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Abstract

Constraint-based methods (CBMs) are promising tools for the analysis of
metabolic networks, as they do not require detailed knowledge of the biochemical
reactions. Some of these methods only need information about the stoichiomet-
ric coefficients of the reactions and their reversibility types, i.e., constraints for
steady-state conditions. Nevertheless, CBMs have their own limitations. For
example, these methods may be sensitive to missing information in the models.
Additionally, they may be slow for the analysis of genome-scale metabolic models.
As a result, some studies prefer to consider substructures of networks, instead of
complete models. Some other studies have focused on better implementations of
the CBMs.

In Chapter 2, the sensitivity of flux coupling analysis (FCA) to missing re-
actions is studied. Genome-scale metabolic reconstructions are comprehensive,
yet incomplete, models of real-world metabolic networks. While FCA has proved
an appropriate method for analyzing metabolic relationships and for detecting
functionally related reactions in such models, little is known about the impact of
missing reactions on the accuracy of FCA. Note that having missing reactions is
equivalent to deleting reactions, or to deleting columns from the stoichiometric
matrix. Based on an alternative characterization of flux coupling relations using
elementary flux modes, we study the changes that flux coupling relations may
undergo due to missing reactions. In particular, we show that two uncoupled
reactions in a metabolic network may be detected as directionally, partially or
fully coupled in an incomplete version of the same network. Even a single missing
reaction can cause significant changes in flux coupling relations. In case of two
consecutive E. coli genome-scale networks, many fully-coupled reaction pairs in
the incomplete network become directionally coupled or even uncoupled in the
more complete reconstruction. In this context, we found gene expression corre-
lation values being significantly higher for the pairs that remained fully coupled
than for the uncoupled or directionally coupled pairs. Our study clearly suggests
that FCA results are indeed sensitive to missing reactions. Since the currently
available genome-scale metabolic models are incomplete, we advise to use FCA
results with care.

In Chapter 3, a different, but related problem is considered. Due to the
large size of genome-scale metabolic networks, some studies suggest to analyze
subsystems, instead of original genome-scale models. Note that analysis of a sub-
system is equivalent to deletion of some rows from the stoichiometric matrix, or
identically, assuming some internal metabolites to be external. We show mathe-
matically that analysis of a subsystem instead of the original model can lead the
flux coupling relations to undergo certain changes. In particular, a pair of (fully,
partially or directionally) coupled reactions may be detected as uncoupled in the
chosen subsystem. Interestingly, this behavior is the opposite of the flux coupling
changes that may happen due to the existence of missing reactions, or equiva-
lently, deletion of reactions. We also show that analysis of organelle subsystems
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has relatively little influence on the results of FCA, and therefore, many of these
subsystems may be studied independent of the rest of the network.

In Chapter 4, we introduce a rapid FCA method, which is appropriate for
genome-scale networks. Previously, several approaches for FCA have been pro-
posed in the literature, namely flux coupling finder algorithm, FCA based on
minimal metabolic behaviors, and FCA based on elementary flux patterns. To
the best of our knowledge none of these methods are available as a freely available
software. Here, we introduce a new FCA algorithm FFCA (Feasibility-based Flux
Coupling Analysis). This method is based on checking the feasibility of a system
of linear inequalities. We show on a set of benchmarks that for genome-scale
networks FFCA is faster than other existing FCA methods. Using FFCA, flux
coupling analysis of genome-scale networks of S. cerevisiae and E. coli can be
performed in a few hours on a normal PC. A corresponding software tool is freely
available for non-commercial use.

In Chapter 5, we introduce a new concept which can be useful in the analysis
of fluxes in network substructures. Analysis of elementary modes (EMs) is proven
to be a powerful CBM in the study of metabolic networks. However, enumeration
of EMs is a hard computational task. Additionally, due to their large numbers,
one cannot simply use them as an input for subsequent analyses. One possibility
is to restrict the analysis to a subset of interesting reactions, rather than the whole
network. However, analysis of an isolated subnetwork can result in finding incor-
rect EMs, i.e. the ones which are not part of any steady-state flux distribution in
the original network. The ideal set of vectors to describe the usage of reactions in
a subnetwork would be the set of all EMs projected onto the subset of interesting
reactions. Recently, the concept of “elementary flux patterns” (EFPs) has been
proposed. Each EFP is a subset of the support (i.e. non-zero elements) of at least
one EM. In the present work, we introduce the concept of ProCEMs (Projected
Cone Elementary Modes). The ProCEM set can be computed by projecting the
flux cone onto the lower-dimensional subspace and enumerating the extreme rays
of the projected cone. In contrast to EFPs, ProCEMs are not merely a set of
reactions, but from the mathematical point of view they are projected EMs. We
additionally prove that the set of EFPs is included in the set of ProCEM sup-
ports. Finally, ProCEMs and EFPs are compared in the study of substructures
in biological networks.
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Zusammenfassung

Constraintbasierte Methoden (CBM) sind vielversprechende Werkzeuge fiir
die Analyse von metabolischen Netzwerken, da sie keine detaillierte Kenntnis
der biochemischen Reaktionen verlangen. Einige dieser Methoden verlangen nur
Informationen iiber die stéchiometrischen Koeffizienten der Reaktionen und deren
Reversibilitats-Typus, d.h. Einschrénkungen fiir Steady-State-Bedingungen. Den-
noch haben CBM ihre eigenen Grenzen. Zum Beispiel konnen diese Methoden
empfindlich auf fehlende Informationen in den Modellen reagieren. Dariiber hin-
aus konnen sie bei der Analyse von genomweiten metabolischen Modellen langsam
sein. Deshalb ziehen es einige Studien vor, statt kompletten Modellen Substruk-
turen von Netzwerken zu untersuchen. Andere Studien konzentrieren sich auf
eine bessere Implementierung der CBM.

In Kapitel 2 wird die Empfindlichkeit der Flusskopplungsanalyse (FCA) auf
fehlende Reaktionen untersucht. Genomweite metabolische Rekonstruktionen
sind umfassende, aber dennoch unvollstdndige, Modelle von realen metaboli-
schen Netzwerken. Wihrend FCA sich als geeignete Methode zur Analyse von
metabolischen Beziehungen und zur Erfassung funktionell verwandter Reaktio-
nen in solchen Modellen bewéahrt hat, ist wenig iiber die Auswirkungen der
fehlenden Reaktionen auf die Genauigkeit der FCA bekannt. Fehlende Reak-
tionen sind dquivalent mit dem Loschen von Reaktionen oder dem Loschen von
Spalten der stéchiometrischen Matrix. Basierend auf einer alternativen Charak-
terisierung der Flusskopplungsbeziehungen mithilfe von elementaren Flussmodi
untersuchen wir die Verdnderungen, die fehlende Reaktionen in Flusskopplungs-
beziehungen bewirken. Insbesondere zeigen wir, dass zwei ungekoppelte Reak-
tionen in einem metabolischen Netzwerk als gerichtet, teilweise oder vollstandig
gekoppelt in einer unvollstandigen Version des gleichen Netzwerks wahrgenom-
men werden konnen. Sogar eine einzige fehlende Reaktion kann zu erheblichen
Veranderungen der Flusskopplungsbeziehungen fithren. Bei zwei aufeinander
folgenden E. coli-genomweiten Netzwerken werden viele vollstindig gekoppelte
Reaktionen im unvollstdndigen Netzwerk zu gerichtet gekoppelten oder sogar
ungekoppelten Paaren in kompletteren Rekonstruktionen. In diesem Zusammen-
hang haben wir festgestellt, dass die Genexpressionskorrelationswerte deutlich
hoher fiir solche Paare waren, die vollstédndig gekoppelt blieben, als bei ungekop-
pelten oder gerichtet gekoppelten Paaren. Unsere Studie zeigt eindeutig, dass
FCA-Ergebnisse tatséchlich empfindlich auf fehlende Reaktionen reagieren. Da
die derzeit verfiigharen genomweiten metabolischen Modelle unvollsténdig sind,
empfehlen wir, FCA-Ergebnisse mit Vorsicht zu verwenden.

In Kapitel 3 wird ein verwandtes Problem betrachtet. Aufgrund der Grofe
von genomweiten metabolischen Netzwerken werden in einigen Studien Subsys-
teme analysiert, statt der urspriinglichen genomweiten Modelle. Dies entspricht
der Streichung einiger Zeilen aus der stochiometrischen Matrix oder auch der Be-
handlung einiger interner Metabolite als extern. Wir zeigen mathematisch, dass
die Analyse eines Subsystems statt des urspriinglichen Modells zu bestimmten



xiv

Veranderungen der Flusskopplungsbeziehungen fithren kann. Insbesondere ein
Paar voll, teilweise oder direktional gekoppelter Reaktionen kann im gewahlten
Subsystem als ungekoppelt wahrgenommen werden. Interessanterweise ist dieses
Verhalten das Gegenteil von den Verdnderungen, die aufgrund von fehlenden
Reaktionen oder Streichung von Reaktionen geschehen. Wir zeigen auch, dass
die Analyse von Organellen-Subsystemen relativ wenig Einfluss auf die Ergeb-
nisse der FCA hat, und daher viele dieser Subsysteme unabhéngig vom Rest des
Netzwerkes untersucht werden koénnen.

In Kapitel 4 stellen wir eine schnelle FCA-Methode vor, die sich fiir genomweite
Netzwerke eignet. Bisher wurden mehrere Ansétze fiir FCA vorgeschlagen, nam-
lich der Flusskopplungsfindungsalgorithmus, FCA basierend auf minimal metabo-
lischem Verhalten und FCA basierend auf elementaren Flussmustern. Soweit wir
wissen ist keine dieser Methoden frei als Software verfiigbar. Hier stellen wir einen
neuen FCA-Algorithmus, FFCA (Zulassigkeitsbasierte-Flusskopplungsanalyse),
vor. Bei dieser Methode wird die Zuléssigkeit eines Systems von linearen Un-
gleichungen gepriift. Wir zeigen an einer Reihe von Benchmarks, dass FFCA
fiir genomweite Netzwerke schneller ist als andere bestehende FCA Methoden.
Mit FFCA, kann die Flusskopplunganalyse von genomweiten Netzwerken von S.
cerevisiae und E. coli in ein paar Stunden auf einem normalen PC durchgefiihrt
werden. Ein entsprechendes Software-Tool ist zur nicht-kommerziellen Nutzung
frei verfiigbar.

