Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Quantum mechanics in fractional and other anomalous spacetimes

MPG-Autoren
/persons/resource/persons4348

Calcagni,  G.
Microscopic Quantum Structure & Dynamics of Spacetime, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1207.4473v2.pdf
(Preprint), 413KB

JoMP53_102110.pdf
(beliebiger Volltext), 252KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Calcagni, G., Nardelli, G., & Scalisi, M. (2012). Quantum mechanics in fractional and other anomalous spacetimes. Journal of Mathematical Physics, 53: 102110. doi:10.1063/1.4757647.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-A469-9
Zusammenfassung
We formulate quantum mechanics in spacetimes with real-order fractional geometry and more general factorizable measures. In spacetimes where coordinates and momenta span the whole real line, Heisenberg's principle is proven and the wave-functions minimizing the uncertainty are found. In spite of the fact that ordinary time and spatial translations are broken and the dynamics is not unitary, the theory is in one-to-one correspondence with a unitary one, thus allowing us to employ standard tools of analysis. These features are illustrated in the examples of the free particle and the harmonic oscillator. While fractional (and the more general anomalous-spacetime) free models are formally indistinguishable from ordinary ones at the classical level, at the quantum level they differ both in the Hilbert space and for a topological term fixing the classical action in the path integral formulation. Thus, all non-unitarity in fractional quantum dynamics is encoded in a contribution depending only on the initial and final state.