1

𝑚
(2.60)

In combination with Eq. 2.58, we have

(Δ𝜆0)𝐹𝑆𝑅 = 𝜆20/2𝑛𝑓𝑑 (2.61)

or in terms of frequency

(Δ𝑓0)𝐹𝑆𝑅 = c/2𝑛𝑓𝑑 (2.62)

where c is the light speed in vacuum. The FSR is a very important instrumental parameter
to be set before using the FP interferometer for spectroscopic purposes.
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Figure 2.9.: Suppression of higher order transmission in a Tandem Fabry-Perot.

2.3.2. Tandem Fabry-Perot Interferometer

The standard FP interferometer has too low contrast to allow weak Brillouin signals to be
observed in the presence of normally extremely intense elastically scattered light. This prob-
lem was overcome with the use of the high contrast, multipass FP interferometer. However, a
multipass FP interferometer, like the simple configuration, still suffers from the overlapping
of neighboring interference orders. which makes the interpretation of the measured spectra
somewhat ambiguous, especially for rich or broad spectral features.

One solution to suppress this effect is to use a tandem arrangement, i.e. two FP interfer-
ometers (FP1 and FP2) in series with slightly different FSR. In this case, the neighboring
order transmission peaks of the two FP interferometers cannot coincide due to the slight dif-
ference in their FSR as illustrated in Fig. 2.9. As a result, the adjacent interference orders of
one of the two interferometers are blocked by the other, leading to a significant suppression
of interference higher order transmission. In order for the tandem interferometer to function
as a spectrometer, the wavelengths transmitted by the two FP combinations must satisfy the
following two equations simultaneously for all wavelengths within the relevant FSR

𝑚1𝜆0 = 2𝑛𝑓𝑑1 (𝐹𝑃1)

𝑚2𝜆0 = 2𝑛𝑓𝑑2 (𝐹𝑃2)
(2.63)

This implies that the scanning of the two FP interferometers has to be synchronized, such
that
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Figure 2.10.: Principle of the tandem scanning of a tandem Fabry-Perot.

Δ𝑑1
Δ𝑑2

=
𝑑1
𝑑2

(2.64)

The principle of the tandem scan is demonstrated in Fig.2.10. The first interferometer FP1
is arranged to lie in the direction of the translation stage movement. One mirror sits on the
translation stage, the other on a separate angular orientation device. The second interferometer
FP2 lies with its axis at an angle 𝜙 to the scan direction. One mirror is mounted on the
translation stage and the other mirror on an angular orientation device which can also allow a
small translation of the mirror for adjustment purposes. The relative spacings of the mirrors
are set so that a movement of the translation stage to the left would bring both sets of mirrors
into simultaneous contact. A movement of the translation stage to the right then sets the
spacings to d1 and d1 cos𝜙. Moreover, a scan Δ𝑑1 of the translation stage produces a change
of spacing Δ𝑑1 in FP1 and Δ𝑑1 cos𝜙 in FP2. In other words, Eq. 2.64 is satisfied.

In the present thesis, all the experiments were carried out in a six-pass tandem Fabry-Perot.
The related tandem optics configuration is briefly sketched in Fig. 2.11. The scattered light
enters the system at the adjustable pinhole P1. Mirror M1 reflects the light towards the lens
L1 where it is collimated and directed via mirror M2 to the first interferometer FP1. Then
the light hits mirror M3 and is directed to the second interferometer FP2. After transmission
through FP2 the light strikes the 90𝑜 prism PR1 where it is reflected downwards and returned
parallel to itself towards FP2. Upon the reflection by M3 it continues to pass through FP1,
after transmission through lens L1 it travels underneath mirror M1 and is focused on to mirror
M4. This mirror returns the light through lens L1 where it is again collimated and directed
through FP1. The combination of lens L1 and mirror M4 lying at its focus acts as a spatial
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Figure 2.11.: Optics inside a six-pass tandem Fabry-Perot interferometer: The scattered
light enters the Tandem system via the pinhole P1 and leaves via the pinhole
P2. Before it finally reaches the photodetector, the scattered light passes the two
interferometers (FP1 and FP2) six times.

filter which filters out unwanted beams such as the beam reflected from the rear surfaces of
the interferometer mirrors. After the final pass through FP2, the light strikes mirror M5 where
it is directed to the prism PR2. This prism, in combination with the mirror M6, the lens L2
and the output pinhole P2, forms a bandpass filter with a width determined by the size of the
pinhole.

2.3.3. Experimental Setup

The whole BLS experimental setup is schematically shown in Fig.2.12. A solid state diode
pumped, frequency-doubled Nd:YAG laser (Coherence) with output power of 100 mW (532
nm) is mounted on the rotatory arm of a goniometer (ALV). After passing through a Glan po-
larizer, the outcoming laser beam with polarization (V) perpendicular to the scattering plane
(horizontal plane) is focused into the center of the goniometer where the sample is located. The
focusing size is around 200 𝜇m in diameter. The scattered light along a well-defined direction
is collected by an aperture and focused into the entrance pinhole of the tandem Fabry-Perot
(JRS Scientific Instruments) after successive transmission througth two conjugated lenses. A
Glan-Thompson analyzer is inserted between the two confocal lenses to allow the selection
of the scattered light with polarization either perpendicular (V) or parallel (H) to the scatter-
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Figure 2.12.: Scheme of the BLS setup: The sample is sitting at the center of the goniometer,
the variation of the scattering angle 𝜃 is realized by rotating the laser mounted
on the goniometer. The scattered light is collected by two conjugated lenses into
the six-pass tandem Fabry-Perot interferometer.

ing plane. After passing through the tandem Fabry-Perot which acts as a spectrometer, the
scattered light is detected by a single-photon avalanche photodiode (APD) and the resulting
electronic signal is processed by a multi-channel analyzer (MCA). A tiny fraction of the in-
cident laser intensity is separated from the incident beam and introduced as a reference beam
via an optical-fiber into the tandem Fabry-Perot to achieve a long period (up to several weeks)
stabilization of the interferometer. The experimental change of the scattering angle 𝜃, hence
the scattering wavevector q, is accomplished by rotating the goniometer with an electronically
controlled motor, which could cover a broad range, roughly from 8𝑜 to 160𝑜.

For measurements of extension characteristics, a custom- build micro scale materials testing
setup was used (Fig. 2.13). A special sample holder allowed BLS measurements at elevated
strains. The samples were mounted onto the cross heads of the tensile instrument. Depending
on the size of the sample the initial length L0 could be adjusted. The applied strain could
be controlled by a pair of micrometer screws (Mitutoyo S151-112) with a precision of 10
𝜇m. The holder was placed on a goniometer that allowed variations of the angle between the
scattering wave vector q and the plane of the sample. With a special adapter, the position of
the sample could be adjusted relative to the incident laser beam thus probing elastic excitations
at two different scattering geometries.
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Figure 2.13.: The sample holder allowing BLS experiments to be performed at elevated
strains.

2.3.4. Scattering Geometries

Selection of the scattering geometry determines the direction of elastic wave propagation.
This is also a very important parameter for BLS measurements as well as the polarization of
incident and scattered light. The scattering geomery can be divided into two categories difined
by the direction of the incident and the scattered light as shown in Fig. 2.14. The in-plane
phononic properties can be measured in the transmission geometry (Fig. 2.14(a)), while the
out-of-plane phononic properties can be measured in the reflection geometry (Fig. 2.14(b)).
Since two dimensional nanocomposite materials are investigated in this thesis, using both
geometries is very useful to obtain information on phononic anisotropies. Therefore, most
experiments described in this thesis were done in both transmission and reflection geometry.

Figure 2.14(a) shows the transmission geometry. The scattering wavevector q is inclined
relative to the in-plane direction of the film.The scattering wavevector q is determined by the
incident and scattered light in the film. By performing trigonometric operations and applying
Snell’s law, the scattering wavevector can be expressed as

𝑞 =
4𝜋𝑛

𝜆
sin

[
1

2

{
sin−1

(
1

𝑛
sin𝛼

)
− sin−1

{
1

𝑛
sin(𝜃 − 𝛼)

}}]
(2.65)

𝑞⊥ =
4𝜋𝑛

𝜆
sin

[
1

2

{
sin−1

(
1

𝑛
sin𝛼

)
+ sin−1

{
1

𝑛
sin(𝜃 − 𝛼)

}}]

× cos

[
1

2

{
sin−1

(
1

𝑛
sin𝛼

)
− sin−1

{
1

𝑛
sin(𝜃 − 𝛼)

}}] (2.66)

where q⊥ denotes the parallel component of the scattering wavevector relative to the film. The
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Figure 2.14.: Schematics of scattering geometry: (a) transmission geometry and (b) reflection
geometry.

unique advantage of this transmission geometry is that the scattering wave vector does not
depend on the refractive index of the sample due to the mutual cancellation of the refraction
effects at both top and bottom interfaces of the sample. Since the ratio of q⊥/q in most cases
is more than 0.9, asuuming that the incident angle is half of the scattering angle, i.e. 𝛼 = 𝜃/2,
it can be shown that Equation 2.66 can be simplified as a form

𝑞 =
4𝜋

𝜆
sin
𝜃

2
(2.67)

The reflection geometry is shown in Fig. 2.14(b). Applying the same trigonometric opera-
tions and Snell’s law, we can obtain

𝑞 =
4𝜋𝑛

𝜆
cos

[
1

2
sin−1

(
1

𝑛
sin𝛼

)
+

1

2
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{
1

𝑛
sin(𝜃 + 𝛼)

}]
(2.68)
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1
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}] (2.69)

where q∥ denotes the perpendicular component of the scattering wavevector relative to the
film. The detailed calculations of each scattering wavevector are described in appendix A.
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2.4. Out of plane Elastic Excitations

The propagation character of elastic excitations strongly depends on the film’s thickness.
When its size becomes comparable to the wavelength of the elastic wave, existence of bound-
aries will have a substantial influence on the wave propagation. The finite film thickness
implies a discretization of the eigenfrequencies, and this is the reason of an infinite number
of different discrete branches in the dispersion diagram. In the particular case where q∥ =
0, i.e., in the direction perpendicular to the film, modes of mixed polarization are decoupled
and have either purely longitudinal or purely transverse character, with corresponding eigen-
frequencies that can be obtained from the standing-wave conditions. Propagating through a
thin film, a single Longitudinal acoustic (LA) phonon is localized within the distance d from
the film surface, where d is the film thickness. Due to the uncertainty principle, the phonon
momentum forms Δ𝑝 ≈ h/d -wide distribution around the mean value ℎ̄q (here h, ℎ̄ are the
Planck and reduced Planck constants, respectively). In the other terms, the wavevector q is
not a certain value any more, but has a distribution Δq ≈ 2𝜋/𝑑, and the Brillouin peak has a
width Δ𝑓 ≈ 𝜈/d.

Multiple reflections of an acoustic excitation from the film surface and interface can form
a standing wave. First of all, it should be noted that substantial contrast of the acoustic
impedance (𝑍 = 𝜌𝜈 ) between the polymer film and the substrate is the necessary condi-
tion for standing wave observation . Multiphase systems with small 𝑍 mismatch between
phases do not support phonon localization and exhibit an effective medium behavior .

The constructive interference (CI) of the excitations gives the existence criterion for a stand-
ing wave of the order m:

𝑞𝑚d = 𝜋m +
𝜋

2
(2.70)

where m is an integer and 𝜋/2 term is the phase shift due to the reflections on film bound-
aries.

These sub-modes occupy the envelope of the broadened (LA) phonon mode, forming the
fine structure with equal interval Δf𝑚 between peaks given by the formula directly obtained
from Eq. 2.70:

Δf𝑚 =
𝜈

2𝑑
(2.71)

where 𝜈 is the phase velocity for phonon propagation normal to the film.