In Kapitel 5 stellen wir ein neues Konzept vor, das bei der Analyse der
Fliisse in Netzwerk-Substrukturen niitzlich ist. Die Analyse der Elementarmodi
(EMs) ist bewiesenermafen eine méchtige CBM bei der Studie von metaboli-
schen Netzwerken. Allerdings bedeutet die Aufzdhlung von EMs einen grofen
Rechenaufwand. Dartiber hinaus kann man sie aufgrund ihrer grofen Zahl nicht
einfach als Input fiir spitere Analysen nutzen. Eine Moglichkeit ist es, die Ana-
lyse auf eine Teilmenge interessanter Reaktionen zu beschrianken. Allerdings kann
die Analyse eines isolierten Subnetzes inkorrekte EMs aufdecken, d.h., solche, die
nicht Teil einer Steady-State Flussverteilung im urspriinglichen Netzwerk sind.
Die ideale Menge von Vektoren, um die Nutzung von Reaktionen in einem Teilnetz
zu beschreiben, ist die Menge aller EMs, projiziert auf die Teilmenge der interes-
santen Reaktionen. Vor kurzem wurde das Konzept der elementaren Flussmuster
(EFP) vorgeschlagen. Jedes EFP ist eine Teilmenge der Tréger (d.h. Nicht-Null-
Elemente) von mindestens einem EM. In der vorliegenden Arbeit stellen wir das
Konzept der ProCEMs (Projected Cone Elementary Modes) vor. Das ProCEM
Set kann durch Projektion des Flusskegels auf den unteren Teilraum und der
Aufzéhlung der extremen Strahlen der projizierten Kegel berechnet werden. Im
Gegensatz zu EFPs sind ProCEMs nicht nur eine Reihe von Reaktionen, son-
dern sind, mathematisch gesehen, projizierte EMs. Wir weisen aufserdem nach,
dass jedes EFP gleich dem Trager von mindestens einem ProCEM ist. Schlieklich
werden ProCEMs und EFPs in der Analyse von Substrukturen in biologischen
Netzwerken verglichen.
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CHAPTER

1

Introduction

Success comes with improving the art of mixing heteroge-
neous components and working out elegant solutions to com-
plex problems. Consequently, the focus is less on the ulti-
mate components of matter than on the relations between
them (Bensaude-Vincent, 2004).

1.1 Systems Biology

According to Kitano (2002), the importance of a systems-level understanding of
biological processes was first noticed by Norbert Wiener (Wiener, 1948). In the
1960s, when theoretical biologists started to create computer models of biologi-
cal systems, systems-level analysis of biological processes came to the center of
attention (Spivey, 2004). In 1966, even an international conference on “Systems
Theory and Biology” was launched (Mesarovi¢, 1968). However, the term “sys-
tems biology” was only introduced to the context of modern biology in the late
1990s (Kitano et al., 1998; Hood, 1998). This was around the time that functional
genomics was appearing. In these years, the first genome-scale network was be-
ing reconstructed based on the metabolism of Mycoplasma genitalium with some
additional reactions (Tomita et al., 1997, 1999). Interestingly, the recent remark-
able achievement of systems biology to create a new synthetic bacterium (Gibson
et al., 2010) is in fact based on the same original idea.

Model reconstruction is the prerequisite of any study in systems biology. There
are at least two types of model elements in all systems biology studies: biolog-
ical components, and the interactions or reactions between them. The set of
components together with their relationships form a network. For example, in a
metabolic network, each metabolite is a component, while each reaction converts
a set of reactant metabolites to a set of product metabolites. For network re-
construction, different sources of information, ranging from genomic data to the
literature, might be used (Joyce and Palsson, 2006).

In systems biology, the main focus is to study the reactions or interactions,
rather than the components. In other words, structures of the components are
often ignored when biological systems are studied, although this is not a general
rule (see e.g. Aloy and Russell, 2006; Zhang et al., 2009). A biological system can
be studied at four levels (Kitano, 2000):



Structural level: The structural relationships among the components are stud-
ied at this level. For example, it is possible to identify those components
that are connected with many other components of the system (the so-called
‘hubs’). Such components potentially have a pivotal role in the function of
the system.

Behavioral level: At this level, the goal is to understand or predict the behavior
of the system based on its structure. For example, it might be interesting to
know how some properties of the system are sensitive to the perturbations.
Analysis of the system at this level is very important, as it directly tells us
about the functions of the system.

Control level: When the behavior of a system is fairly well understood, it might
be possible to apply changes to the system, such that it behaves differently.
For example, it is interesting to have an engineered bacterial strain which is
able to grow on a toxic growth medium and decompose the toxic compounds
to non-toxic molecules.

Design level: When a system is well understood, it might be possible to apply
major changes to the system, or even design a totally new system de novo
to have the characteristics of interest. With the new advances in systems bi-
ology, biological system design (which is sometimes referred to as synthetic
biology) becomes more and more popular in the scientific community (An-
drianantoandro et al., 2006; Medema et al., 2011).

Unquestionably, the network reconstruction step is of central importance in
systems biology. Analysis of the system at any level highly depends on the quality
of the input data. Any error in the reconstruction step may result in wrong con-
clusions (Stelzl and Wanker, 2006; Mestres et al., 2008). Among the biochemical
networks, metabolic networks are probably the best studied biological networks
(Patil, 2003; Pfeiffer et al., 2005) and probably, have the highest level of cor-
rectness. Existence of high-quality genome-scale metabolic models (Thiele and
Palsson, 2010) makes them a promising tool for systems biology research.

This dissertation is devoted to metabolic networks, unless stated otherwise.

1.2 A Formal Introduction to Metabolic
Networks

Traditionally, biochemists have analyzed biochemical reactions in vitro to find
the mechanisms and parameters of metabolic reactions (Beard and Qian, 2005).
Throughout the last century, this type of study has been done for several enzy-
matic reactions in a variety of different organisms. If such information is available,
one can model a biochemical system with ordinary differential equations (ODEs)
to study its dynamical behavior. ODE models are deterministic models, that is,



if the state of the system is known at a certain time point, it is possible to predict
the system behavior at any other time point (Wolkenhauer, 2001).

For the analysis of metabolic networks at the systems level, even in the ab-
sence of regulation, ODE modeling is not very appropriate for at least two reasons
(Beard and Qian, 2005). Firstly, for genome-scale metabolic networks, mecha-
nisms and parameters are unknown for a considerable number of reactions. Sec-
ondly, the reaction mechanism and parameters are usually determined by ana-
lyzing enzymes in isolation. Even if these data are available for all the reactions,
there is no guarantee that the enzymes and reactions behave similarly in vivo.

In the analysis of biochemical reaction networks, some data are often available
about each reaction without knowing the exact details. Based on this fact, a dif-
ferent strategy to model reaction networks is constraint-based modeling (CBM).
By imposing the physicochemical constraints in a model, one can find out what is
impossible, but the precise prediction of the system behavior is impossible (Pals-
son, 2000). Informally speaking, there is a trade-off between the information
content of the results and the knowledge required for the modeling.

In CBM, no a priori knowledge (or assumptions) regarding the mechanisms
and parameters of the reaction system is required. However, when such informa-
tion is available, e.g. a certain intracellular flux is experimentally measured, this
knowledge can be introduced into the model as an additional constraint (Price
et al., 2004a; Beard and Qian, 2005).

1.2.1 The Basics of Constraint-based Modeling

Genetic networks and metabolic networks are the two systems controlling the
fundamental mechanisms that govern biological systems (Kitano, 2000). While
we are aware of the important interplay between these two networks (Shlomi et al.,
2007), metabolic networks are usually studied without regulation. The reason lies
in the fact that genome-scale metabolic networks are much easier to construct and
analyze compared to genome-scale gene regulatory networks. Moreover, even in
the absence of the regulation assumption, genome-scale metabolic networks have
proven to be useful in predicting the intracellular fluxes and growth phenotypes
of different organisms (Edwards et al., 2001; Lee et al., 2010).

As mentioned in Section 1.1, a metabolic network has two elements: the
metabolites, and the reactions. A reaction determines what metabolites (and
at what ratio) react with each other to produce other metabolites. A system
boundary (which is often the cell membrane) separates the internal metabolites
(i.e., those metabolites which are inside the system) from the external metabolites
(those which are outside the system). Boundary reactions are those reactions
which convert internal metabolites to external ones (or vice versa), while internal
reactions are the ones which convert internal metabolites to each other.

For a metabolic network N with m internal metabolites and n reactions, the
stoichiometric matrix S is an m xn matrix, where element S;; is the stoichiometric
coefficient of metabolite ¢ in reaction j. The columns of S will be denoted by
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Figure 1.1: A small hypothetical metabolic network (SmallNet). (A) This network
has four (internal) metabolites A,B,C,D and seven reactions 0,...,6; (B)
Stoichiometric matrix of the network; (C) List of elementary flux modes.

St,...,5,. We assume S; # 0, for all 7 = 1,...,n. The set of metabolites and
reactions are shown as M and R, respectively.

Fig. 1.1A shows a small metabolic network, SmallNet. The stoichiometric
matrix of SmallNet is given in Fig. 1.1B.

1.2.2 The Constraints, Flux Cone and Flux Space

In a metabolic network, flux through the i-th reaction, v;(t), is equivalent to
the rate of this reaction, which is a function of time. If ¢ is the vector denoting
changes of internal metabolite concentrations, then for every flux distribution
vector v(t), we have S - v(t) = ¢ (Schuster and Schuster, 1991).

In the analysis of metabolic networks, it is often assumed that the system is
in steady state, which means that there is no net change in the concentration
of the internal metabolites (¢ = 0). Therefore, the flux balance equation can be
written as S - v = 0 (Fell and Small, 1986), where v € R" is the vector of flux
distribution values.

Assuming that the metabolic network is in (quasi-)steady state is a good ap-
proximation, since the metabolic reactions are generally much faster than other
biological functions, e.g. protein expression (Edwards and Palsson, 1998). There-
fore, it is reasonable to assume the system to be in steady-state, unless the dy-
namics of the system are studied over long time intervals.

There are two types of reactions in metabolic networks: Irr is the set of
irreversible reactions, for which the corresponding flux values are always non-
negative; and Rev is the set of other reactions which are allowed to have both
negative and non-negative values.



Figure 1.2: A pointed polyhedral cone in three-dimensional space.

A

Figure 1.3: A non-pointed polyhedral cone in three-dimensional space.

The flux cone C of a metabolic network N = (S, Irr), which is the set of all
possible flux vectors in steady-state, is defined as:

C={veR"|S-v=0,v;,>0forall i € Irr} (1.1)

For a matrix A € R™*" and a vector b € R™, the solution set P = {z €
R™ | Ax < b} of a system of linear inequalities Ax < b is called a polyhedron
(Bockmayr and Weispfenning, 2001). If b = 0, then P is called a polyhedral cone.
It can be shown easily that the flux cone is a polyhedral cone. Two examples of
polyhedral cones in three-dimensional space are shown in Figures 1.2 and 1.3.

Any non-zero element r € C' is called a ray of C. Two rays r and r’ are
equivalent, written » = ', if r = A/, for some A > 0. A ray r is extreme if there
do not exist rays ', r"” € C " 2 r” such that r = ' + r”. In Figure 1.2, the



extreme rays are shown by thin arrows. Each vector v in a pointed cone can be
written as v = >_ a;g', where the vectors ¢’ are the extreme rays and «o; € Rxg
for each 1.

A subset ® of a cone C' is called a face of C' (Larhlimi, 2008, page 13) if ® = C'
or ® = CN{z € R"|a'z =0}, where a’z > 0 with a € R"\ {0} is a valid
inequality for C.

The lineality space of (' is given by:

lin.space(C) ={v eR" | S-v=0,v;, =0 for all i € Irr} (1.2)

For a pointed cone (like in Figure 1.2), we have lin.space(C) = {0}. A
non-pointed cone is a cone for which dim(lin.space(C)) > 1, where dim(X)
denotes dimension of X. If the cone is non-pointed, like in Figure 1.3, then
{0} C lin.space(C). For non-pointed cones, instead of extreme rays we define
minimal proper faces, which are the faces of dimension dim(lin.space(C)) + 1
(Schrijver, 1986). For a pointed cone dim(lin.space(C')) = 0, and minimal proper
faces are the extreme rays of the cone. A non-pointed cone can be characterized
by generating vectors in the lineality space (the thin vector in Figure 1.3) together
with generating vectors in minimal proper faces (dashed vectors in Figure 1.3).
Each vector v in the non-pointed cone can be written as v = Y a;g* + > 5;h7,
where the vectors ¢ and h’/ are the generating vectors in lineality space and
minimal proper faces, respectively, and 3; € R>¢ for each j.

Sometimes, lower bounds and upper bounds of the flux values are also given
(capacity constraints). In this case, the flux space, which is a polyhedron in
n-dimensional space, is defined as (Price et al., 2004b):

F={veR"|S-v=0,v;,>0forallie Irrl<v<u} (1.3)

where [ and u are the lower and upper bound vectors, respectively. Figure 1.4
shows a polyhedron in three-dimensional space.

Equations 1.1 and 1.3 are the fundamental equations of constraint-based anal-
ysis of metabolic networks.

It should be emphasized here that the lower bound (resp. upper bound) of
a reaction flux does not necessarily determine the minimum (resp. maximum)
possible flux value through this reaction. Because of the flux balance assumption,
constraints on one flux can result in constraining other fluxes.

Finding the minimum and maximum possible flux values is done by a tech-
nique called linear programming. A linear program (LP) is defined by a linear
objective function and a set of linear constraints. Here, the objective function
can be the flux through a certain reaction, or a linear combination of the fluxes
through the reactions. For finding the optimal value of the objective function
kivy + ... + kyv, in the flux space defined by Equation 1.3, the following LP
should be solved:



Figure 1.4: A polyhedron in three-dimensional space. This polyhedron can be ob-
tained by applying additional constraints on the polyhedral cone depicted
in Figure 1.2.

maximize (or minimize) kv + ... + ko, ki,....k, €R
subject to:  S-v =0

v; >0 for all i € Irr
[ <v<u

Similar LPs are solved in flux balance analysis (Orth et al., 2010), flux variabil-
ity analysis (Mahadevan and Schilling, 2003) and flux coupling analysis (Burgard
et al., 2004). The difference is in the selection of objective functions, | and u
vectors, and the number of LPs that should be solved in each approach (see
Section 1.4). Other approaches may consider additional constraints, e.g. by as-
suming some variables to be integer or Boolean. We will use the term mixed
integer linear programming (MILP) for this type of optimization problems.

“Nonadjustable” vs. “Adjustable” Physicochemical Constraints

Sometimes, stoichiometric and reversibility constraints are the only constraints
used in CBM of metabolic networks. These constraints are relatively easy to de-
termine. These constraints are “nonadjustable” constraints (Palsson, 2000), in the
sense that they are the intrinsic properties of the system. Some authors prefer to
consider additional nonadjustable constraints. For example, Vazquez et al. (2008)
incorporated the solvent capacity constraint into the CBM of metabolic networks.
Beard et al. (2002) on the other hand, introduced to CBM the use of energy con-
straints, which are sometimes referred to as “thermodynamic” constraints and are
not to be confused with the reversibility constraints.



Flux capacity constraints are generally “adjustable” (Palsson, 2000), i.e., one
may adjust these constraints based on the environmental conditions or biochemi-
cal prior knowledge. Regulatory constraints (Shlomi et al., 2007) and metabolite
concentration constraints (Hoppe et al., 2007) are other examples of adjustable
constraints that can be used together with the nonadjustable constraints to im-
prove the reliability and precision of the constraint-based models.

1.2.3 Elementary Modes

For every v € R", the support of v denoted by supp(v) = {i € {1,2,...,n} | v; #
0}, represents the non-zero components of v.

In the flux cone C, a flux vector e is an elementary mode (EM) (Schuster and
Hilgetag, 1994; Schuster et al., 2000) if there is no vector v € C'\ {0} such that
supp(v) C supp(e). Thus, each EM represents a minimal set of reactions that
can work together in steady-state.

The set of all non-equivalent EMs, E = {e!,e?,... e*}, in which e’ % ¢’ if
i # 7, 1s a set of generating vectors of C' (Schuster and Hilgetag, 1994). This means
that every flux vector in C' can be written as a non-negative linear combination

of the vectors in E. In Figure 1.1C, the four EMs of the network are also listed.

1.3 Reconstruction of Genome-scale Metabolic
Networks

As described in Section 1.2.1, if in the analysis of a metabolic system the focus
is not on the dynamics, a low level of detail is required for building a genome-
scale metabolic model (Durot et al., 2009): for every reaction, the only required
information is the reversibility type of reaction and the precise stoichiometric
coefficients of the substrate(s) and product(s). The main challenge of reconstruc-
tion of a genome-scale metabolic network for a certain organism is to provide a
comprehensive set of reactions in that organism.

There are at least two main sources of information which can be used in
metabolic network reconstruction: bibliomic (literature) data and genomic data
(Duarte et al., 2007).

For several decades, metabolic reactions in different organisms have been iden-
tified by biochemists. This is an invaluable and indispensable source of infor-
mation, which can be retrieved mainly from certain databases, like BRENDA
(Schomburg et al., 2002). Further information about the reactions and enzymes
may be directly obtained from literature mining (Dickerson et al., 2001).

The second important source of information for metabolic network reconstruc-
tion is functional genomics (Fell et al., 2010). Sequence similarity search tech-
niques are the basic tools to annotate sequenced genomes. When the sequence
of a new genome is determined, the search techniques are used to find sequences



with ‘high’ similarity to known enzymes. High similarity in the sequences implies
the same enzymatic function.

Although the reactions can be identified automatically with a variety of meth-
ods, the resulting metabolic networks are very error-prone. In practice, most of
the published metabolic networks are hand-curated. This is a very difficult and
time consuming task, which may take from several months to a few years of work
for a research team (Thiele and Palsson, 2010). The manual curation and re-
finement of the model often relies on experimental, organism-specific information
(Feist et al., 2009; Thiele and Palsson, 2010).

It should be noted here that sometimes additional “auxiliary” reactions may
be added to the metabolic network. An example is the case of biomass-producing
reaction (Durot et al., 2009). If the stoichiometric ratio of each component in the
biomass is known, the biomass-producing reaction can be defined as a boundary
reaction which produces an external metabolite (called ‘Biomass’) and consumes
each of its precursors with the corresponding ratios. The biomass objective func-
tion, which is the flux through the biomass-producing reaction, is often used in
flux balance analysis to model cell growth (Feist and Palsson, 2010).

1.4 Constraint-based Approaches for Metabolic
Network Analysis: An Overview

Analysis of metabolism is one of the hot topics in systems biology. At all of
the four levels of systems biology (cf. Section 1.1), namely structure, behavior,
control and design, analysis of metabolism plays a central role.

Figure 1.5 shows some of the techniques, both in silico and in vivo, which are
used in the analysis and/or manipulation of metabolic networks. In this section,
we briefly review some of the CBM methods mentioned in Figure 1.5. These
methods are either in the behavioral or control level. We will come back to some
of these methods in the next chapters.

1.4.1 Gap Filling

Gap filling is the first technique which naturally comes to mind from the analysis
of metabolic behavior (Orth and Palsson, 2010). If the metabolic model does not
behave like the real-world network, then some network content may be missing.
This inconsistency can suggest further refinement of the reconstructed model.
Constraint-based techniques are possible tools to deal with this problem. For
example, Reed et al. (2006) used datasets of growth phenotype data and also
databases of potential (enzymatic and exchange) reactions to find missing reac-
tions. In their approach, linear optimization is used to find a minimum number of
candidate reactions which, if added to the model, would reduce the inconsistencies
between the observed growth phenotypes and the in silico predictions. A related
optimization-based strategy was proposed by Satish Kumar et al. (2007). In this
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Figure 1.5: Several techniques have been developed for systems-level analysis of
metabolism. These techniques belong to different levels of system anal-
ysis (see Section 1.1). At the structural level, the questions are usually
answered with in silico methods. The importance of incorporating wet-lab
and in vivo experiments generally increases in the next levels, and reaches
the highest level at the system manipulation and design level. An arrow
from a first box to a second box means that the results of the analysis in
the first box is useful at the level of the second box. Examples/reviews
of the mentioned techniques can be found in the following references. 1:
Thiele and Palsson (2010); 2: Gevorgyan et al. (2008); 3: Ravasz et al.
(2002); 4: Orth and Palsson (2010); 5: Klamt and Stelling (2003); 6: Voss
et al. (2003); Baldan et al. (2010); 7: Kaleta et al. (2009); 8: Urbanczik
and Wagner (2005); 9: Orth et al. (2010); 10: Mahadevan and Schilling
(2003); 11: Burgard et al. (2004); 12: Steuer et al. (2006); 13: Covert
and Palsson (2002); Covert et al. (2008); Shlomi et al. (2007); 14: Chan-
drasekaran and Price (2010); 15: Kremling et al. (2007); 16: Price et al.
(2004b); 17: Zamboni (2011); 18: Poolman et al. (2007); 19: Klamt and
Gilles (2004); Perumal et al. (2011); 20: Unrean et al. (2010); 21: Yus
et al. (2009); 22: Gibson et al. (2010).
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approach, growth phenotype information is not required. The first part of the
algorithm, GapFind, works based on the assumption that all internal metabolites
are produced by at least one reaction. Therefore, if a metabolite is not producible,
then the network should be fixed. In order to fix the network, not only addition of
new enzymatic and exchange reactions is taken into account, but also addition of
compartment-exchange reactions and changing the reversibility type of reactions
were considered. GapFind, which is based on MILP, discovers the metabolites
that are not producible. Then, GapFill, which is another optimization-based pro-
cedure, tries to resolve the problem of missing reactions by applying a minimum
number of modifications.