The fine structure of the BLS spectra for a supported film can be described following similar
considerations in the literature [48, 49]. For a non-absorbing film/substrate system, the light
scattered at angle 𝜃 has a discrete spectrum with intensity P𝑠(𝜗) given by:

34



2.4. Out of plane Elastic Excitations

P𝑠(𝜗) ∝
∑
𝑚

𝑠𝑖𝑛𝑐2
(

q(𝜃)
d
2
− (2m + 1)

𝜋

4

)
(2.72)

where the m-th term under the sum sign corresponds to the scattering with Brillouin shift
f𝑚 = (2m + 1) 𝜈

4𝑑
and and sinc is the cardinal sine function sinc(x) = sin(x)/x. In the form of

the frequency shift function:

P𝑠(𝜗) ∝
∑
𝑚

𝑠𝑖𝑛𝑐2
[
𝜋𝑑

𝜈

(
q(𝜃)

𝜈

2𝜋
− fm

)]
(2.73)

Eq.2.73 demonstrates that standing wave modes f𝑚 are localized in the 𝑠𝑖𝑛𝑐2(𝑥) envelope
around the LA mode with shift q(𝜃) 𝜈

2𝜋
, and the 𝜋𝑑

𝜈
coefficient determines the width of the

envelope.
The practical importance of the fine structure observation relies to the fact that computing

of the elastic modulus from the Δf𝑚 interval requires the mass density 𝜌 and the film thickness
d value only, which can be measured by a number of methods with adequate accuracy.

𝑐11 = 4𝜌𝑑2(Δf𝑚) (2.74)
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3. Mechanical Anisotropy of Polymer
Films

3.1. Introduction

Non-destructive probing of elastic properties becomes a state-of-art approach in thin film re-
search and applications, due to recent advances and growing popularity of acousto-optical
methods, in particular, Brillouin light scattering [50, 51] and impulsive stimulated thermal scat-
tering (ISTS) [52]. The ability of these methods to measure elastic constants along different
directions can hardly be overestimated for anisotropic film samples, frequently found in prac-
tical applications (stretched packing films, for example). Mechanical anisotropy correlates
with preferred orientation of structural units in tested material; this correlation is extensively
used to analyze the effect of processing conditions on structure and mechanical stability of
films [53–55]. It should be noted that the other parameter widely used for anisotropy charac-
terization - optical birefringence - shows much less magnitude than elastic moduli ratio in
some polymer films [54, 55]. However, so far the progress in non-destructive testing of elastic
properties is limited mainly to free-standing films. The presence of complex acoustic modes
in spectra of supported films and coatings makes the data difficult to analyze [52, 56]. In a
few studies of anisotropic coatings by acousto-optical methods, ISTS is utilized and the films
under investigation are substantially thicker than a micron [57, 58]. For the important class of
sub-micron coatings (extensively used in microlithography), probing of elastic constants is
performed on films with either known or assumed isotropy [51, 59–64] and often limited to one
specific direction [51, 63, 64].

From both experimental and theoretical perspective, significant challenges exist for under-
standing how polymers behave when confined to dimensions near their own equilibrium length
scale, where the interactions between polymer and interfaces become more pronounced. Com-
puter simulations [16, 65] attributed anisotropy of the apparent elastic properties of nanostruc-
tures to the mechanical inhomogeinity along the confined direction. For the case of supported
polymer films, this originates partially from the mismatch of the thermal expansion coeffi-
cients (CTE) between the substrate and the polymer, resulting in a stress gradient that intro-
duces orientation variation in the thickness of the film. Based on this, the existence of a very
thin polyimide layer of higher anisotropy at the substrate-polymer interface has been reported
[66]. On the other hand, a more perfect ordering at the polymer-air interface has been observed
[67], as a result of the spatial discontinuity near the surface.

Polyimide coatings are known to possess transverse isotropic symmetry, i.e., in and through
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plane elasto-optical constants differ. Their directionally dependent properties result from com-
monly used fabrication techniques [68] and effects such as spinning speed, substrate material
and thermal [68, 69]. Both free-standing and supported polyimide films are often used as model
polymer layers [70] with strong uniaxial anisotropy of optical [66, 71–73], mechanical [57, 58, 74–76],
and thermal [77, 78] characteristics. Moreover, outstanding mechanical properties, high dimen-
sional and thermal stability, low thermal expansion, low dielectric constant of polyimide make
it material of choice for protective coatings [79] and for interlayer dielectrics and passiva-
tion layers in microelectronic industry [80]. Aromatic polyimides are the most successful and
widely used polymeric high performance materials for space applications [81]. High techno-
logical importance of polyimide coatings calls for adequate directionally dependent character-
ization tools, thus application of BLS to these objects is practically sound.

In this chapter, we show that by employing a novel scattering geometry, we can probe
mechanical anisotropy in highly anisotropic films. A systematical check of the thickness-
dependent elastic constants of supported polymer films over a large thickness range, from
about 100 nm to 20 𝜇m is made. Recent advances in BLS technique make possible inde-
pendent probing of in-plane and out-of-plane elastic moduli of sub-micron coatings. While
in-plane parameters can be determined by utilizing typical transmission scattering geome-
try, the reflection configuration opens the way to probe standing elastic excitations confined
normal to the surface. Combination of these two approaches makes possible adequate and
non-destructive characterization of mechanical anisotropy in polymer coatings of micron and
sub-micron thickness range.

3.2. Experimental

3.2.1. Sample Preparation

Several types of transparent substrates were used. Type 1, ⊘ 25 mm microscope cover slides
made by optical borosilicate glass (Fisher-brand 25CIR1D) were used for less than 500 nm
thick coatings; type 2, ⊘ 100 mm, 0.5 mm thick fused quartz wafers where used for less than 2
𝜇m thick coatings; type 3, ⊘ 51 mm, 0.2 mm thick wafers made by Schott D263 borosilicate
glass were used for 10 - 20 𝜇m thick coatings. All substrates were cleaned before use by
oxygen plasma in PE-200 Oxygen Plasma Surface Treatment and Etching System (Plasma
Etch) at 50 cm3 / min oxygen flow and 250 W radio frequency power for 10 min. Then,
the substrates were primed by a 0.1 % solution of DuPont VM-651 (active component is 3-
aminopropyltriethoxysilane) in deionized water. The puddle of the primer stood on a substrate
for 20 s. The substrate was spin dried for 60 s at 3000 rpm.

Poly (biphenyl dianhydride - p - phenylenediamine) (BPDA-PDA) polyimide films (Fig. 3.1a)
were applied on the primed side of the slides and wafers by spin coating at 1000 - 3000 rpm
for 60 s. Both DuPont PI-2610 polyamic acid precursor and its solutions in N-methyl-2-
pirrolidone were used. Diluted precursor with concentrations ranging from 40% and above,
were used for thinnest coatings (less than a micron thick). Neat precursor was used for fab-
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rication of thicker coatings. Immediately after coating, the slides / wafers were soft-baked
at 130 𝑜C for 90 s on a hot plate. To obtain thick (10 - 20 𝜇 m) films, the multiple-coating
technique was used: after soft-bake, the spin-coating was repeated. The final curing was done
in a vacuum oven at 350 𝑜C for 24 h, the ramp rate was 1 𝑜C / min.

3.2.2. Sample Characterization

Accurate determination of the coating thicknesses is of the key importance for this study.
The film thicknesses were obtained by scanning confocal microscope (Nanofocus AG 𝜇Surf)
equipped with a Nipkow disk which directly measure the depth of a scratch on the films
made by a sharp needle tip (Fig. 3.1b). The mean thicknesses were computed by averaging
over the whole sampled area. Additionally, the thickness of polyimide layers was verified
by two methods. In the first method, the thickness was measured by reflectometry on silicon
wafers coated at the same conditions as the glass slides. Filmetrics F20 reflectometer (spectral
range 450-900 nm) was used and thicknesses were measured at 3 points for each sample.
The second method was weighting of coated wafer on a sensitive balance (Mettler-Toledo
XS105 DualRange, 0.01 mg resolution), and computing the thickness by obvious geometric
considerations. Density of the polyimide film is 1.40 g / cm3 [82]. Reflectometry measurements
require external parameter - refractive index spectrum for the used range of wavelengths;
coating of silicon surface can yield slightly different coating thickness. Weighting results
can be biased by the non-uniformity of film thickness, especially on the wafer edges; the
accuracy of the measurement rapidly decreases with film thickness. Due to these reasons,
the thicknesses measured by the confocal microscope are considered as primary values, while
results of reflectometry and weighting are used as controls.

3.2.3. Scattering Geometries

The direction dependence of the elastic moduli is investigated by two scattering geometries
[62]. In-plane mechanical properties are probed using the transmission geometry, while the
reflection geometry provides access to out-of-plane characteristics. In the transmission ar-
rangement, the wavevector q is parallel to the film surface: q = q∥ , where ∥ index denotes
the in-plane - oriented component. In the reflection geometry the wavevector q is normal to
the film surface: q = q⊥, where ⊥ index denotes the out-of-plane component. Probing elastic
excitations with parallel and perpendicular to the film surface wavevector q yields informa-
tion about in-plane and out-of-plane elastic properties, respectively. Both longitudinal and
shear moduli can be accessed separately by the light polarization control. In the present study,
the polarization of incident laser beam is always perpendicular (V) to the scattering plane.
Polarization of the scattered light can be selected either perpendicular (V) or parallel (H)
to the scattering plane. Polarized (VV) and depolarized (VH) Brillouin spectra correspond to
light scattering by longitudinal and transverse phonons, respectively. Probing longitudinal and
transverse polarizations gives access to longitudinal and shear elastic moduli, respectively.
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Figure 3.1.: a, Chemical structure of BPDA-PDA polyimide. b, Scanning confocal micro-
scope (Nanofocus AG 𝜇Surf) image showing thickness measurement for 398 nm
thick polyimide film. The inset demonstrates the 3D color representation of the
step profile.

3.3. Results and discussion

For the most part of this chapter, we will discuss elastic properties in terms of phase sound ve-
locities 𝜈. Lower indices l and t denote longitudinal and transverse polarizations, respectively.
Upper indices ∥ and ⊥ denote in-plane and out-of-plane directed excitations, respectively.

In order to investigate the potentially size-dependent behavior of the elastic constants, espe-
cially close to the limit of molecular level size scales, we characterized films with thicknesses
ranging from 20 𝜇m to 97nm. The propagation character of elastic excitations strongly de-
pend on the film’s thicknesses. When its size becomes comparable to the acoustic wavelength
𝜆𝐴 = 2𝜋 / q, the dispersion relations for propagation both parallel and normal to the film
surface deviate from the simple acoustic-like behavior [47, 83]. Thus, characteristic thickness
ℎ1 for this size effect is determined by the minimal q used in our experiments, 0.006 nm−1. It
corresponds to ℎ1 = 2𝜋 / (0.006 nm−1) = 1 𝜇m.

3.3.1. Acoustic Regime

BLS spectra for h = 10 - 20 𝜇m thick coatings (h ≫ ℎ1) are expected to demonstrate simple
acoustic behavior: Brillouin shift f of a well-shaped mode is proportional to wavevector q and
does not depend on film thickness. This trivial behavior is demonstrated in Fig. 3.2 for 20 𝜇m
thick BPDA-PDA coating for all 4 combinations of geometry and polarization. Mechanical
anisotropy is clearly seen as difference in slope (proportional to phase velocity) of linear f(q)
functions obtained for orthogonal directions both for longitudinal and shear excitations. Table
3.1 presents sound velocities calculated from the slopes of the —Fig. 3.2 plots; the error
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Figure 3.2.: Mechanical anisotropy in a thick (20𝜇m) polyimide (PI) film. Acoustic phonons
propagating with longitudinal (solid symbols) and transverse (open symbols) po-
larization parallel (triangles) and normal (squares) to the film surface. The two
scattering configurations relative to the Fabry-Perot interferometer enabling se-
lection of the phonon wave vector q parallel (∥) and normal (⊥) to the film surface
are shown in the white (transmission) and gray background(reflection geometry)
respectively

defined as standard deviation of the data does not exceed 1.5 %. Our results are in accordance
with previous study of elastic properties of BPDA-PDA at hypersonic frequencies performed
by ISTS technique on free-standing films [74].

Wave In- plane Out- of- plane

Longitudinal 𝜈
∥
𝑙 = 3560 m/s 𝜈⊥𝑙 = 2340 m/s

c11 = 17.7 GPa c33 = 7.67 GPa

Shear 𝜈
∥
𝑡 = 1710 m/s 𝜈

∥
𝑡 = 1140 m/s

c66 = 4.09 GPa c44 = 1.82 GPa

Table 3.1.: Sound velocities and components of the stifness tensor for 20 𝜇m thick BPDA-
PDA coating.

3.3.2. Out of Plane Elastic Excitations

Having characteristics of thick BPDA-PDA coatings as a starting point, we can address po-
tential thickness-dependent elastic behavior by probing thinner films, where size effects on
the wave propagation are significant. Fine structure of the out-of-plane longitudinal acoustic
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a b

Figure 3.3.: Thickness dependence of the out-of-plane longitudinal elastic excitations. BLS
spectra are shown for the BPDA-PDA coatings with four different thicknesses
ranging from 162 nm to 1565 nm (Fig. 3.3a) at a scattering angle 𝜃 = 150𝑜 (q⊥ =
0.0443 nm−1) and for the film with h = 380 nm at 𝜃 = 150𝑜, 90𝑜 and 60𝑜 (Fig. 3.3b).
The corresponding q⊥ values indicated in the plot. The spectra are well repre-
sented (red solid lines in the Stokes side) by up to five lorentzian lines. The in-
tegers denote the vibration order m and the vertical lines represent the computed
amplitudes of the observed modes [62].

mode detected in sub-micron coatings offers an excellent opportunity to trace size dependence
of the corresponding elastic modulus. As shown in Fig. 3.3 (left panel), the BLS spectra of
less than 2 𝜇m films obtained for reflection geometry and longitudinal polarization develop
a fine structure due to the presence of standing acoustic excitations normal to the film. The
experimental line shape is represented by the sum of up to five lorentzian lines centered at
frequencies f𝑚 = (2m + 1)𝜈⊥𝑙 /4h, where m is an integer [62]. The standing wave nature of
these excitations is further verified by varying q while film thickness is fixed. In this test the
localized modes have the same Brillouin shift regardless of q, while longitudinal phonon mode
envelope shifts up in frequency as q increases. It is demonstrated in the right panel of Fig.3.3).

The frequency interval Δf between adjacent resonance modes is a function of phase velocity
and film thickness only: Δf = 𝜈⊥𝑙 /2h, and can be used to compute the out-of-plane longitu-
dinal sound velocity independently. Fig. 3.4 summarizes 𝜈⊥𝑙 obtained both from fine structure
spacing (less than 2 𝜇m thick films) and from Brillouin shift of the propagation phonon mode
(10 - 20 𝜇m thick coatings). The 𝜈⊥𝑙 data demonstrate no size dependence in studied thickness
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Figure 3.4.: Dependence of out-of-plane longitudinal phase velocity 𝜈⊥𝑙 on thickness measured
by two methods: using Brillouin shift of the propagating acoustic mode (circles,
10 -20 𝜇m films) and using fine structure spacing (squares, less than 2 𝜇m thick
films).

interval 0.16 𝜇m - 20 𝜇m. Excellent agreement (within 1.5% experimental error) between
𝜇m values obtained by two methods confirm the sufficient accuracy of two used parameters:
film thickness measured by confocal microscopy and ordinary index of refraction found from
literature.

The fine structure is found for longitudinal acoustic mode only. The reason why depolarized
BLS spectra exhibit no standing wave effect can be attributed to the fact that the scattering by
shear waves is significantly less intense than the signal from longitudinal phonons. The low
signal-to-noise ratio may prevent observing the transverse mode splitting.

3.3.3. In Plane Phonon propagation

Another way to check the independence of elastic properties on thickness is the analysis of
dispersion relations as demonstrated for polyimide free-standing films studied by ISTS tech-
nique [57]. Six BPDA-PDA coatings with thickness in the 0.1 - 0.75 𝜇m range (less than ℎ1
characteristic size) are examined in the transmission geometry and observed modes are com-
bined into dispersion diagram shown in Fig. 3.5 These film-guided modes are dispersive, that
is, a simple linear q dependence of the phonon frequency f = 𝜈 q / 2𝜋 is not satisfied, where
𝜈 is the phase velocity of the phonon. In the case of thin films, it is usually customary to
demonstrate the dispersion relation in terms of phase velocity 𝜈 versus qh, the product of the
phonon wave number and the film thickness. This is because for a given material combination,
the phonon phase velocity is only a function of qh, as pointed out already in Chapter 2. From
the measured dispersion relations (symbols) it is evident that at the same qh value, data points
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Figure 3.5.: Dispersion diagram of the in-plane elastic excitations in supported BPDA-PDA
films. The plot contains data for six different thicknesses in the 0.1 - 0.75 𝜇m
range and for q in the 0.006 - 0.022 nm−1 range. Correspondence between the
symbols and the thickness of coating is given in the inset legend. Red solid lines
represent theoretical model with all model parameters predetermined.

measured from different films show very good overlap in the 𝜈 vs qh plot, suggesting the
same or very close elastic properties of these thin films. To theoretically identify the nature of
the observed modes and extract the elastic constants, we employ the layer-multiple-scattering
method.

This method constitutes a powerful tool for an accurate evaluation of the elastic properties of
composite systems consisting of a number of different layers having the same two-dimensional
periodicity in the x-y plane (parallel to the layers)[56]. An advantage of the method is that it
does not require periodicity in the z direction (perpendicular to the layers). For each layer,
the method calculates the transmission and reflection matrices,𝑄𝐼 and𝑄𝐼𝐼𝐼 respectively, for a
plane wave incident on the layer with given frequency and 𝑘∥ from z→ −∞ (i.e. with 𝑘𝑧 > 0),
as well as the corresponding matrices 𝑄𝐼𝑉 and 𝑄𝐼𝐼 for incidence from z→ ∞ (i.e. with 𝑘𝑧 <
0). The transmission and reflection matrices of the composite system are calculated from those
of the constituent layers. In the specific case considered here, we deal with the simple situa-
tion where a planar interface between two different homogeneous media is considered. The
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transmittance, reflectance, and absorbance of a (composite) slab, as well as the corresponding
density of states of the elastic field, are obtained from the transmission and reflection matrices
of the slab . The eigenfrequencies of possible guided modes are evaluated from the condition
to have a wave field localized within the slab. Dividing the slab into a left and a right part, this
condition leads to the secular equation: det[I-𝑄𝐼𝐼

(𝑙𝑒𝑓𝑡)𝑄
𝐼𝐼𝐼
(𝑟𝑖𝑔ℎ𝑡)] = 0.

All model parameters used for the theoretical calculation of the dispersion relation are pre-
determined: 𝜈∥𝑙 , 𝜈∥𝑡 , 𝜈⊥𝑙 , and 𝜈⊥𝑡 values for BPDA-PDA coatings are taken from the thick
film BLS measurements (Table 1), BPDA-PDA mass density, 1.40 g / cm3, is given in [82],
𝜈𝑙, 𝜈𝑡,and mass density of the substrate are determined beforehand. The theoretical dispersion
curves for the observed modes are indicated by the solid lines in Fig. 3.5. As we can see,
very good agreement between theory and experiment is obtained without using any adjustable
parameter. This tight correspondence of the experimental data and the model for the whole
thickness range implies that elastic moduli (and mass density) determined for 10-20 𝜇m thick
films are valid down to 0.1 𝜇m film thickness - no size effect is observed.

3.4. Conclusions

While ISTS method has been used for similar studies of 2 - 10 𝜇m thick films, this work ex-
tends explored thickness range up to the 0.1 - 20 𝜇m. Both longitudinal and shear moduli for
both in-plane and out-of-plane directions are reported. The lower value of sound velocities
(and the corresponding moduli) in the direction normal to the film is assessed by the distribu-
tion of intramolecular and intermolecular forces in the film. The elastic behavior of the sup-
ported films is shown to be size-independent in the whole thickness range investigated. This
finding clearly shows that the thinning process has no effective impact on the elastic constants.
The apparent insensitivity to thickness variations suggest that the morphology (molecular or-
der, microstructure) is primarily tuned during the fabrication process.
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4. One Dimensional Phononic
Structures

4.1. Multilayer Polymer Films

4.1.1. Introduction

Layer-multiplying coextrusion [84–86] of incompatible polymers can lead to nanostructured
multilayer composite films with superior characteristics, such as improved barrier, thermal
and mechanical behavior, which are important to many industry applications including coat-
ing and packaging. These multilayer films represent a well-defined 1D periodic structure that
consists of hundreds to thousands of thin layers of the two component polymers stacked in a
strictly alternating fashion. It has also been shown that by properly designing the periodic-
ity and selectively introducing optical anisotropy to these nanolayers, the resulting film can
display extraordinary optical effects [86], e.g. broadband omnidirectional reflection, imply-
ing widespread potential applications in optics. The significant practical relevance of such
multilayer films demands an advanced control over the film quality which is however highly
influenced by the complex structural relaxation characteristic to polymers. For small layer
thickness, in addition to the detailed processing conditions the chain dynamics is further com-
plicated by other factors including finite-size and interface effects [87, 88]. As the mechanical
properties of a glassy polymer are susceptible to structural relaxation difference during pro-
cessing, there is a strong desire to probe the mechanical properties of these multilayer films
down to the single-layer level.

The periodic structure of these films deserves special attention as studies on photonic [19]

and phononic crystals [89] have revealed the potential of periodically structured composite ma-
terials in manipulating classical waves. One of the pivotal concerns for the current system
is the phonon dispersion behavior. As phonons in dielectric materials play a decisive role
for heat transport, a good knowledge of phonon propagation in such structured materials is the
precondition to finally realize heat management by structure engineering [90]. The multilayered
structure with periodicity commensurate the wavelength of the visible light may allow the oc-
currence of confinement-induced enhancement of photon-phonon interactions [91, 92], an effect
sensitive to phonon dispersion as well. Moreover, phonon dispersion behavior is essentially
determined by the elastic parameters and the structure of the system. Therefore it provides
valuable details on the structure modulation of phonons and the mechanical properties of the
individual layers. The latter suggests that the desired quality control of the multilayer films
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a b c

Figure 4.1.: TEM images of the cross section of the PMMA-PC multilayer films with PC
composition: a, 20% b, 50% and c, 80%. PMMA and PC layer thickness is 380
nm respectively.

can be achieved by monitoring the phonon propagation in the film. Knowledge on phonon at-
tenuation could further provide information such as structural relaxation and material defects
[93]. In spite of the great importance of phonon dispersion in such polymeric nanostructured
films with 1D periodicity, the only experimental study so far was performed recently on a film
comprised of alternating poly(methylmethacrylate) (PMMA) and poly(ethylene terephthalate)
(PET) nanolayers using Brillouin light scattering [94] that probes phonon dispersion via inelas-
tic scattering of light by phonons. Although this preliminary attempt clearly revealed the
layer confinement of phonon propagation as well as the impressive mechanical anisotropy, the
single film used with strong optical anisotropy excluded a deep insight into such a system.

4.1.2. Film characterization

The PC / PMMA multilayer films of total thickness about 50 𝜇m with different periodicity
and composition were fabricated by varying the layer-multiplying number and the volume
fractions 𝜙 of the pure components [84, 85]. For TEM examination, thin sections of about 60 nm
were prepared using a Leica EMUC6 ultra-microtome employing a diamond knife at room
temperature. TEM experiments were carried out on a JEOL 2010F equipped with a post-
column Gatan Imaging Filter (GIF). The zero loss energy filtered images were taken with an
energy window of 15 eV.