1.4.2 Metabolic Pathway Analysis

Metabolic pathway analysis is the finding and analysis of simple and biologically
meaningful “routes” in metabolic networks (Schuster et al., 2000; Schilling et al.,
2000; Klamt and Stelling, 2003). Each pathway explains a certain biochemical
ability to convert a set of reactants to a set of products in steady-state. Each com-
plicated biochemical behavior of a metabolic networks in steady-state is assumed
to be a combination of these simple pathways.

There are several approaches for metabolic pathway analysis. A recent review
can be found in Llaneras and Picé (2010). Extremal currents, Elementary modes
(EMs), extreme pathways and minimal metabolic behaviors are the most famous
concepts.

Extremal (or extreme) current (Clarke, 1980, 1988) is probably the oldest
constraint-based concept for metabolic pathway analysis. To obtain extremal
currents, it is necessary to split all the reversible reactions. Therefore, a post-
processing step is required to remove the 2-cycles (i.e., cycles with two reactions)
corresponding to the split reactions. Extremal currents are the extreme rays of
the reconfigured cone. It has been shown that except for the 2-cycles, extremal
currents and EMs are equivalent (Klamt and Stelling, 2003; Larhlimi and Bock-
mayr, 2008). It should be noted that this concept has not appeared frequently in
the literature in recent years.

Extreme pathway (EXPA) analysis (Schilling et al., 2000) follows a similar
logic, except for splitting only internal (and not boundary) reversible reactions,
in contrast to splitting all reversible reactions in the case of extremal currents. A
wide range of studies have used extreme pathway analysis, e.g. to study network
redundancy (Price et al., 2002), reaction coparticipation (Papin et al., 2002) and
in analyzing biologically meaningful pathways (Wiback and Palsson, 2002; Ding
et al., 2008).

EM analysis is probably the most popular method to study pathways in
metabolic networks. A mathematical definition of the EMs is presented in Sec-
tion 1.2.3. EMs are defined in the flux cone, in contrast to extremal currents and
extreme pathways which are defined in reconfigured cones obtained by splitting
(some) reversible reactions. EMs are not only used for pathway identification, but
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they are also used for analysis of minimal cut sets (see Section 1.4.5), control-
effective fluxes (Stelling et al., 2002) and many other applications (Gagneur and
Klamt, 2004). Efficient algorithms for computing EMs are reported in the liter-
ature (Terzer and Stelling, 2008, 2010) which makes the EM analysis even more
attractive.

EMs, extremal currents and extreme pathways are all inner descriptions of the
flux cone (Larhlimi and Bockmayr, 2008). Minimal metabolic behaviors (MMBs)
provide a minimal outer description of the steady-state flux cone (Larhlimi and
Bockmayr, 2009). A metabolic behavior is defined as a non-empty set of irre-
versible reactions D such that there exists a flux vector v € C' with D = supp(v).
A metabolic behavior is said to be minimal if no proper subset D’ C D is also a
metabolic behavior. The reversible metabolic space is equal to the lin.space(C),
which can be generated by a finite number of (non-unique) generating vectors.
Since the MMBs are in a one-to-one correspondence with the minimal proper
faces of the flux cone (Larhlimi and Bockmayr, 2009), the full set of MMBs to-
gether with the lin.space(C') yields a complete, minimal and unique description
of the cone.

1.4.3 Flux-balance Methods: FBA, FVA and FCA

Flux-balance methods (Veeramani and Bader, 2010) are certainly the most com-
monly used techniques in the constraint-based analysis of metabolic networks.
Several related flux-balance techniques are suggested in the literature.

Flux balance analysis (FBA) (Fell and Small, 1986; Varma and Palsson, 1993)
is one of the oldest methods in CBM of metabolic networks. FBA is based on
assuming the stoichiometric and capacity constraints on the flux values. The goal
of FBA is to find the optimal value of an objective function, under the constraints.

For example, suppose that E. coli is cultured in a (continuous) growth medium
with a certain known composition of nutrients (e.g. glucose, amino acids, etc).
The question is how fast can the cells grow, which we model by taking the fol-
lowing steps. Initially, an appropriate genome-scale metabolic network model of
E. coli should be selected. In such models, often a fictitious “biomass” reaction is
included to model the cell growth (see Section 1.3). The lower- and upper-bounds
of some fluxes can be determined from the composition of the growth medium
and the reversibility type of reactions. Suppose that v,; is the flux through the
biomass reaction. For flux balance analysis, one should solve the following LP:

Max  Ugp,
subject to: Z SV = 0 Ym e M
reR
v;”i” <, <y Vre R

v; >0 Vie Irr
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For a well-defined set of constraints in FBA, the LP will be feasible and an
optimal solution is obtained by using an LP solver software.

It is shown that the experimental growth rates of bacteria for a variety of
different substrates can be predicted successfully by FBA (Edwards et al., 2001;
Raghunathan et al., 2009). However, FBA has its own limitations. One important
drawback of FBA is that the objective function of the cell should be known in
advance. It has been shown that no single objective function describes the flux
states under all growth conditions (Schuetz et al., 2007). Another shortcoming of
FBA is that by solving an optimization problem, only one single flux distribution
will be obtained. If multiple optimal solutions exist, which is often the case due
to alternative biochemical pathways, there is no guarantee that this certain flux
distribution is even close to the flux distributions in vivo.

Flux variability analysis (FVA) (Mahadevan and Schilling, 2003) is a method
to study the possible range of each flux when the objective function of FBA has
its optimal value. In FVA| for every reaction ¢ the following LPs are solved:

max/min v,

subject to: Z SpnrUy = 0 Yme M
reR
v:”" <uv, <yl Vr e R
v; >0 Vie Irr
Vobj = U:bj

where vj,; € R is the optimal value of the objective function of FBA.

Flux coupling analysis (FCA) (Burgard et al., 2004) considers a different prob-
lem. It is known that in steady-state conditions, the so-called blocked reactions
never take a non-zero flux. For unblocked reactions, some of the fluxes are depen-
dent on some other fluxes. For mathematical definitions of flux coupling relations,
we refer to Chapter 2.

In FCA, the goal is to find the blocked reactions, and the flux coupling relation
between every pair of unblocked reactions. For this, Burgard et al. (2004) suggest
to construct a modified network by splitting every reversible reaction into two
irreversible (forward and backward) reactions. In order to find blocked reactions,
they suggest to find the following LP for every reaction j:

max Uj
subject to: Z Sty = 0 Ym e M
reR*
v, >0 Vr € R*

uptake uptake _max *
Ur S Ur V?" € Rtrans
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where R* is the set of reactions in the modified network, Ry...s is the set of
transport reactions for which an upper bound is known, and v*'®* is the set
of boundary reactions for which an upper bound is known. Obviously, if the
maximum possible value for v; is zero, then reaction j cannot take any flux, and
it is a blocked reaction.

In the next step, in order to find the coupling relations of unblocked reactions,
the following two LPs should be solved for every pair of reactions ¢ and j:

max/min  ;

subject to: Z SOy = 0 VYm e M
reR
5 =1
wptake S @\;lfptake_maz .t r c Rtrans
v, >0 Vr e R
t>0

where the v variables are the metabolic fluxes normalized by v;. Based on the
optimal values of the LPs, flux coupling relations are inferred (see Chapter 4).

FCA has attracted great attention since it was introduced. The main reason
is that flux coupling relations can be seen as the “functional” relations of the
metabolic reactions (Burgard et al., 2004). As an example, correlation between
the expression levels of metabolic genes can also be explained by flux coupling
(Notebaart et al., 2008).

1.4.4 Uniform Random Sampling of the Flux Space

A different strategy to analyze the functional relations of metabolic fluxes is to
study their correlation coefficient (Price et al., 2004b). In the first step of this
method, a parallelepiped is found that encloses the flux space, i.e., the polyhedron
defined in Equation 1.3, as tightly as possible. Then, the generating vectors of the
parallelepiped are used for uniform random sampling of flux vectors within the
parallelepiped. Each of the generated vectors, which satisfies the stoichiometric
and the capacity constraints (Equation 1.3) is within the flux space.

Such randomly generated vectors in the flux space can be used to compute the
Pearson correlation coefficient of the fluxes in the flux space. If the correlation
coefficient is £1, then the fluxes are said to be perfectly correlated. If the fluxes
have a zero correlation coefficient, then they are uncorrelated. If the fluxes are
fairly (and not perfectly) correlated, then they are described as well-correlated
(Price et al., 2004b). A set of reactions with correlated fluxes is sometimes called
a correlated reaction set, or simply, a Co-Set.

It has been shown that correlation between flux pairs can be used for func-
tional analysis of metabolic networks (Schellenberger and Palsson, 2009). For
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example, flux correlations are used to predict synthetic lethal genetic interactions
(Veeramani and Bader, 2009) and to classify and correlate the causality of single
nucleotide polymorphisms (Jamshidi and Palsson, 2006).