4.1.3. Dispersion relation for in-plane phonon propagation

For in plane phonon propagation, BLS was used in the transmission geometry. In this case, the
scattering wavevector q is parallel to the layers and independent of the refractive indices of the
layers. Figure 4.2a shows polarized (VV) Brillouin spectra at q∥ = 0.0152 nm−1 and ambient
conditions for six PC / PMMA films with symmetric composition (𝜙 = 0.5) but different layer
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a b

Figure 4.2.: a,Isotropic (VV) BLS spectra at q∥ = 0.0152 nm−1 and 20 𝑜C for six periodic PC
/ PMMA multilayer films with symmetric composition but different layer thick-
ness as stated in the plot. The two arrows on the top of the figure denote the
frequency of the longitudinal phonon at 0.0152 nm−1 in the pure PC (f𝑃𝐶) and
PMMA (f𝑃𝑀𝑀𝐴) multilayer films.b, Anisotropic (VH) BLS spectra at q∥ = 0.0152
nm−1 and 20 𝑜C six periodic PC / PMMA multilayer films with symmetric com-
position but different layer thickness as stated in the plot. The two arrows denote
the frequency of the shear phonon at 0.0152 nm−1 in the pure PC and PMMA
multilayer films.

thickness between 12 nm and 390 nm.
All spectra show a prominent Brillouin doublet surprisingly at the same frequency in the

BLS spectra of Fig.4.2a. The peak frequency f = 6.35 GHz at q∥ = 0.0152 nm−1 leads to the
phase velocity (c𝑙 = 2𝜋f / q∥) 2625 ±30 m/s for the phonon with longitudinal polarization. This
value falls between the longitudinal sound velocities of the two materials (c𝑙𝑃𝑀𝑀𝐴 = 2850±
40 m/s and c𝑙𝑃 𝑐 = 2430± 30 m/s) measured in pure PMMA and PC films coextruded under the
same condition. Assuming a homogeneous (hq𝐼𝐼 ≪ 1) two-component medium, application
of Wood’s law 1 to estimate the sound velocity in a PC / PMMA composite with PC volume
fraction 𝜙 = 0.5 yields c𝑒𝑓𝑓 = 2615 m/s, in excellent agreement with the experimental value of
c𝑙. The appearance of this distinct longitudinal phonon propagating with the same velocity in

11/𝜌𝑐2 = 𝜙/𝜌𝑃𝐶𝑐
2
𝑃𝐶 + (1 − 𝜙)/𝜌𝑃𝑀𝑀𝐴𝑐

2
𝑃𝑀𝑀𝐴 , with 𝑐𝑃𝐶 = (2430 ± 30)𝑚/𝑠 and 𝑐𝑃𝑀𝑀𝐴 = (2850 ±

40)𝑚/𝑠 assuming the same densities 𝜌 = 𝜌𝑃𝑀𝑀𝐴 = 𝜌𝑃𝐶

49



4. One Dimensional Phononic Structures

a b

Figure 4.3.: a,The longitudinal sound velocity c𝑙 is plotted as a function of PC composition
in the PC / PMMA multilayer films with bilayer spacing d = 25 nm (solid sym-
bols) and d = 780 nm (open symbols). The solid line denotes the representation
by Wood’s relation14.b, The shear sound velocity is plotted as a function of PC
composition in the PC / PMMA multilayer films with bilayer spacing d = 25 nm
(solid symbols) and d = 780 nm (open symbols).

all six films indicates effective-medium behavior for all these films, which is rather unexpected
for the three films with large layer thickness with hq∥ ≫ 1. For the latter, a closer inspection
of the spectra in Fig.4.4 indeed reveals additional spectral features, e.g. a broader lineshape of
the main peak . A homogeneous-medium-like behavior is also observed for the PC / PMMA
multilayer films at constant periodicity d but different compositions.

Figure 4.3a displays the effective-medium longitudinal phonon velocity for five different PC
volume fraction 𝜙 with two extreme periodicities, d = 25 nm and d = 780 nm. The solid line
is the prediction of the Wood’s law with no adjustable parameters. The data suggest that the
confinement of PC and PMMA layers at nanoscale does not affect the longitudinal modulus,
M = 𝜌𝑐2𝑙 , of the multilayer films assuming a constant density 𝜌.

Figure 4.2b displays the depolarized (VH) spectra at q∥ = 0.0152 nm−1 for the same six films
of Fig.4.2a . Since the intensity of the VH spectrum is proportional to the segmental optical
polarizability anisotropy [95], the VH spectrum of the pure PMMA ”multilayer” film is hardly
measurable. The glassy films support shear and hence the single Brillouin doublet in the VH
spectrum is assigned to the phonon with transverse polarization. For the pure PC glassy film,
the transverse sound velocity c𝑡𝑃𝐶 amounts to 1070 m/s whereas for PMMA, c𝑡𝑃𝑀𝑀𝐴 = 1400
m/s was obtained from the VH spectrum of a bulk PMMA sample. In clear contrast to the VV
spectra of Fig.4.2a, the peak position for the symmetric PC / PMMA multilayers is no longer
constant but shifts to higher frequencies with decreasing layer thickness. By monitoring the
q - dependence of the spectrum, this transverse phonon is found to show a linear dispersion
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(see Fig.4.5 below) for all six films like the longitudinal phonon in Fig.4.2a. Therefore all
films exhibit effective-medium behaviour for the transverse phonon propagation. However,
the transverse sound velocity shows a monotonic increase from 1130 m/s for the largest layer
thickness (h = 390 nm) to 1270 m/s for the thinnest layer (h = 12 nm).

To further verify this finding, we also measured the VH spectra for the films with two
extreme periodicities and different compositions. The same effective-medium and linearly-
dispersed transverse phonons are found in all the films and the increased shear modulus with
decreasing layer thickness is confirmed as well for asymmetric compositions, as shown in Fig.
4.3b. Thus it is clearly revealed that the confinement effect has an evident impact on the shear
modulus of these films despite its negligible influence on the longitudinal modulus, possibly
due to the confinement-induced stronger shearing force on polymer chains during processing .
This impacts the chain conformation more than the packing density. An analog to the Wood’s
relation is however not known for shear modulus and the red lines in Fig. 4.3b represent a
polynomial least-square fit to the experimental c𝑡 data varying between c𝑡𝑃𝑀𝑀𝐴 and c𝑡𝑃𝐶 of
the pure PMMA and PC, as expected for an effective-medium behavior. The shear modulus,
G = 𝜌𝑐2𝑡 , increases by about 60 % in the bilayers with h = 5nm compared to the bilayers with
h = 624 nm film with G = 1.5 GPa (𝜌 = 1.2 g / cm3).

In addition to the impressive effective-medium behavior, the recorded BLS spectra also
carry important information on the structure influence on phonon propagation. For a better
visualization of the spectral features ,we plotted the VV spectra in logarithmic intensity scale
as shown in Fig.4.4 for the two symmetric-composition films with periodicity d = 780 nm and
d = 100 nm, respectively. For the former with larger layer thickness h, the rich features are
clearly visualized and up to five modes (2-6) are clearly resolved. For the second film with d =
100 nm (h = 50nm) (lower panel), the single longitudinal (5) and transverse (1) modes display
a complete homogeneous-medium behavior. The barely distinguishable VV spectra for films
with low h (h𝑞∥ < 1) and their rich features at high h (h𝑞∥ > 1) are in agreement with the
anticipated interaction between wave and structure.

The detailed knowledge of the in-plane phonon propagation including the identification of
the spectral features in Fig.4.5 needs the phonon dispersion relation which is a plot of the BLS
peak frequency versus q∥, as shown in Figure 4.5 for the symmetric-composition film with
layer thickness 390 nm. The previously encountered effective-medium longitudinal (5) and
transverse (1) phonons are readily identified by their linear dispersion that yields the longitu-
dinal and transverse phase velocities c𝑙 and c𝑡 respectively. The origin of modes (2-4) and (6)
cannot be identified without computation of the theoretical dispersion relations. However, the
experimental dispersion of these modes in Fig.4.5 bears resemblance to layer guided modes
[96, 97] suggesting a relation to the multilayer structure. The apparent phase velocities c∥ = 2𝜋f/
q∥ of these ”structural” modes fall close to c𝑡 for (2, 3) and to c𝑙 for (6).

4.1.4. Finite element analysis (FEA) modeling

Finite element analysis was used to compute phononic dispersion relations and provide in-
terpretation of the observed propagation modes [98]. This model assumes perfectly bonded,
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Figure 4.4.: BLS spectra at q𝐼𝐼 = 0.0181 nm−1 and 20 𝑜C for two periodic symmetric multi-
layer films with bilayer thickness d = 100 nm and 780 nm. The numbers indicate
modes with increasing frequency.

ideally flat layers with uniform thickness, no roughness and defects, no spatial variations in
elastic properties within a given layer and zero interface thickness. The following densities
and elastic constants were used in the model: 𝜌𝑃𝑀𝑀𝐴 = 1190 kg / m3, E𝑃𝑀𝑀𝐴 = 6.26 GPa,
𝜎𝑃𝑀𝑀𝐴 = 0.341; 𝜌𝑃𝐶 = 1300 kg / 𝑚3, E𝑃𝐶 = 4.11 GPa, 𝜎𝑃𝐶 = 0.38. These values of elastic
constants are based on independent measurements of c𝑙 and c𝑡 in homogeneous PMMA and
PC films. Figure 4.5 shows the comparison of the theoretical dispersion relation and the exper-
imental results for the symmetric-composition film with periodicity d = 780 nm, and a good
agreement between theory and experiment is found. The predicted quasilongitudinal (QL),
quasitransverse (QT) and mixed modes (modes with displacements fields primarily parallel,
perpendicular or without preferential orientation to the wave vector, respectively) are shown
as solid, dashed and dotted lines, respectfully. Note that scattering from mixed modes is gen-
erally very weak and difficult to detect experimentally [98]. In fact, there is an overall good
agreement between the experimental and modeling results for all the film compositions and
periodicities with no adjustable parameters. The appearance of additional modes (2-4) and
(6) is predicted by theory. Importantly, FEA allows computing the details of the displacement
fields, thereby allowing deeper insight into the nature of these modes.

Displacement fields corresponding to QT and QL modes for q∥ = 0.025 nm−1 in the sym-
metric film with d = 780 nm are shown in Figure.4.6, ordered from low to high frequency.
There are three distinct QT and three QL modes predicted for this sample, although only two
QT modes are resolved experimentally, probably due to close proximity of the QT modes and
/ or structural imperfections of the layers. Note that, while the various QL and QT modes
propagate with essentially the same respective phase velocities (Fig.4.5), the displacements
are localized primarily within the individual PC or PMMA layers (Fig.4.6). When the phonon
wave vector q∥ approaches zero, the modes (2, 3 and 6) present localized, non propagating
eigenvibrations of the periodic bilayers with zero group velocities and frequencies given by f
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Figure 4.5.: The dispersion relations for a symmetric film having a bilayer thickness d = 780
nm. The lines indicate the theoretical dispersions for the modes with quasi longi-
tudinal (QL) (solid) quasi transverse (QT) (dashed) and mixed (dotted) polariza-
tions. Open and solid symbols refer to the isotropic (VV) and anisotropic (VH)
BLS respectively.

= m c𝑖 / d , where m = 1, 2,..., and c𝑖 is either the longitudinal c𝑙 , for (6), or transverse c𝑡,
for (2, 3). For the larger values of q∥, the displacement fields of these modes evolve into layer
guided phonons (Fig.4.6) propagating with group velocities that approach the phase velocities
of the medium as seen in the dispersion relations in Fig.4.5.

4.1.5. Temperature dependence of the elastic constants

The biased spatial distribution of the displacement fields for different modes is manifested in
their softening temperatures T𝑠. The phase velocity c(T) of these modes is anticipated to dis-
play the characteristic kink at the temperature that corresponds to the T𝑠 of their propagation
medium. Thus, the phase velocity c(T) of various phonon modes can be used in combination
with the theoretical modeling to provide interpretation on the nature of the observed propaga-
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Figure 4.6.: Details of the displacement fields for the quasi-transverse and quasi-longitudinal
modes computed for the symmetric 780 nm bilayer film at q𝐼𝐼 = 0.025𝑛𝑚−1

tion modes. Figure 4.7 shows the c(T) for the symmetric bilayer films with periodicity (a) d =
780 nm and (b) d = 25 nm. The sample with d = 25 nm displays a single T𝑠 of 122 𝑜C which is
intermediate between the T𝑔 of the PMMA (105 𝑜C) and PC (140 𝑜C) layers. Thus, phonons
propagating in this film do not resolve the presence of individual layers and display a homoge-
neous medium-like behavior, further supporting the previous conclusion. In contrast, there are
three distinct T𝑠 for phonons propagating in the film with d = 780 nm. Modes (1) and (4) have
T𝑠 of 135 𝑜C which is similar to T𝑔 of PC; mode (6) has of T𝑠 105 𝑜C , which is essentially the
T𝑔 of PMMA; while T𝑠 of mode (5) is 122 𝑜C. Therefore, modes (1) and (4) must propagate
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a b

Figure 4.7.: The softening transition temperatures (vertical shaded regions) for the modes
(1,4-6) of the experimental BLS spectrum of Fig.4.4. Solid lines represent lin-
ear fits of the experimental velocities before and after the transition.

primarily in the PC layers; mode (6) - primarily in the PMMA layers; and mode (5)-in both PC
and PMMA layers. This conclusion agrees reasonably well with the theoretical displacement
fields shown in Fig.4.6, which suggest that the lowest frequency QT and QL modes should
propagate in the PC and PMMA layers, while the mid frequency longitudinal mode (5) is not
strongly localized.

4.1.6. Out of plane elastic excitations

As a brief digression of the in-plane phonon propagation under discussion, Fig.4.8 shows a
VV BLS spectrum for phonon propagation normal to the layers recorded at q⊥ = 0.035 nm−1.
There are two peaks present: peak (5) at roughly 15 GHz corresponding to the effective-
medium longitudinal phonon and a ”Bragg” peak[96] (B) at roughly 12 GHz due to the period-
icity modified momentum conservation condition in the scattering process. The phase velocity
of the effective-medium phonon is found to be the same as that for in-plane propagation, indi-
cating the mechanical isotropy of the present system at the long wavelength limit. This q value
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Figure 4.8.: Brillouin spectrum for out-of-plane phonon propagation at q⊥ = 0.035 nm−1. The
scattering geometry is indicated in the inset. The peak at about 15 GHz corre-
sponds to the longitudinal phonon propagating along the surface normal. The
weak feature at about 12 GHz is the Bragg peak due to the periodicity.

corresponds to a phonon with a wavelength of about 180 nm, which should be short enough
to distinguish the mechanically different two layers. However, the single phonon spectrum
of Fig.4.8 displaying a longitudinal wave propagating with a phase velocity in an effective
medium appears to contradict the layered structure of the film. This apparent contradiction
with the in-plane phonon propagation , where the two layers do exhibit distinct in-plane sound
velocities, is attributed to the sufficiently low elastic contrast between the two layers in the
direction of the film normal.

For the out-of-plane phonon propagation, we are actually dealing with a 1D phononic crys-
tal. The phononic band structure of this 1D phononic crystal can be calculated by FEA with
the use of the same sets of elastic constants for PMMA and PC, which however reveals neg-
ligible small Bragg gaps at the first Brillouin zone boundary. To a good approximation, the
phonon propagation along the film normal is isotropic, in accordance with the single experi-
mental phonon spectrum (Fig.4.8). The experimental and theoretical phase velocities of this
single phonon are 2625 m/s and 2640 m/s, respectively. The frequency of (Bragg) is related
to the lattice constant, therefore can be used to estimate d and to also check the possible vari-
ation of the layer periodicity over the sample within different probed volumes. We found
that d fluctuates about 20% around the nominal 780 nm thickness[84, 85] at various film spots
(beam diameter 100 𝜇m), which is consistent with the thickness variations observed with
TEM (Fig.4.1).
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4.1.7. Conclusions

The systematic study of in-plane phonon propagation in PC / PMMA multilayer films revealed
complex dispersion relations with two or more structure related modes. For periodicities much
less than the phonon wavelength, the dispersion relation displays an effective homogeneous
medium behavior with the propagation of two phonons with longitudinal and transverse po-
larization. The confinement in the layered structure impacts only the shear modulus, which
was found to increase with decreasing layer thickness. FEA is employed to compute the the-
oretical dispersion relation and provides a good general agreement with experiment using no
fitting parameters. The temperature dependence of the phonon phase velocities is used to iden-
tify the nature of the observed propagation modes and provides a measurement of the T𝑔 of
the individual polymer nanolayers.
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4.2. High impedance contrast 1D-Periodic Hybrid
Structures

4.2.1. Introduction

In the previous chapter we considered the case of mechanical waves in nanostructured multi-
layer films and the influence of boundaries on their propagation nature. Such multicomponent
systems with small acoustic impedance mismatch (Z = 𝜌𝜈 ) between the pure phases do not
support phonon localization and exhibit an effective medium behavior. Phononic crystals [99]

(Fig. 4.9) represent a novel class of materials that enable the systematic manipulation of elas-
tic energy flow and hence opening pathways for exploration of entirely new phenomena. The
substantial contrast of the acoustic impedance between the different components is the neces-
sary condition for phonon localization. The mechanical analogues of photonic crystals [100],
exhibit periodic modulation in density and / or elastic moduli, giving rise to unique properties,
such as the formation of phononic band gaps and negative refraction [100]. Efforts to control
the propagation of elastic waves with frequencies ranging from sound (102 − 104 Hz) to heat
(1012 Hz) resulted in numerous phononic structures [101] with wide meso-scale dimensions.

Recent technological advances allowed the fabrication of periodic materials in the the sub-
micron scale [102, 103], thus shifting the investigation of phononic properties in the hypersonic
(GHz) [104, 105] and even sub-THz range [106]. In particular, due to the relative simplicity of fab-
rication, one-dimensional (1D) superlattices and multilayer films have been extensively inves-
tigated for their novel electronic, optical, thermo-mechanical and acoustic properties [107–109].
The potential use of 1D periodic structures as candidates for photonic[100] and phononic[110]

applications has been highlighted, yet the experimental realization of hypersonic phononic
band gaps so far is restricted in 2D and 3D systems. This limitation mainly stems from the
lack of experimental techniques to probe characteristic length scales in the order of the peri-
odicity of such nanostructures. A detailed understanding of phonon propagation in periodic
media is the precondition to access fundamental concepts such phonon- photon interactions
[111, 112] and heat management [99].

In this chapter, the first direct experimental observation of a hypersonic phononic band gap
in a 1D periodic hybrid system will be demonstrated. The dispersion relations of a multilayer
stack of alternating SiO2 and poly-(methyl methacrylate) (PMMA) nanolayers were probed
directly for phonon propagation in the periodic direction. Finite element analysis (FEA) was
used to study the impact of porosity and interfacial effects on the phononic properties. An
excellent agreement with experimental findings was observed.

4.2.2. Experimental

Nanocrystalline materials and amorphous polymers represent excellent candidates for design-
ing 1D phononic crystals due to their intrinsic properties such as high modulus contrast and op-
tical transparency. In addition, a wide range of multicomponent morphologies is feasible due
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1-D 2-D 3-D

Figure 4.9.: Examples of phononic crystals with periodicities in one, two and three dimen-
sions.Left: A one- dimensional phononic crystal consisting of elastic layers made
of materials with different mechanical properties. Center: A two- dimensional
phononic crystal consisting of elastic cylinders in a backround elastic material.
Right: A three dimensional phononic crystal of spheres in a backround elastic
medium.

to their facile processibility. In order to fabricate the hybrid phononic structures (Fig. 4.10a),
inorganic SiO2 nanoparticles and PMMA have been used as high and low elastic modulus
materials, respectively. Prior to spincoating, glass and silicon substrates were cleaned in a
piranha solution containing conc. sulfuric acid and hydrogen peroxide 30 % (2:1, v / v) for 30
min. Phononic crystals consisting of 20 SiO2 / PMMA bilayers were built up by sequential
spincoating of a 2.2 % (w / v) solution of PMMA (Acros, M𝑊 = 35 kDa) in toluene and 3.4 %
LUDOX AS-30 (Aldrich) containing 0.1 % sodium dodecyl sulfate (SDS) in 14 % ammonium
hydroxide solution. To control the thickness of individual layers (65 nm of SiO2 / 35 nm of
PMMA), spincoating was performed with speed 5000 rpm, acceleration 5400 rpm/s, for 20 s.
After each coating cycle the samples were subjected to heat treatment at 100 𝑜𝐶 for 15 min.

The direction dependence of phonon propagation is investigated by the two scattering ge-
ometries [62] mentioned extensively in previous sections. In-plane mechanical properties are
probed using the transmission geometry, while reflection geometry provides access to phonon
characteristics along the periodicity direction of the crystal (Fig. 4.10b). In the present study,
the polarization of both incident and scattered light was always selected to be perpendicular
(V) to the scattering plane.

4.2.3. Results and discussion

4.2.3.1. In-plane phonon propagation

Figure 4.11a displays polarized Brillouin spectra of the pure phases and the hybrid structure,
recorded at q∥ = 0.0167 nm−1 for phonon propagation parallel to the surface of the film. The
observed linear depedendence f ( = 𝜔/2𝜋) vs q shows purely acoustic behavior for the phonon
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Figure 4.10.: a, Scanning electron microscopy (SEM) image of the SiO2-PMMA multilayer
film cross section. b, Schematic representation of the scattering geometries. The
red and blue arrow correspond to phonon propagation normal and parallel to the
plane of the film respectively.

propagation in both phases (Fig. 4.11b). Hence, the longitudinal sound velocity amounts to
2800 ± 30 m/s and 3370 ± 30 m/s for PMMA and SiO2 respectively. The latter is clearly lower
than the longitudinal sound velocity in the conventional glass (∼ 5750 m/s) as indicated by the
slope of the solid line in Fig. 4.11b. This reduced value for the present SiO2 block is attributed
to the porosity which is formed during the fabrication process. The hybrid structure also
exhibits a single doublet spectral feature (Fig. 4.11a) that suggests a homogeneous structure
since the probing length scale 2𝜋/𝑞∥(∼ 380 nm) exceeds the bilayer thickness (100 nm). The
obtained sound velocity c𝑙 = (2𝜋/𝑞∥) = 3160 ± 30 m/s (f the frequency of the phonon),
falls between the sound velocities of the two individual materials. Assuming a homogeneous
(h𝑞∥ ≪ 1, h being the thickness) two component medium, the sound velocity c𝑙 in the hybrid
material with a SiO2 volume fraction 𝜙 = 0.65 can be estimated by the effective medium
Wood’s law using c𝑃𝑀𝑀𝐴 = 2800 m/s and c𝑆𝑖𝑂2 = 3370 m/s 2. The computed value c𝑙 = 3150
m/s is in excellent agreement with the experimental value (3160 ± 30 m/s).