1.4.5 Minimal Cut Sets and Drug Target Detection

Minimal cut sets (MCSs) are the irreducible sets of interventions that will result
in blocking a set of reactions in the manipulated network (Klamt and Gilles,
2004). Informally speaking, the set of MCSs is the “dual” concept for the set of
EMs (Klamt, 2006) in the sense that both concepts are representations of network
functions and additionally it is possible to compute each of them if we know the
other one.

MCSs can be used in drug target detection. For example, if a certain vital
metabolite is known to be specific to a certain pathogenic bacterium, it might be
possible to find a drug target to reduce or block the production of this metabolite.
MCSs determine all possible minimal sets of target reactions, which if inhibited
by appropriate drug(s), will cause the concentration of that certain metabolite to
decrease.

1.5 Organization of this Thesis

After the first introductory chapter on systems biology and constraint-based mod-
eling of metabolic networks, five chapters are included to cover the main results.

Chapter 2 is about the sensitivity of FCA to missing reactions. Current
metabolic network models are not representing a complete picture of the real
networks. Therefore, it is important to know how sensitive the results of FCA
are to missing reactions. In this chapter, we prove that due to missing reactions,
coupling relations may change to other types of coupling relations and even to
uncoupling relations. On the other hand, uncoupling relations are not sensitive to
missing reactions. The importance of the results are shown for E. coli metabolic
network models.

In Chapter 3, a related problem is studied. Since the genome-scale metabolic
networks are not easy to study, sometimes authors “cut out” a subsystem of inter-
est, i.e., a new network boundary is considered and all metabolites (and reactions)
outside this boundary are assumed to be external. In this chapter, we investigate
the impact of this reduction on the results of FCA. We mathematically prove that
if a subsystem is analyzed instead of the complete network, coupling relations in
the subsystem are certainly coupling relations in the complete network, although
they might be a different type of coupling relation.

In Chapter 4, a novel approach for FCA is presented. In this approach, called
FFCA, the feasibility of some LPs are checked to determine the flux coupling
relation between each pair of reactions. We show that this method is much faster
compared to the other FCA methods reported in the literature. Additionally,
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we explain why we did not include the alleged FCA method based on random
sampling of the flux space.

Often, it is not possible to enumerate the EMs of a metabolic network. When
computation of all EMs is not necessary, e.g. when we focus on a certain subnet-
work, enumeration of all EMs results in wasted time and effort. In such a case,
having the set of projected EMs is enough. In Chapter 5, we present a new con-
cept, the set of projected cone elementary modes (ProCEMs), which represents
(a subset of) projected EMs. We prove that every elementary flux pattern is
equal to the support of at least one ProCEM. Computational complexity of the
problems are also compared.

Summary:

e Constraint-based modeling does not require detailed knowledge of the bio-
chemical reactions, but it cannot precisely characterize the state of the
biochemical system.

In systems biology, a reconstructed model of the system can be studied at four
levels: structure, behavior, control and design.

Genome-scale metabolic networks are reconstructed based on functional ge-
nomics, databases of biochemical reactions, literature and sometimes other
sources of information.

A metabolic network can be characterized by its stoichiometric matrix, .S, and
the set of its irreversible reactions, Irr.

When no additional constraint is assumed on fluxes through reactions, the set
of all feasible steady-state flux vectors is called flux cone. The flux cone is
a polyhedral cone.

When lower- and upper-bounds are known for (some) fluxes, the set of all
feasible steady-state flux vectors is called flux space. The flux space is a
polyhedron.



CHAPTER

Flux Coupling Analysis of
2 Metabolic Networks is
Sensitive to Missing
Reactions

Many authors have studied the effect of missing reactions on the analysis of
metabolic networks. Additionally, it is important to know how deleting a reaction
can influence the properties of a network. This chapter is devoted to investigating
the effect of missing reactions (or equivalently, deleting reactions) on flux coupling
analysis of metabolic networks. It should be noted that the main results of this
chapter are published in Marashi and Bockmayr (2011).

2.1 Background

In the past decade, genome-scale metabolic models for several organisms have
been proposed (for an overview see Terzer et al., 2009; Feist et al., 2009; Suthers
et al., 2009; Mo and Palsson, 2009). By including hundreds if not thousands
of reactions, a genome-scale metabolic network provides a fairly comprehensive
overview of a species’ metabolic properties (Feist and Palsson, 2008; Price et al.,
2003). This allows us to study the functional dependencies among reactions in
living organisms, to model physiological properties (see e.g. Liao et al., 1996;
Grafahrend-Belau et al., 2009; de Figueiredo et al., 2009; Mo and Palsson, 2009),
and to predict their performance in biotechnological applications (Schuster et al.,
2001).

A meaningful metabolic pathway can be seen as a series of consecutive re-
actions that work together for converting substrates into products (Kholodenko
et al., 1995). Different approaches have been developed to compute such path-
ways, the most popular being elementary flux modes (Schuster and Hilgetag,
1994) and extreme pathways (Schilling et al., 2000). However, due to combina-
torial explosion (Klamt and Stelling, 2003; Yeung et al., 2007), it may be practi-
cally impossible to enumerate all elementary flux modes or extreme pathways for
a genome-scale metabolic network. In such a case, flux coupling analysis (FCA)
offers an alternative technique that does not require pathway computation (Bur-
gard et al., 2004; Notebaart et al., 2008; Bundy et al., 2007; Notebaart et al.,
2009; Suthers et al., 2010; Lee et al., 2008). FCA investigates dependencies be-
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tween reactions that are active together in steady-state. The coupled reaction
sets are sometimes referred to as “Co-Sets” (Papin et al., 2004). Three types
of flux coupling relations, namely directional coupling, partial coupling and full
coupling, have been introduced.

2.1.1 Formal Definition of Concepts

For a metabolic network N = (S, Irr), if for some reaction r, we have v, = 0 for
all v € C, then we say that r is blocked (Burgard et al., 2004). In other words,
blocked reactions cannot take any non-zero flux in steady-state.

Originally, Burgard et al. (2004) introduced the following definitions for cou-
pling relations between a pair of unblocked reactions ¢ and j:

— Directionally coupled reactions: if for all v € C,v; # 0 implies v; # 0,
then we say that i is directionally coupled to j, or i — j (or identically,
j «— 1). Equivalently, we could require that for all v € C,v; = 0 implies

v; = 0. The latter definition has been denoted as j =% by Larhlimi and
Bockmayr (2006).

— Partially coupled reactions: if for all v € C,v; # 0 implies v; # 0 and vice
versa, then we say that ¢ and j are partially coupled, or i «+— j. Obviously,
partially coupled reactions are also directionally coupled.

— Fully coupled reactions: if for all v € C, v; # 0 implies v; # 0 and vice
versa, and additionally there exists a constant ¢ such that for all v € C,
v; # 0 implies vj/v; = ¢, then we say that ¢ and j are fully coupled, or
1 <= 7. This is equivalent to saying that ¢ and j belong to the same
enzyme subset (Pfeiffer et al., 1999). Obviously, fully coupled reactions are
also directionally and partially coupled.

If two unblocked reactions ¢ and j are not directionally coupled, i.e., neither
i — j nor j — ¢ holds, then they are said to be uncoupled (Burgard et al.,

2004). This will be denoted by i AN J.

At present, our knowledge of metabolic reactions in biological systems is not
complete. Past studies have considered the effect of missing reactions on modeling
these networks (reviewed in Feist et al., 2009). Yet, little is known about the
impact of missing reactions on FCA. The objective of this work is to formally
study this problem, and to discuss some possible biological implications.

2.2 Results and Discussion

In this section, we first provide an alternative characterization of flux coupling
based on elementary modes. We then study the impact of missing reactions on
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flux coupling relations. Finally, we will discuss the relevance of our results for
the analysis of real metabolic networks.

Before we start, let us prove two useful lemmata. The first lemma formally
proves a well-known property, which is often referred to as the “conservation
property” of elementary modes (Schuster et al., 2002a; Klamt and Stelling, 2003).

Lemma 2.1. Consider two metabolic networks N = (S, Irr) and N' = (S', Irr’)
such that N is a completion of N' with set of missing reactions R. Let C' (resp. C")
be the flux cone and E (resp. E') be the set of elementary modes of N (resp. N').
For a flux vector v' in N’ let v = (v',0) be the vector in N obtained by adding
zero components v, = 0, for all missing reactions r € R. Then e = (¢/,0) € E,
for all ¢’ € E'. Conversely, if e = (v',0) € E, for some v' € C', then v’ € E'.

Proof. Let ¢/ € E’ and suppose e = (¢/,0) ¢ E. Then there exists v = (v/,0) €
C'\ {0}, with supp(v) C supp(e) = supp(e’). Since 0 = Sv = S"v" and Irr’ C Irr
we get v € C"\ {0} and supp(v') = supp(v) C supp(e’), in contradiction with ¢’
being an elementary mode in N’.

Conversely, let e € E with e = (v/,0) for some v' € C’. Suppose v/ ¢ E'.
Then there exists v’ € C" \ {0} with supp(v’) € supp(v’). For u = (v,0) we
get Su = S’v' = 0 and since Irr’ = Irr \ R it follows u € C \ {0}, supp(u) =
supp(u’) C supp(v') = supp(e), in contradiction with e being an elementary mode
iIl N u

We also prove the following useful lemma:

Lemma 2.2. Let E be the set of elementary modes in a metabolic network N.
Given two reactions i and j suppose that for all g,h € E with g;, h; # 0 we have
gihj = hig;. Then either there exists a constant c¢ # 0 such that e; = c - e; for all
e€ I withe; #0, ore; =0 for all e € E with e; # 0.

Proof. Suppose there exists e* € E with e # 0 and e} = 0. Consider any e € £
with e; # 0. By our hypothesis, eje; = e;e; = 0, which implies e; = 0.

Suppose that for all e € £ we have e, = 0 or e; # 0. For any ¢, h € E with
i, hi # 0 we have g;/g; = hj/h; = ¢, with ¢ independent from g, h. This implies
that for all e € E with e; # 0, we have e; = ce;. Since e; # 0, it follows ¢ # 0. =

2.2.1 Flux Coupling Definitions based on Elementary
Modes

Flux coupling is originally defined by considering all vectors in the flux cone C
(Burgard et al., 2004). In addition, we know that such vectors can be written as
non-negative linear combination of elementary flux modes in the network (Schus-
ter and Hilgetag, 1994). The following theorem shows that flux coupling relations
may also be defined in terms of elementary modes.

Theorem 2.1. Let N be a metabolic network with flux cone C' and set of ele-
mentary modes E. For any two reactions i and j, the following are equivalent:
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(i) For allv € C, v; = 0 implies v; = 0.

(ii) For all e € E, e; = 0 implies e; = 0.

Proof. Since E C C, we have immediately (i) = (ii). To prove that (ii) = (i),
we consider the following three cases:

1.

For all e € E, we have e; > 0: If (ii) holds, then for all e € E there exists
Ae € R with ej = Ac - ¢;. Any v € C can be written as v = ZeeE aee, with
ae > 0. From v; = > _paee; = 0, it follows ace; = 0, for all e € E. This
implies v; = Y pee; =D cpeAee; = 0.

For all e € E/, we have e; < 0: similar

There exist e, f € E with e; > 0, f; < 0. We consider two cases:

a) For all e, f € E with e; > 0, f; < 0, we have f;e; = e;f;. Since there
exist e, f € F with e; > 0, f; <0, we have fie; = ¢, f;, foralle, f € E,
with e;, f; # 0. Based on Lemma 2.2, there are two possibilities:
al) There exists ¢ # 0 such that e; = ¢ - ¢;, for all e € E with e; # 0.

Let v =73 pacein C and v; = 0. It follows

1
0 = vy = g Qe; = g Qs = — - E €
c

eckE e€lE, e; #0 eckE, e;#0
= 7 QeCj = — * Uy,
C &
ecE

which implies v; = 0.

a2) For all e € E, e; # 0 implies e; = 0. With (ii) we get e; = 0, for
all e € E, and so j is a blocked reaction. This implies that (i) also
holds.

(b) There exist e, f € E with e; > 0, f; < 0 and fie; # e;f;. We define
v* = e;- f— fi-e. Since v* is a positive linear combination of elementary
modes, we get v* € C, with vf = 0 and v} # 0. Let N’ be the network
obtained from N by deleting reaction i. As before we denote by C’
the flux cone of N’, and by E’ the corresponding set of elementary
modes. Let v" be the vector in N’ obtained from v* by deleting the
component v; = 0. Then v € C" and so v' = }_ . Bee€, for some
B > 0. Since vi = v = Y Be€) # 0, there exists €/ € £’ with
e; # 0. According to Lemma 2.1, the vector e = (¢’,0), obtained from
¢’ by adding the i-th component e; = 0, is an elementary mode in N
with e; = e # 0. This contradicts (ii).
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Corollary 2.1. Suppose the reversible reaction i can operate in both directions,
i.e., there exist two elementary modes e, f € E such that e; > 0 and f; < 0. If
for some reaction j, we have i — j and j — i, then necessarily i <= j (i.e., it
is not possible to have i < j and not i <= j).

Proof. First note that j is unblocked, since ¢ is unblocked and ¢ — j. The
hypotheses of the Corollary correspond to Case 3) in the proof of Theorem 2.1.
Since j — i, Case 3b) is not possible. It follows that f;e; =e;f;, foralle, f € E
with e;, f; # 0. By Lemma 2.2 and since j is unblocked, there exists a constant
¢ # 0 such that g; = ¢ g;, for all g € E with g; # 0. Hence, i <= j. "

The next corollary gives an alternative characterization of flux coupling rela-
tions based on elementary modes. While this has no computational advantage
(since the full set of EMs is difficult to compute in genome-scale metabolic net-
works), this characterization plays an essential role in our formal analysis of flux
(un-)coupling relations.

Corollary 2.2. Let i,j be two unblocked reactions in a metabolic network N
with set of elementary modes F.

— i is directionally coupled to j (i — j) if and only if for all e € E, ¢; # 0
implies e; # 0.

— ¢ and j are partially coupled (i < j) if and only if for all e € E, e¢; # 0
implies e; # 0 and vice versa.

— 4 and j are fully coupled (i <= j) if and only if there exists a constant
c # 0 such that for alle € E, e; = c-e;.

Proof. This follows directly from the definitions and Theorem 2.1. In the case
i <= j, we also use that any v € C' can be written in the form v = ) __p ace,
for some «, > 0. n

From the Introduction, we recall that two unblocked reactions ¢ and j are
uncoupled iff neither i — 7 nor j — 7. This means that there exist f,g € E
with f; # 0, f; = 0 and g; = 0,g; # 0. Here, we define two types of uncoupling
relations:

— Sometimes coupled reactions: if two unblocked reactions ¢ and j are uncou-
pled and additionally there exists e € £ such that e; # 0 and e; # 0, then

i and j will be called sometimes coupled (i RN 7).

— Mutually exclusive reactions: if two unblocked reactions 7 and j are uncou-
pled and additionally, for all e € F, ¢; = 0 or e¢; = 0, i.e., they never appear

in the same EM, then i and j will be called mutually exclusive (i Pl 7).
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Figure 2.1: Different types of flux (un-)coupling relations. In a metabolic network,
every pair of unblocked reactions (i, j) lies in one of the regions of the dia-
gram. Either ¢ and j are coupled, i.e., inside the two circles, or uncoupled,
i.e., outside the circles. If (i,j) lies in the intersection of the two circles,
i.e., 1 is directionally coupled to j and vice versa, then they are partially
coupled. Fully coupled reaction pairs form a subset of the partially cou-
pled pairs. Ifi and j are uncoupled, they are either sometimes coupled or
mutually exclusive.

Fig. 2.1 briefly summarizes these relationships.

The concept of “mutually exclusive reactions” is not new. Based on the study
of reaction participation in extreme pathways, Papin et al. (2002) classified re-
actions into sets that are always, sometimes or never used for target production.
Later, Klamt and Stelling (2003) applied the concept of mutually excluding re-
actions to reactions that never appear in the same elementary mode.

2.2.2 Impact of Missing Reactions on FCA

We now investigate the effect of missing reactions in metabolic networks. Sup-
pose that the stoichiometric matrix S’ of a metabolic network N’ = (S', Irr’) is
obtained by deleting one or more columns (i.e., reactions) from the stoichiometric
matrix S of a second network N = (S, Irr). We will refer to the first network
as the incomplete network, and to the second network as the completion. The
set R # @ of reactions present only in the larger network N will be called miss-
ing reactions or missing network content of the smaller network N’. We further
assume [rr’ = Irr\ R.

Suppose that SmallNet (see Fig. 1.1) constitutes the actual complete metabolic
network of a biological system. The four EMs instantly indicate that reactions 1
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0123456 012345686 01234586
vt = (0,1,0,0,0,1,0) v2 = (0,0,1,0,0,0,1) vt = (0,1,0,0,0,1,0)
v2 = (0,0,1,0,0,0,1) V3 = (1,1,0,1,0,0,2) v = (1,1,0,1,0,0,2)

v+ = (0,1,0,0,1,0,1) v4 = (0,1,0,0,1,0,1)

0123456 0123456
vé = (1,1,0,1,0,0,2) Ve = (1,1,0,1,0,0,2)
v4 = (0,1,0,0,1,0,1)

Figure 2.2: Five possible scenarios for missing reactions in a metabolic network. Sup-
pose SmallNet (Fig. 1.1) is the original complete network. We consider
five incomplete reconstructions with the following missing reactions: (A)
0, 3 and 4; (B) 5; (C) 2; (D) 2 and 5; (E) 2, 4 and 5. In (A), metabolite
D is not connected to the rest of the network, and therefore is shown in
gray. The list of elementary modes is given for each network, with grey
“zero” values corresponding to the missing reactions.

and 6 are sometimes coupled. In Fig. 2.2, the effect of missing network content
on the EMs is shown. Suppose that we want to reconstruct a model of SmallNet.
Each part of the figure represents a possible incomplete network scenario, i.e., a
reconstruction of the actual network SmallNet, but with some reactions missing
due to incomplete knowledge. If, for example, reactions 0, 3 and 4 are missing
from this network, then no EM containing both 1 and 6 exists in the resulting
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network. Hence, they will be detected as mutually exclusive. On the other hand,
if only reaction 5 or only reaction 2 is missing, reactions 1 and 6 will be detected
as directionally coupled pairs. If both reactions 2 and 5 are missing, 1 and 6
become partially coupled. Finally if in addition to 2 and 5, reaction 4 is also
missing, 1 and 6 will be detected as fully coupled. The effect of missing reactions
on the relationship between reactions 1 and 6 is summarized in Table 2.1.

Missing reactions flux coupling relation related figure

None 13% 6 Fig. 1.1A
0,3,4 1 8E Fig. 2.2A
5 1—6 Fig. 2.2B
2 6— 1 Fig. 2.2C
2,5 16 Fig. 2.2D
2,45 16 Fig. 2.2E

Table 2.1: Some possible scenarios for missing reactions in a network and the effect
on flux coupling relations.

In the above example, we observe that it is possible to have a pair of uncoupled
reactions in the original complete network, which is detected as a pair of coupled
reactions due to missing reactions in the incomplete network. The following
theorems study possible changes in flux coupling relations due to missing network
content.

Lemma 2.3. Let i # j be two irreversible reactions in an incomplete network
N' = (8", Irr"). Let N = (S, Irr) be a completion constructed by adding an
irreversible reaction n + 1 to N', such that S,1; = —S.. Then, we have:

1. i+ — j does not hold in N.
2. Ifi+— jin N', then j — i holds in N.
Proof. Let C (resp. C") be the flux cone of N (resp. N').

1. Define v € R"*! by v; = v,41 = 1 and v, = 0 for all » # i,n + 1. Then
v>0and S-v=1-5;4+1-S5,,1 =0. It follows v € C, with v; # 0 and
v; = 0. This shows that i — j does not hold in N.

2. If i «— j in N’, there exists v’ € C’ such that u] > 0 and u; > 0. Define
u € C by u= (v,0). Assume j — i does not hold in N. Then there
exists w = (W', wy41) € C such that w; > 0 and w; = 0. Since ¢ and j are
partially coupled in N’; w’ ¢ C” and therefore w,, 1 > 0.