4.2.3.2. Out-of-plane phonon propagation

For phonon propagation normal to the film, a different behavior is observed. Figure 4.12
shows polarized Brillouin spectra of the hybrid material recorded at three different scattering

21/𝜌𝑐2 = 𝜙/𝜌𝑆𝑖𝑂2
𝑐2𝑆𝑖𝑂2

+(1−𝜙)/𝜌𝑃𝑀𝑀𝐴𝑐
2
𝑃𝑀𝑀𝐴 , with 𝑐𝑆𝑖𝑂2

= (3370± 30)𝑚/𝑠 and 𝑐𝑃𝑀𝑀𝐴 = (2850±
40)𝑚/𝑠 using the values for densities 𝜌𝑃𝑀𝑀𝐴 = 1 gr / cm3 and 𝜌𝑆𝑖𝑂2

= 1,42 gr / cm3
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Figure 4.11.: a, BLS spectra at q∥ = 0.0167nm −1 for sound propagation parallel to the surface
of the pure PMMA, porous SiO2 layer and hybrid SiO2 / PMMA multilayer film
b, Dispersion relations for PMMA (red points), porous SiO2 (gray points) and
the hybrid film (blue squares) for wave propagation parallel to the film whereas
the dashed lines indicate the corresponding linear fits. The solid line indicates
the linear (acoustic) dispersion in a conventional glass film (SiO2).

wavevectors near the Brillouin zone (BZ) boundary at q𝐵𝑍 = 𝐺; for the present 1D stack q𝐵𝑍

= 𝜋/h = 0.0341 nm−1. For q⊥ < q𝐵𝑍 , the BLS spectrum at 0.0301 nm−1 displays a single
doublet which splits into a double doublet, when the value of q⊥ crosses q𝐵𝑍 of the first BZ
shown for two spectra at 0.0324 nm−1 and 0.0349 nm−1 . The spectra at the transition range
can be well represented (red lines) by either a single or a double Lorentzian line shape. The
clear qualitative spectral change across the BZ boundary of the present 1D periodic medium
is reminiscent of a stop band of the elastic waves due to their interference as a result of the
discrete translational periodicity of the phononic structure.

More detailed information on the out of plane (along the symmetry axis) phonon propaga-
tion can be obtained from the dispersion relation, 𝑓 (𝑖) (i = 1,2) versus q⊥ (Fig. 4.13). For the
hypersonic phononic crystal, this dispersion diagram reveals the presence of a unidirectional
stop band at a central frequency f = 12.6 GHz with a width Δf = 3 GHz i.e., a relative gate
of Δf/f = 24% . This stop band opens close to q𝐵𝑍 ≈ 0.0314 nm−1 for the 1𝑠𝑡 BZ (blue
vertical solid line) and hence coined a Bragg gap. The propagation of hypersonic longitudinal
phonons vertical to the layers (unidirectional gap) with frequencies within the marked blue
region is forbidden. Due to beam reffraction in the reflection geometry the low q⊥ range is
inaccessible and therefore the single BLS spectrum cannot be recorded at long phonon wave-
lengths (q⊥ ≪ q𝐵𝑍). This missing acoustic branch (dashed blue line in Fig. 4.13), however,
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Figure 4.12.: BLS spectra of the hybrid SiO2 / PMMA film at three different q⊥ values near the
Brillouin zone BZ boundary (q𝐵𝑍 = 0.0314 nm−1). The red solid lines, shown
only for the transition q⊥ -range can be well represented (red lines) by either a
single or a double Lorentzian line shape. The clear qualitative spectral change
across the BZ boundary of the Stokes side, denote the representation of the ex-
perimental spectra by a single or double Lorentzian lineshapes, respectively be-
low and above q𝐵𝑍 .

is easily accessible for the in-plane phonon propagation (Fig. 4.11b) which is also shown in
Fig. 4.13 (solid squares). The in-plane and out-of-plane phonon propagation appears to fall
on the same acoustic branch indicative of a single effective medium sound velocity along both
symmetry directions . This further implies that the present hybrid SiO2 / PMMA stack exhibits
mechanical isotropy, since the density is expected to be isotropic.

Finite element analysis was performed to compute the phononic band structure [102, 103] by
solving the elastic wave equation in an infinite, one-dimensional periodic medium. The model
assumes perfectly bonded, ideally flat layers with uniform thickness, no roughness and defects,
no spatial variations in elastic properties within a given layer and zero interface thickness. We
treated the porous SiO2 component layer as an effective medium, as verified with a separate
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Figure 4.13.: Experimental dispersion relation for phonon propagation along the direction of
periodicity. The highlighted blue region indicates the observed hypersonic band
gap. The blue dashed and black solid line correspond to the computed band
diagram of PMMA / porous SiO2 and PMMA / pure SiO2 respectively. The
solid circles and squares denote the experimental data for out-of-plane (q⊥) and
in-plane (q∥, Fig. 4.11) propagation

experimental measurement of a single SiO2 layer (Fig. 4.11). The experimental values ob-
tained from the single porous SiO2 and PMMA layers were used directly in the calculations.
In general, the interfaces will exhibit some degree of roughness that might lead to incoherent
scattering of higher frequency phonons, and further suppression of phonon transport. How-
ever, the degree of this incoherent scattering component depends on the ratio of the wavelength
of the phonons probed and the characteristic interface roughness; the interface roughness in
the structure is typically less than 30 nm, well below the effective medium requirement (∼ 1 /
5 of probing wavelength). Thus, the probed wavelengths are unable to resolve the inhomogen-
ities in the individual SiO2 layer and hence for the frequency region of interest, we can model
the system as an infinite one dimensional periodic medium, with flat interfaces.

Figure 4.13 visualizes the good agreement between the theoretical and the experimental dis-
persion relations. The blue and black dashed lines correspond to the computed band diagram
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Figure 4.14.: Displacement field of lower band edge mode (f(1) at q(2)) (middle), showing
that the displacement fields are concentrated in the SiO2 block and displacement
field of upper band edge mode (f(1) at q(2)) (right), showing that the displacement
fields are concentrated in the PMMA block. Color bar shows displacement field
variation. Left panel shows the displacement field for a low q value (q(2) = 0.01
nm−1) where the system exhibits an effective medium behavior.

of PMMA / porous SiO2 and PMMA / pure fused SiO2 respectively. For the latter system the
Bragg gap opens at frequency 30 GHz with a width of about 5 GHz (Δf/f = 17 %) as indi-
cated by the grey area. Here, we see a manifestation of the effect of porosity on the phononic
properties of the hybrid structure. The width of the gap is directly related to the impedance
contrast of the component layers, both in the elastic constants (Modulus, Poisson’s ratio) as
well as mass density contrast.

The computed displacement fields of the lower and upper band edge modes, within a single
repeat unit of a 100 nm layer are shown in Fig. 4.14. The displacement fields reflect the differ-
ence in nature of the modes, the lower (upper) modes being concentrated in the stiffer (softer)
SiO2 (PMMA) blocks. This is a consequence of the one-dimensional discrete translational
periodicity of the phononic crystal that couples eigenmodes with k-vectors of k = G/2 and
-G / 2. These two modes interact and form the upper and lower band edge modes, opening a
band gap in the process. As a result of the translational symmetry, the formed two band edge
eigenmodes are stationary modes with the same period as the phononic crystal but their dis-
placement fields are phase shifted with respect to each other by half a period. This is a direct
result of the symmetry coupling and is independent of the exact thicknesses of the PMMA and
the SiO2 layer, i.e. the lower (upper) edge mode will have the displacement field concentrated
in the stiffer (softer) block, which is lower (higher) energy, and this distinction in the band
edge modes is most clearly manifest in the one-dimensional periodic system. As expected for
an effective medium behavior, the displacement field is uniformly distributed in both layers
for long wavelength phonon propagation (left panel in Fig. 4.14).
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4.2.4. Conclusions

We see here a clear agreement between theoretical prediction and experimental measurement
on the phononic dispersion of a 1D periodic phononic crystal. It is also seen that a porosity of
30% leads to a 20 GHz reduction in the gap opening frequency; in addition, it is experimentally
shown that the porosity does not impede the gap opening in these systems. This demonstrates
the possible usage of this PMMA / SiO2-porous phononic crystal as an efficient passive tunable
GHz filter. By tuning the porosity of the SiO2 block, while maintaining the structural integrity,
or even as a dynamic filter, by subsequent infiltration of the same porous SiO2 with different
solvents or reactive agents to tune the Bragg gap for filtering, or sensing applications.
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5. Phononic Biomaterials: Spider
dragline silk

5.1. Introduction

Many natural and man made materials exhibit structure on more than one lenght scale;in some
materials, the structural elements themselves have structure. This hierarchy can play a major
role in determining the bulk materials properties. Examples of natural hierarchical materials
include wood [113], tendon [114], trabecular bone and silk. Of these systems, spider dragline
silk, has been extensively investigated, due to its superior properties compared to synthetic
polymers with similar chemical structure, such as polyamides. The dragline is one specific
fiber out of seven different silk types which a spider has at hand. The orb webs radii and the
webs frame are built from dragline fibers, which have typical diameters in the range of 1-10
𝜇m, depending on the species. Dragline also acts as the spiders life line, catching the spider
when she drops from her web in moments of danger. Correspondingly, it is optimized for
tensile strength, extensibility, and energy dissipation. Energy dissipation prevents unwanted
springlike elasticity in functions related to catching of prey and stopping the spider from a free
fall.

Spider dragline silk is a semi-crystalline biopolymer, produced in the spiders major ampul-
late gland [115–117]. During this process the aqueous solution of the two protein constituents of
dragline silk is crystallized, while the macromolecules maintain their high orientation order
[118]. Attempts to reproduce this procedure in the lab have been recently published [119, 120].
In spite of the experimental effort, the full elucidation of its structural organization is still
missing. The alanine and glycine-rich proteins are organized in oriented 𝛽 -sheet nanocrystals
connected by amorphous chains and less crystalline domains [121–123]. In addition to the known
primary and secondary structure, there is non-periodic supramolecular order at larger length
scales [124–127]. The two protein constituents are not uniformly distributed and the peptide as-
sembly leads to the formation of nanofibrils with size of a few hundred nanometers [123]. The
utilization of X-ray microscopy has identified highly oriented, along the fiber axis, domains
with size of the order of the nanofibrils and a total volume fraction of about 30%, dispersed
in a moderately oriented dominant medium [126]. These domains are characterized by a high
density in nanocrystallites and represent the hard components of the structured composite ma-
terial.

This multilevel structural organization adds to the spider dragline silk its unusual and tun-
able mechanical properties including high tensile strength and toughness [117, 128–131]. A key
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factor that controls these properties is the pre-strain of the amorphous chains, which is cre-
ated during spinning, and can be released when silk is exposed to humidity and is allowed to
shrink - ”supercontract” [129, 132, 133]. The high value of the Young’s modulus (in the order of
10 GPa) along the fiber is well documented by mechanical techniques [130, 134] at the low reso-
lution (long wavelength deformation) of typical elastic stress-strain experiments. The elastic
modulus in the normal direction, however, is not accessible by these techniques and the effect
of the benign fiber processing with regard to mechanical anisotropy still remains unknown.
Yet the propagation of elastic (acoustic) waves with short wavelengths, which commensurate
characteristic length scales of the spider dragline silk, can reveal unprecedented properties
of this fascinating natural product. It is the sensitivity of the wave propagation through struc-
tured composites and the vector nature of the elastic field that makes the dispersion relation i.e.
frequency (f ) vs. wavevector (q) a rich source of information on structure and nanomechanics.

5.2. Experimental

The samples used are major ampullate silk fibers (Fig. 5.1a,b)from Nephila edulis spiders,
obtained by forced silking [135] at a speed of ∼ 1mm/s, room temperature of 23 ± 1 𝑜 C and
relative humidity 35 ± 5 %. The silk fibers are wound around two metal rods in order to form
a 6 mm long dense double-layer grid (Fig. 5.1c). Fiber thickness at zero strain is measured by
laser difraction and is found to be 3.3 𝜇m. Two special scattering geometries are adopted to
select the direction of q either parallel (q∥ in Fig. 5.1d) or normal (q⊥ in 5.1e) to the fibers.
The magnitude of q∥ and q⊥ are given in the caption of 5.1, and only q⊥ depends on the
refractive index n = 1.55. The individual fibers (Fig. 5.1b) are sufficiently thick to assure bulk
light scattering free of confinement effects.

5.3. Results and discussion

5.3.1. Mechanical strength directionality

First we examine the dispersion for the elastic wave (phonon) propagation normal to the fiber.
According to the current picture of the spider dragline silk the dense crystalline (hard) do-
mains are well oriented with their long axis along the fiber. The preferred alignment of most
covalent bonds of both crystalline and amorphous regions along the fiber axis implies that in
the normal direction the contrast of elastic moduli should be low. Hence the material appears
homogeneous over the probing length scale 2𝜋 / q⊥ (∼ 170 nm). Indeed the experimental BLS
spectrum displays a single doublet as seen in the lower panel of 5.2a at q⊥ = 0.0365 nm−1.
The frequency of the peak (1’) increases linearly with q⊥ as indicated by the red dashed line
in the shaded region of 5.2b. Its acoustic behavior allows the determination of the effective
medium sound velocity c⊥ = 𝜔 / q⊥ = 3140 ± 40 m/s and the longitudinal modulus M⊥ = 𝜌 c⊥2

= 12.3 ± 0.2 GPa (using the bulk density 𝜌 = 1.25 g / cm3) [136]. This modulus is inaccessible

68



5.3. Results and discussion

a c

d e

FPI FPI

Incident laser

Incident laser

Scattering Scattering

qII q
┴

5 mμ 1 mm

b

e

Figure 5.1.: Access to the mechanical properties along and normal to the spider dragline
fiber. a, View of the spider spinnerets under the microscope. Both major and
minor ampullate fibers are shown, but only the major (depicted in the frame) is
collected and used for the BLS measurements. b, Scanning electron microscope
image of a spider dragline silk fiber. c, Grid of parallel fibers on the cell holder.
d and e, Light scattering geometries allowing for probing the elastic constants
either parallel (transmission mode) or normal (reflection mode) to the fiber long
axis. The two arrows indicate the direction of the scattering wave vector q with
magnitudes: q∥ = (4𝜋/𝜆)𝑠𝑖𝑛(𝜃 / 2) and q⊥ =(4𝜋𝑛/𝜆)𝑠𝑖𝑛(𝜃 / 2) where 𝜃 is the scat-
tering angle and 𝜆 the wavelength of the incident laser beam. A high resolution
six-path Fabry-Perot Interferometer (FPI) records the Brillouin light spectrum re-
jecting the elastically scattered photons.

to the conventional techniques and is reported for the first time. It assumes a value typical for
synthetic bulk amorphous polymers [137].

A qualitatively different behavior is observed for phonon propagation parallel to the fiber
axis. The experimental BLS spectra now exhibit a double doublet spectral line shape as seen
in the upper part of Fig. 5.2a for q∥ = 0.0167nm−1. The nature of the two peaks (1) and (2) is
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Figure 5.2.: BLS spectra and experimental dispersion diagram of the native spider
dragline silk along two symmetry directions. a,BLS spectra at q∥ = 0.0167
nm−1 (in blue) with two peaks ((1) and (2)) along the fiber and at q⊥ = 0.0365
nm−1 (in red) with one peak (1’) normal to the fiber axis. b, Dispersion relations
for modes (1) and (2) (blue points) and mode (1) (red points) representing elastic
wave propagation parallel and normal to the fiber, respectively. The two dashed
lines indicate the effective medium sound velocities in the two directions whereas
the hatched area denotes the unidirectional stop band.

unraveled in the dispersion plot of 5.2b. At long phonon wavelengths (low q∥’s), mode (1) is
acoustic leading to the effective medium sound velocity c∥ = 𝜔 / q∥ = 4970 ± 30 m/s which
is about 60% higher than c⊥. The high value of the longitudinal modulus M∥ = 𝜌 c∥2 = 31±
0.1 GPa demonstrates the large mechanical anisotropy M∥ / M⊥ = 2.6± 0.05 of native silk.
The direction dependence of the mechanical properties is consistent with the high orientation
order along the fiber [118, 122, 126, 129, 133, 135]. On the other hand, the low value of the longitudinal
modulus normal to the fiber is due to the amorphous dispersion medium and the low modulus
of the nanocrystals in this direction.
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5.3.2. Structural dependence of Elastic energy flow

The dispersion relation for wave propagation along the fiber in Fig. 5.2b shows the unex-
pected opening of a large stop band at a frequency f𝑔 = 14.7 GHz with a width Δf𝑔 = 5.3
GHz (hatched area in Fig. 5.2b) i.e., a normalized width Δf∗𝑔( = Δf𝑔 / f𝑔) ∼ 0.36 at hyper-
sonic frequencies from about 12.5 GHz to 17.5 GHz. To the best of our knowledge this is the
first observation of a phononic gap in biological structures. In order to investigate the relation
of supramolecular structure and the observed unidirectional gap, a regenerated silk sample is
compared. The crystalline structure was destroyed by dissolving the native fiber in hexaflu-
oroisopropanol and subsequent spin-coating and drying at 100 𝑜C under vacuum for 2 days.
The absence of crystallinity was documented using infrared spectroscopy and the finding is in
accord with literature reports [138]. The BLS spectra of a ∼5 𝜇m thick film of the regenerated
silk are single doublets for both in-plane and normal to the film plane directions (Fig. 5.3a).
The dispersion diagram of Fig. 5.3b (solid triangles) corresponds to a purely acoustic behavior
yielding c = 2890 ± 30 m/s irrespectively of the propagation direction, characteristic of a ho-
mogeneous medium that exhibits isotropic mechanical properties. Notably, the sound velocity
(and hence the modulus (8.4 GPa)) is lower than c⊥ (red dashed line) but much slower than
c∥ (blue dashed line) compared with the values from the native fiber in 5.2b. Post treatment
with methanol [139] effectively induces the formation of 𝛽 -sheet nanocrystals isotropically
distributed in the film, but does not recover the long range structural hierarchy of the native
fiber. Indeed the dispersion diagram (Fig. 5.3b) (open squares) still exhibits only an acoustic
branch independent of the phonon propagation direction, resulting in c = 3070 ± 30 m/s, i.e.,
6% higher than the amorphous regenerated film.

Unlike colloidal crystals [137] and other systems [140] with periodical structure at length scales
comparable with the phonon wavelength 2𝜋 / q, in this case the gap is not Bragg-type [35].
However, structural techniques suggest the existence of nanofibrils with characteristic size ∼
100 nm [124–126], even though no evidence for their nature is provided. Such a phononic gap
has not been observed in other semi-crystalline systems with similar chemical structures, such
as polyamides. The BLS spectrum of a 15 𝜇m thick film of Nylon-6 consists of a single
doublet for both in-plane and normal to the film plane phonon propagation (Fig. 5.4a). The
dispersion diagram of Fig. 5.4b presents a purely acoustic behavior for both directions and
the corresponding sound velocities amount to c∥ = 3700 ± 30 m/s and c⊥ = 2830 ± 30 m/s.
The higher in-plane sound velocity is attributed to the high orientation of the chains along this
direction. The longitudinal modulus anisotropy M∥ / M⊥ = 1.7 (assuming isotropic density in
the film) is clearly lower than the native (M∥ / M⊥ = 2.6) spider silk fiber. This finding implies
that order at longer length scale exists in silk.

In the gap region, the group velocity for mode (1) becomes zero and elastic energy flow
ceases. The high frequency mode (2) is flat (optic-like) at low q∥, i.e. it is localized in real
space. Such modes relate to material oscillations of particle-like objects in analogy to the
molecular vibrations [35, 137]. In order to resolve such vibrations in a continuous medium,
an elastic impedance (Z = 𝜌 c) contrast (ΔZ) between the particle (c𝑝) and the surrounding
medium (c𝑚) must be present. This requirement is fulfilled since c𝑝 (> c∥) and c𝑚 (> c⊥) are
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Figure 5.3.: Erase of the gap and mechanical anisotropy in regenerated amorphous and
semicrystalline silk. c, BLS spectra at q∥ = 0.0167 nm−1 and q⊥ = 0.0365 nm−1

respectively parallel and normal to the amorphous film and d, Linear dispersion
relation for the acoustic modes (1) and (1’) in the two directions for the amor-
phous (solid triangles) and semicrystalline (open squares) regenerated films. The
sound velocity for the acoustic branch (1’) in the native fiber (red dashed line) is
moderately higher than the sound velocity of the single acoustic phonon in both
the regenerated amorphous and semicrystalline films.

different yielding a large ΔZ (𝜌 c∥ / c⊥)-1 0.6. This implies that, despite the lack of periodicity
in the fiber [125, 126], the degree of crystallinity and, consequently, the elastic modulus varies
at submicronscale consistently with the structure characterization techniques [126, 127]. The
observation of the mode (2) only for q∥ indicates that the direction of the displacement field
is along the fiber axis and hence only coupling with the acoustic mode (1) and not (1’) is
allowed. The interaction between the propagating density fluctuations in the effective medium
(acoustic branch (1)) occurs in the q∥ region when the frequency f(1) becomes of the order
of the vibration frequency f(2), i.e. at q∗

∥ ∼ 2f(2)/𝑐∥. For a spherical particle in air, f(2) = 𝜅
(c𝑝 / d) where d denotes the diameter and 𝜅 = O(1) is a shape dependent constant [35, 137]. The
roughly estimated size (2𝜋 / q∗

∥ ∼ 280 nm) is clearly larger than the individual nanocrystals.
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Figure 5.4.: a, BLS spectra at q∥ = 0.012 nm−1 (upper panel) and q⊥ = 0.035 nm−1 (lower
panel) parallel and normal to the film respectively, at 25 𝑜C. b, Linear dispersion
relation for the acoustic modes normal (open squares) and parallel to the plane of
the film (solid squares).

5.3.3. Gap tuning- Effect of Strain and Supercontraction

To further support the association of these structural features with the unexpected phononic
properties of the spider dragline silk, we have studied fibers with decreased or increased pre-
strain created by supercontracting or stretching, respectively. The breaking of hydrogen bonds
in the amorphous regions, allows the chains to reach a conformation closer to equilibrium,
while the distribution and orientation of crystals is minimally affected [129, 132, 133, 135]. The
reduced pre-strain increases the contrast between nanocrystals and the interconnecting amor-
phous chains and, therefore, between domains of higher and lower crystallinity. In addition,
all spacings along the fiber are inevitable scaled down due to shrinking. These effects are
reflected in the dispersion relation for the supercontracted fiber (at -20% strain) Fig. 5.5a. The
effective medium c∥ ( = 4270 ± 20 m/s) of the acoustic branch (1) decreases by about 15%
(due to decrease of c𝑚) whereas the stop bandwidth Δf∗𝑔 (∼ 0.47) increases by 30% (due to the
increase of ΔZ) compared to the native fiber (Fig. 5.2). As expected, the phononic properties
of the native fiber are essentially recovered by stretching the supercontracted fiber to strain 0%
(Fig. 5.6 at 0% strain).

The worm-like amorphous chains become stiff only when significantly stretched. Similarly,
the stress-strain curves of supercontracted silk exhibit a large plateau [129, 133]. A stronger
dependence on strain for the native fiber (Fig. 5.5) has to be anticipated, because now the
pre-strained chains become stiffer with an only small additional strain. The stretching of the
native fiber has a higher impact on the sound velocity cm of the moderately oriented dispersion
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Figure 5.5.: The effect of strain on the dispersion diagram and the mechanical anisotropy of
native and supercontracted fibers. Dispersion diagrams for wave propagation par-
allel (modes (1),(2)) and normal (mode (1’) (at q⊥ > 0.025 nm−1) to: a, A su-
percontracted fiber at -20% (black solid and open triangles respectively) and 0%
strain (black solid and open circles respectively) and b, A native fiber at 0% (blue
solid and open circles respectively) and 18% strain (blue solid and open triangles
respectively). Strain values are calculated with respect to the unstretched native
fiber length and hence the values for the supercontracted sample are negative.

medium of the native fiber than on c𝑝. This imparts both the contrast ΔZ (and hence the stop
band width) and the effective medium sound velocity, c∥. At 18% strain (Fig. 5.5b), c∥ ( = 6260
± 60 m/s) increases by about 27%, whereas the bandwidth Δf∗𝑔 (∼ 0.24) decreases by about
30%, compared to the (unstrained) native fiber. What distinguishes the stretching of the native
fiber from the stretching of the supercontracted fiber is now the clear decrease of the value of
q∥ beyond which the bending of f(1) occurs. This corroborates the notion that the characteristic
spacing along the fiber increases upon stretching. Since the mechanical properties of silk in
the normal direction are minimally affected by pre-strain, the mechanical anisotropy M∥ / M⊥
consistently increases with strain (Fig. 5.6b); just before breaking (at about 18% strain), the
fiber reaches a high M∥ / M⊥ ∼ 5. Notably, the longitudinal modulus anisotropy in semi-
crystalline systems with similar chemical structures is much lower (Fig. 5.4).