Now define v = (v/, V1) € R*™ by v; = v,41 = 0, and v, = e wy Uy,

for r £ i,n+ 1. Using Su = > u,.S, = 0 and Sw = > w,S, = 0, we get
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v € C because Sv = Zr;ﬁi,nJrl(#il Cwy A+ up)S, = 2 Zr;«éi,nﬂ w,.S, +

Wn+1
Z#MH Uy S, = w:1+1<_wn+15n+1) — u;S; = 0. Furthermore, v, > 0,
whenever wu,,w, > 0. Since v,1; = 0, we get v/ € C’, v = 0 and

v} = uw; /wn g1 +uy > 0, in contradiction with ¢ «— j in N".
|

Theorem 2.2. In an incomplete network N' with no blocked reactions, the fol-
lowing statements hold for any pair of reactions i and j:

1. Ifi and j are irreversible and fully (i <= j) or partially coupled (i < j)
in N’, there exists a completion N in which i «<— j does not hold. Instead,

each of the following relations can hold: 1 — j or j — i or i &Y, j.

2. Ifi and j are irreversible and directionally coupled (i — j) in N’, there

exists a completion N in which ¢ & 7.

3. If i and j are not “proportional” (i.e., S; # c-S;, for all ¢) and mutually
exclusive (i &5 j) in N', there exists a completion in which they are

. . S.C. .
sometimes coupled: 1 < j.

Proof. 1. Ifi <= jin N’, then also i «— j in N'. We construct a completion
N; by adding an irreversible reaction n + 1 to N’, such that S,,; = —S;.
According to Lemma 2.3, 7 — j does not hold in /Ny, while ; — ¢ holds in
Nj. Similarly, + — j and not j — ¢ hold in a completion N, constructed
by adding an irreversible reaction n + 1 to N', such that S, 1, = —S;.

If N is constructed from N’ by adding two irreversible reactions n + 1 and
n + 2, such that S, = —95; and 5,42 = =5}, then by Lemma 2.3, neither
J — ¢ nor ¢ — 7 hold in N. This means that ¢ and j are uncoupled
in N. Since we have i <= j in N, there exists ¢’ € E' with ¢}, ¢} # 0.
By Lemma 2.1, e = (¢/,0,0) is an elementary mode in N with e;, e; # 0.

Hence, ¢ &Y, 7 holds in N.

2. Similar to 1) (by adding reactions n + 1 and n + 2 such that S, = —5;
and Sn+2 = —Sj).

3. Let N be the network constructed by adding a reaction n + 1 to N’, such
that S,41 = —=S5; —S;. Definee € C' by ¢, =¢; = €541 = 1 and e, = 0, for
all other reactions 7.

We claim that e is an elementary mode in N. Suppose there exists v €
C'\ {0} such that supp(v) C supp(e). If v,41 # 0 and v, = 0, for r # n+1,
we get S,41 = 0. It follows S; = —S; in contradiction to the hypothesis
that ¢, are not proportional. If v;,v,,1 # 0 and v, = 0, for r # i,n + 1,
we get S; = ¢+ 5;, for some ¢ # 0, which is again a contradiction. The case
Vj, Upt1 # 0 and v, = 0, for r # j,n + 1, is analogous. This shows e € E.
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Since i, j are uncoupled in N', there exist f', g € E with f] # 0, f7 = 0 and
9; = 0,9; # 0. By Lemma 2.1, the vectors f = (f’,0) and g = (¢',0) are
elementary modes in N, i.e., 7, j remain uncoupled in N. Since at the same
time there exists an elementary mode e such that e;,e; # 0, we conclude

that i &% jin N.

Under some additional hypotheses, we can prove the following:

Theorem 2.3. Let N’ be a metabolic network with irreversible reactions only
and no blocked reactions. Consider a pair of reactions i and j with i <= j in N’
such that for all v € C"\ {0}, {i,5} € supp(v), where C" is the flux cone of N'.
Then there exists a completion N in which i «— j holds, but not i <= j.

Proof. Since i <= j in N’, there exists A > 0 such that for all v' € C’, we have
v} = Av;. We construct the completion N by adding an irreversible reaction n + 1
to N’ with S, = —S; — (A +1)S;. We claim that ¢ «+— j holds in N, but not
1= J.

a) Define v € R*"™ by v; = v,y = 1, v; = A+ 1, and v, = 0 for all
r#i4,j,n+1. Then S-v = 5;+ (A+1)S; + Sp41 = 0. Therefore, v € C' and
vj/v; = A+ 1 # A. This shows that i <= j does not hold in N.

b) To prove i — j, we assume that there exists u € C for which u; > 0
and u; = 0. From Lemma 2.1, we get u,4; > 0, because if u,1; = 0, then
(ug,...,u,) € C’, in contradiction with ¢ <= j in N’. Since i <= j in N’, there
exists v’ € €', and a corresponding v = (v/,0) € C, such that v; = Av; > 0.
Using S,11 = —95; — (A + 1), it follows that

A A+1
0 = S u+ i

Un+1 (%

- S

A

Un-+1 ré{ijm+1}
A+1
i UiSi + )\U,‘Sj + Z UrSr
ré{i,jn+1}
U; U v
= [N — +1}Si+ {A- . +A+1—’"}S,~
{ Un+1 Z Un+1 ( )Uz’

r¢{i,j,n+1}

Define w € R™™! by w; = M /tuy1+1 > 0, wj = wyy1 = 0 and w, = M, /Uy 1 +
(A+ 1w, /v, for all v ¢ {i,5,n+1}. Then Sw = 0 and w, > 0, for every reaction
r, which shows w € C. Using w,+1 = 0, we get (wy,...,w,) € C'. Since w; =0,
this is a contradiction to the assumption of i <= j in N’.

c¢) To prove j — i, we assume that there exists v € C' with u; > 0 and
u; = 0. As before, we get u,,1 > 0. Furthermore, there exists v" € C’, and a
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corresponding v = (v/,0) € C, such that v; = Av; > 0. It follows that

1 » :
0=— S u=—2"S+Sui+ Y —-5, (2.1)
et et retignt) !
and )
(Y
0=— -5 v=_5+AS, .S, 2.2
v v + A5 + Z (2.2)

= Vj
r¢{i,j,n+1}

Adding the two equations and using S,+1 = —S; — (A +1)S; we get

o:[“j —1}Sj+ 3 {“ +Z—]S (2.3)

(% U
"“ rgfigne} -

Now define w € R"" by w; = wy11 = 0, w; = uj/ups1 — 1 and w, = u,/upi1 +
v /v;, for r & {i, j,n+ 1}.

Then Sw =0 and w, > 0, for r # j.

Assume w, = 0, for all ¢ {7, j,n+1}. Then v, /v; = 0, for all r ¢ {i, 7, n+1}.
With (2.2), we get S; + AS; = 0. If we define w € R" by @; = 1,%; = A, and
w, =0, for r # 4, j, we get w € C’ with supp(w) = {i, 7}, in contradiction to the
hypothesis. We conclude w, > 0, for some r ¢ {i,j,n + 1}.

If w; >0, we get w' = (wyq,...,w,) € C"\ {0} with w, = 0, in contradiction
to the hypothesis v} # 0, for all v € C"\ {0}.

If w; <0, we have with (2.3)

Si= Y, -5,

> w;
r@{ijn+1}

Using (2.2) this implies

w, U
Si+ > {—A-w—jJrU—J'ST:

r@{i,jn+1}
Define w € R"*! by w; = 1, W; = Wpq = 0, and W, = —\- 2 4+ % > (, for
j [
r ¢ {i,j,n+1}. Thenw' = (wy,...,w,) € C"\ {0}, and w} = 0, in contradiction
with i <= j in N'. "

Fig. 2.3 helps to better understand why these additional hypotheses should
be considered in Theorem 2.3. In Fig. 2.3A, one can see the case where all the
assumptions of Theorem 2.3 are satisfied. In the incomplete network, ¢ and j are
fully coupled. However, after addition of reaction k, reactions ¢ and j become
directionally (and not fully coupled). Fig. 2.3B shows an example where there
are some reversible reactions in the network. In this case, we have ¢ <= 7 in
the incomplete network. If the prescribed reaction k is added to this network,
however, we get : — j and ¢ and j are not partially coupled in the completion.
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Fig. 2.3C shows an example where 7 and j are fully coupled in the incomplete
network, but there exist some flux distribution v in which v; = v; = 0. Again,
in the completion, we have i — j and not ¢ «— j. Finally, Fig. 2.3D-E show
examples in which there exist a flux distribution v such that {i,j} = supp(v).
Addition of reaction k again results in ¢ — j, rather than a partial coupling
relation in the completion.

The last theorem summarizes all possible cases.

Theorem 2.4. Let N’ be an incomplete metabolic network and let N be a
completion. All possible changes in flux coupling relations that can occur for two
unblocked reactions i, j are the following:

l.i<=jin N vs.i+— jin N

2. i<=jinN vs.i— j (orj—1i)in N

3. i<:>jinN’VS.i<&>jjnN

4. i«—jin N vs.i— j (orj—i)in N

) . , . SC. ..

S.1+—jin N vs.i <= jin N

6. i — jin N vs.i <% jin N

70 2 S in N vs i &5 jin N
Proof. Theorem 2.2 and 2.3 show the possibility of all these seven changes in flux
coupling relations. It remains to prove that no other changes can happen.

We first show that it is not possible to have a pair of uncoupled reactions in N’
that become coupled in N. If ¢ and j are uncoupled, then there exist elementary
modes f,g € E' such that f; # 0, f; = 0 and ¢g; = 0 and g; # 0. Now, if we add
one or more reactions to the network, all EMs of the incomplete network will be
included in the set of EMs in the completion. This means that not for all EMs e
in the completion, e; # 0 implies e; # 0 (and also e; # 0 implies e; # 0). Hence,
it is impossible for ¢ and j to become coupled in the completion.

If i — j and not i «— j holds in N’, then there exists ¢ € E’ such that
e; # 0 and e; = 0. Therefore, after making a completion, e; # 0 does not imply
e; # 0 for all EMs e in the completion. Thus, it is impossible to have j — 1,
t+«—jand i <= jin N.

If i «— 7 and not ¢ <= j holds in N’, then there exist f’, ¢’ € E’ such that
fi/fi # g;/gi- Clearly, i and j cannot become fully coupled in the completion,
because f = (f’,0) and g = (¢,0) are both included in the set E of elementary
modes in N.