Based on this study, the structure is schematically depicted in Fig. 5.7. The nanocrystals are

74



5.4. Conclusions

Figure 5.6.: a, Longitudinal moduli parallel and normal to the fiber for the native (blue solid
and open squares respectively) and supercontracted (black solid and open squares
respectively) silk. b, Mechanical anisotropy versus strain for the native (blue
triangles) and supercontracted (black triangles) silk.

non-uniformly distributed in the fiber. Crystallinity varies continuously with a characteristic
length scale of a few hundred nm. The variation of elastic modulus and anisotropy follows
the crystallinity. According to the results of Fig. 5.6b, the anisotropy of the supercontracted
sample is lower compared to the native fiber. Given that the orientation of nanocrystals remains
high [129] this implies that the domains must be less elongated that in the native fiber, reflecting
the shrinking and thickening during supercontraction. Stretching the native fiber boosts the
mechanical anisotropy. The increased modulus in the parallel direction is primarily due to the
stretching of the amorphous chains (Fig. 5.6). Therefore, pre-strain controls the phononic as
well as the nanomechanical properties.

5.4. Conclusions

The dispersion relation for the elastic wave propagation in the spider dragline silk is anisotropic
and displays a novel unidirectional large stop band at hypersonic frequencies, which has a dif-
ferent origin from Bragg-type gaps in periodic phononic crystals. In analogy to recent studies
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Mechanical Contrast

Strain

Mechanical Anisotropy

Figure 5.7.: Scheme of the structure of dragline spider silk. The fiber (rod in the middle)
and magnified structures are not drawn to scale. The alanine-rich highly or-
dered nanocrystals with size ∼ 5 nm (grey blocks) are interlinked by amorphous
glycine-rich chains (indicated in red) varying widely in pre-strain: While in the
supercontracted state the chains are nearly relaxed, a pre-strain in the range of
0.3-0.6 [133, 135] is observed in the native and stretched fiber. The average crys-
tallinity at submicron length scales varies non-periodically in the fiber, giving rise
to the phononic band gap. The mechanical anisotropy increases and the elastic
impedance contrast ΔZ (indicated by the gradient color of the background) de-
creases with increasing pre-strain in the direction of the arrow.

on disordered colloidal films [35] where the spherical particles act as local resonant elements,
the presence of the gap in this natural material, is attributed to the existence of a correlation
length of the elastic modulus of the non-periodically distributed nanocrystals embedded in the
amorphous matrix. Rationalized as a hybridization gap, it opens from the overlap of such
particle bands with the acoustic field of the extended states in the effective medium. The ex-
traordinary phononic properties relate to the hierarchical structure at different length scales,
whereas the direction dependent modulus is due to the high orientation order along the fiber.
This unprecedented results reveals the major role of multilevel structural organization on the
flow of the elastic energy. Similar findings are anticipated in a manifold of natural [141] and arti-
ficial hybrid materials, facilitating the design of novel systems with tailorable and functionally
optimized properties [142].
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In the present dissertation, Brillouin light scattering (BLS) was employed to explore elastic
waves propagation in structured polymer based systems and elucidate the structure- nanome-
chanical properties relationships. The choice of the samples has provided a platform for engi-
neering sound propagation in the GHz frequency range and aimed at probing different matter-
phonon interactions. The possible thickness induced mechanical anisotropy and interfacial
effects were investigated by studying thin amorphous polymer films and periodic polymeric
multilayer structures. Modulation and control of elastic energy flow was then examined by
focusing on hybrid multiphase artificial and biological materials possessing strong acoustic
impedance mismatch. These studies extend BLS from a characterization method for thin films
to a metrology for more complex confined polymeric, inorganic and biological structures. By
probing complex elastic excitations and localized acoustic vibrations, BLS is found to be a
powerful tool for non-contact, non-destructive analysis of elastic constants for nanoscale ma-
terials.

By utilizing the reflection scattering geometry, the moduli directional dependence of a
highly anisotropic system was investigated even in length scales for which chain confinement
effects become more pronounced. Non-propagating vibrations from polyimide coatings in the
micron and sub-micron range were probed and related to out of plane elastic moduli. The fine
structure revealed in Brillouin spectra showed that the elastic behavior is size-independent in
the whole thickness range investigated. Furthermore surface waves with finite in-plane wave
vectors q∥, were used to extract the in-plane elastic constants. The independence of elastic
properties on thickness was verified by modeling the data with the layer-multiple-scattering
method on a system that possesses transverse isotropic symmetry. Besides an adequate method
for probing out-of-plane elastic properties in films, the reflection geometry of the BLS exper-
imental setup, introduced here, provided the basis for direction-dependent studies of elastic
moduli in a wide range of sample geometries.

Next, 1D periodic polymeric films comprised of alternating PMMA and PC thin layers were
used to investigate phonon propagation as a function of periodicity and composition. For peri-
odicities much less than the phonon wavelength, the dispersion relation displayed an effective
homogeneous medium behavior with the propagation of two phonons with longitudinal and
transverse polarization. The confinement in the layered structure impacted only the shear mod-
ulus, which was found to increase with decreasing layer thickness. Finite element analysis was
used to compute the theoretical phonon dispersion relation and provide interpretation of the
observed modes. Complex features of the phonon dispersion relation were attributed to elastic
waves propagating within the individual polymer layers. This high sensitivity of phonon dis-
persion to structure and composition allowed the probing of the mechanical properties down
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to the single-layer level where a strikingly different dependence of the longitudinal and shear
moduli on confinement effects in the polymer nanolayers was observed. In addition, tem-
perature dependent measurements of sound velocities revealed the presence of distinct glass
transition temperatures, indicative of phonon localization in films with large layer thicknesses
in agreement with theoretical predictions.

Staying in multilayer structures but increasing the impedance contrast of the component
layers, led to the first experimental observation of a hypersonic Bragg gap in a system with
1D periodicity. The probed dispersion relations of a multilayer stack of alternating SiO2 and
PMMA nanolayers were modeled by Finite element analysis and an excellent agreement was
found. It was shown that a porosity of 30% leads to a 20 GHz reduction in the gap opening
frequency; yet, its presence does not impede the gap opening in these systems.

Finally, the fourth system was selected in the course of the work mainly on the account of
its superior mechanical properties compared with synthetic semicrystalline polymers and its
inherent hierarchical structure. Probing elastic excitations in spider dragline fibers, revealed
the existence of a unidirectional hypersonic phononic band gap. This finding, the first realized
in a biological structure, was attributed to the strong mechanical coupling between localized
bands with the acoustic field. By that the existence of a strain-dependent correlation length
of the mechanical modulus in the submicron range along the fiber axis was established, in
analogy with recent findings observed in disordered colloidal films. Additionally a strong
mechanical anisotropy for spider silk was found.

Moving forward in the development of new and miniaturized components in the age of
nanotechnology, Brillouin spectroscopy could find applications for probing elastic constants
of nanostructured materials in which deviations from bulk properties are expected. In the
case of phonon propagation in multilayer polymeric and hybrid films, many possibilities and
challenges lay ahead. Tailoring and optimized the acoustic and mechanical properties of such
structures are feasible by controlling parameters like thickness, periodicity and ordering of
the individual components. Concerning the building blocks, the combination of electrical
conductive and optical transparent coatings such as TiO2 or tin-doped indium oxide (ITO) in
place of SiO2, is anticipated to lead to novel control of elastic energy flow. In addition, the
choice of optically anisotropic multilayer assembly with periodicity commensurate the wave-
length of the visible light may allow the occurrence of confinement-induced enhancement of
photon-phonon interactions. These features would offer the possibility of novel applications
for phonon engineering. Finally, besides probing elastic constants of engineered artificial
systems, Brillouin spectroscopy can be extended to complex biomaterials. The correlation be-
tween the structure and the mechanical properties could provide new insights into hierarchical
structures and self assembly on molecular and mesoscopic length scales. An understanding of
the structural origin of exotic properties found in biological systems is not only of fundamental
interest but also needed in view of promising biomimetic applications.
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A. appendix

When the scattering wavevector q is calculated for both the transmission and the reflection
geomtries in the case of a film, q as a funcion of the scattering angle is essentially obtained
from Snell’s law at each boundary and the trigonometric operations. Figure A.1 shows both
the transmission and the reflection geometries for the scattering wavevector calculation.

A.0.1. in-plane

Consider the scattering wavevector for the transmission geometry shown in Fig. A.1(a). Let
the incident and the refraction at the air/film boundary be respectively 𝛼 and 𝛽, while 𝛾 and
𝛿 at the film/air boundary, respectively. Geometrically, the real scattering angle Θ and the

Figure A.1.: Schematics of the scattering geometry: (a) transmission geometry and (b) reflec-
tion geometry.

refraction angle 𝛾 at the second boundary can be expressed as

Θ = 𝛽 + 𝛾 (A.1)

𝛿 = 𝜃 − 𝛼 (A.2)
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According to Snell’s law, the refraction angle 𝛽 and the incident angle 𝛾 can be expressed as

𝛽 = sin−1

(
1

𝑛
sin𝛼

)
(A.3)

𝛾 = sin−1

(
1

𝑛
sin 𝛿

)
= sin−1

{
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𝑛
sin(𝜃 − 𝛼)

}
(A.4)

The real scattering angle Θ is expressed from Equations A.1, A.3 and A.4 as

Θ = 𝛽 + 𝛾 = sin−1
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Consequently, the scattering wavevector q becomes
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The perpendicular component of the scattering wavevector q⊥ is then expressed as

𝑞⊥ = 𝑞 ⋅ cos
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(A.7)

Therefore, the final form of the scattering wavevector q⊥ for the “in-plane” is expressed from
Equations A.6 and A.7 as
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For the transmission geometry, when 𝛼 = 𝜃/2, namely the incident angle is half of the scat-
tering angle,

𝑞⊥ =
4𝜋𝑛

𝜆
sin

[
sin−1

(
1

𝑛
sin
𝜃

2

)]
(A.9)

A.0.2. out-of-plane

Consider the scattering wavevector for the reflection geometry as shown in Fig. A.1(b). Unlike
the transmission geometry, light incident on the upper boundary is only considered. As is the
case with the transmission geometry, let the incident and the refraction at the air/film boundary
be respectively 𝛼 and 𝛽, while 𝛾 and 𝛿 at the film/air boundary, respectively. Geometrically,
the real scattering angle Θ and the refraction angle 𝛾 at the second boundary can be expressed
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as

Θ = 𝜋 − 𝛽 + 𝛾 (A.10)

𝛿 = 𝜋 − 𝜃 − 𝛼 (A.11)

According to Snell’s law, the refraction angle 𝛽 and the incident angle 𝛾 can be expressed as
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Consequently, the scattering wavevector q becomes
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The parallel component of the scattering wavevector q∥ is then expressed as
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2
sin−1

{
1

𝑛
sin(𝜃 + 𝛼)

}]
(A.15)

Therefore, the final form of the scattering wavevector q∥ for the “out-of-plane” is expressed
from Equations A.14 and A.15 as

𝑞∥ =
4𝜋𝑛

𝜆
cos

[
1

2
sin−1

(
1

𝑛
sin𝛼

)
+

1

2
sin−1

{
1

𝑛
sin(𝜃 + 𝛼)

}]

× cos

[
1

2
sin−1

(
1

𝑛
sin𝛼

)
− 1

2
sin−1

{
1

𝑛
sin(𝜃 + 𝛼)

}] (A.16)
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