Finally, changing a pair of coupled or sometimes coupled reactions to a pair
of mutually exclusive reactions in the completion is also impossible, since there

exists at least one ¢’ € E’ and a corresponding e = (¢/,0) € E such that e¢; # 0
and e; # 0. "



29

a b i1 J k a b i1 j k

El1: (1, 1, 1, 1, 0) El1: (1,1, 1, 1, 0)
*E2: (0, 0, 1, 2, 1) *E2: (-1,-1, 0, 1, 1)
*E3: (0, 0, 1, 2, 1)

a b 1 jJ k r s
El: (1, 1, 1, 1, 0, 0, 0)
E2: (1,1, 0,0, 0,1, 1)
%31 (0, 0, 1, 2, 1, 0, 0) S
*E4: (0, 0, 0, 1, 1, 1, 1) v
i ok i ok
El: ( 1, 1, 0) El: (1, 1, 0)
*E2: (0, 1, 1) *E2: (0, 1, 1)

Figure 2.3: Different networks when the prescribed reaction in Theorem 2.3 (shown
here as reaction k) is added to the network. When the stoichiometric
coefficient is not 1, the coefficient is indicated on the hyperarchs by “x”
sign. Elementary modes of each network are also indicated. Those EMs
which appear only in the completion are asterisked. (A) A network in
which all reactions are irreversible, and additionally, 1 and j are non-zero
in all flux distributions, but there is no EM including only i and j in
its support; (B) A network in which some reactions are reversible, and
additionally, i and j are non-zero in all flux distributions, but there is
no EM including only i and j in its support; (C) A network in which all
reactions are irreversible, but ¢ and j are zero in some flux distributions.
(D) A network in which i and j form a (futile) cycle. (E) A network in
which there is a (noncyclic) EM including only i and j in its support.

Possible changes in flux coupling relations due to missing reactions are sum-
marized in Fig. 2.4.

From these theorems we immediately conclude that the results of FCA are not
always reliable. More specifically, if two reactions are uncoupled in an incomplete
model, they are necessarily uncoupled in the original complete network. On the
other hand, two reactions that are coupled in an incomplete network may be
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Figure 2.4: Possible changes in flux coupling relations due to missing reactions. An
arrow from relation A to relation B indicates that while relation A holds
in the completion, relation B may be observed in the incomplete network.
Grey boxes stand for uncoupling, white boxes for coupling relations.

uncoupled in the complete network. Burgard et al. (2004) accurately report such
examples, e.g. in case of ZWF and PGL reactions.

Note that Theorem 2.4 considers unblocked reactions. Obviously, a blocked
reaction in an incomplete network may participate in different types of (un-)-
coupling reactions in the completion, depending on the additional reactions. Fur-
thermore, if reaction i is directionally coupled to reaction j in the original com-
plete network and j is missing in the incomplete reconstructed network, then the
flux through ¢ is always zero. This means that i is blocked in the incomplete
network. If some reactions belong to the same set of partially or fully coupled
reactions in the complete network, then one missing reaction in the reconstructed
model results in all other reactions being blocked. This can formally explain the
prevalence of blocked reactions in genome-scale metabolic networks (Feist et al.,
2007; Puchatka et al., 2008; Suthers et al., 2009). If further constraints are ap-
plied to the network, e.g., if certain uptake reactions cannot work because their
corresponding substrates are not available in the growth medium, we may have
even more blocked reactions.
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2.2.3 Biological Implications
How Important is the Effect of Missing Reactions?

As mentioned in the previous section, missing reactions in a metabolic network
can influence flux coupling relations. How prevalent is this influence? In order
to investigate this question, different metabolic networks were chosen. For each
model, we temporarily removed one reaction from the complete network and
counted how many reaction pairs changed their coupling type in the incomplete
network (cf. Fig. 2.4). This was repeated for all reactions in the network. The
results are summarized in Table 2.2. We can see that there exist reactions in
the network whose omission results in little or no change. However, there exist
also some reactions that if deleted, influence flux-coupling relations of many other
reactions. We may call these reactions “important” because they play a pivotal
role in shaping the coupling type of other reactions. Table 2.2 shows that such
important reactions exist in all three models. Since the average ratio of the
observed changes to the total number of reaction pairs is considerable, one can
conclude that “important” reactions are not exceptional. Note that the set of these
“important” reactions is not necessarily equal to the set of “hubs” in reaction maps
(Burgard et al., 2004), which can be defined as reactions whose omission results
in blocking many other reactions.

Model # Reactions # Reaction Min Max Average Average ratio

Name pairs

Calv 23 231 0 119 54.7 0.24

RBC 44 903 0 440 77.4 0.09
EC core 76 2775 0 1011 248.0 0.09

Table 2.2: Number of changes in flux coupling types due to removal of one reaction.
# Reactions is the number of reactions in each network. # Reaction pairs
is the number of reaction pairs after removing one reaction. In each iter-
ation, one reaction is deleted from the complete network and the number
of changed relations is determined. Min denotes the minimum number of
changes among all reaction pairs, while Max is the corresponding maximum
value. Only those pairs of reactions are considered that are both unblocked
after the single reaction removal. Also shown is the average number of
changes (average) and its proportion to the number of all pairs (average
ratio).

A possible explanation for the existence of “important” reactions is that all
three models are greatly simplified. Therefore, many alternative pathways are
removed from the network, resulting in a model in which many of the reactions
are coupled to each other, and therefore more or less “important”. In genome-scale
models with many alternative pathways and a large number of uncoupled reaction
pairs, we expect that “important” reactions will be less frequent, since numerous
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alternative pathways and therefore many uncoupled reaction pairs exist in these
networks. Here, individual removal of one reaction at a time will probably have
little effect on the coupling relations between other reaction pairs.

In Table 2.3, the frequencies of different types of changes in flux coupling re-
lations are compared to each other. The first four changes (columns 2-5) pertain
to scenarios where, after removal of a single reaction, at least one reaction has
become blocked in the incomplete network. The majority of observed changes
fall into these categories. Second most frequent are changes relating to the trans-
formation of an uncoupled pair to a directionally coupled pair. This shows again
why the results of FCA in many cases may not be reliable.

Model S=B D=B P=B F=B S=F D=F P=F S=P D=P S=D S=M Total
Calv 1292 414 0 71 310 37 0 63 9 564 276 3036
RBC 8286 2734 35 1025 99 297 27 0 307 2634 41 15485
EC core 27104 9626 48 1004 583 892 72 143 582 6946 9628 56628

Table 2.3: Total number of changes in flux coupling relations due to removal of one
reaction. X = Y indicates that the coupling type changes from X to Y. In
each iteration, one reaction is deleted from the complete network and the
number of changes is determined. The numbers give the sum of changes over
all reactions. S: sometimes coupled; M: mutually exclusive; D: directionally
coupled; P: partially coupled; F: fully coupled; B: both reactions or at least
one of them are blocked.

2.2.4 Comparison of Flux Coupling Relations in two
Versions of the E. coli Metabolic Network

In a more comprehensive study, we compared the flux coupling relationships of
two versions of the E. coli metabolic model. The original model (Reed et al.,
2003) contains 1075 reactions, while in the more recent model (Feist et al., 2007)
the number has nearly doubled to 2077 with newly added reactions accounting
for most of the differences between the two models. Only 784 reaction IDs can
be found in both versions, constituting what we call the “common” set, while
291 reaction IDs from the original model seem to have no equivalent in the new
model. On closer inspection, the majority actually do appear in the newer model
but under a different ID. A number of reactions have been deleted in the 2007
model, either because they were incorrect or because they were decomposed into
more discrete enzymatic steps (Feist et al., 2007). Since it is difficult to determine
a possible “equivalent” for these 291 reactions, we limited our analysis to the
“common” set. Flux coupling analysis was performed for both versions and the
results for the “common” set were compared, see Fig 2.5. As expected, numerous
changes in coupling types can be observed. Overall, in this analysis, we study
(784 x 783)/2 = 306 936 reaction pairs. In the 2003 version of the E. coli network,
in 144 477 pairs either one or both of the reactions are blocked. For these, we have
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Figure 2.5: Changes in flux (un-)coupling relations for two E. coli models. An arrow
from relation A to relation B indicates that in the more recent reconstruc-
tion (Feist et al., 2007) relation A holds, while in the former model (Reed
et al., 2003) relation B was observed. The numbers indicate how many
reaction pairs have changed their relation. Note that the 2003 model does
not contain partially coupled reactions that are not fully coupled. Grey
boxes represent uncoupling relations, while white boxes show coupling re-
lations. The dashed arrows correspond to changes that cannot be caused
by missing reactions only. Since the FCF' algorithm (Burgard et al., 2004)
is used for FCA, it is not known how many S.C. relations are changed to
M.E. (and possibly, vice versa).

no coupling or uncoupling relation. The number of uncoupled pairs is 159 772.
There are only 2687 fully or directionally and no partially coupled reaction pairs
in this model. In the 2007 model, 2185 pairs (i.e., 1241169+ 763+241 pairs) have
changed their coupling type either to another type of coupling, or to uncoupling.
This means that more than 81% of coupling relations have changed. Again,
these results indicate the importance of using more complete metabolic models
for drawing biological conclusions from the results of FCA.

From our mathematical results we can conclude that only certain changes
in flux (un-)coupling relations are possible if reactions are merely added to a
network. Since in addition to the many new reactions in the 2007 model, some
reactions from the 2003 model were also omitted, we can observe two cases in
which an uncoupling relation in the 2003 model becomes a directional coupling
relation in the 2007 model.
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Relationship between Gene Expression Correlation and Flux
Coupling for a Pair of Reactions

Recently, Notebaart et al. (2008) demonstrated that gene expression correlation
(GEC) between metabolic genes can be reasonably explained by flux coupling.
They used the 2003 model of E. coli (Reed et al., 2003) to show that fully coupled,
directionally coupled and uncoupled reaction pairs exhibit distinct GEC values
in their corresponding gene expression levels. Although high GEC values are
expected for enzymes that catalyze fully coupled reactions, in this study the
average GEC values of these reactions was about 0.27, which is relatively low.
We hypothesized that this low value is related to reaction pairs that are in fact
directionally coupled or uncoupled, but were mistaken for fully coupled pairs due
to some missing reactions. Therefore, we expected some of these “falsely” fully
coupled reactions to become uncoupled or partially coupled in a more complete
model.

To test our hypothesis, we compared the recent E. coli model (Feist et al.,
2007) to the original model (Reed et al., 2003) used by Notebaart et al. (2008).
We chose all reaction pairs identified as fully coupled by Notebaart et al. (2008).
From these 947 reaction pairs, 933 pairs had a reported GEC value. For these,
we re-calculated the flux coupling relations based on the recent E. coli metabolic
model. Interestingly, 379 pairs became directionally coupled and 204 pairs became
uncoupled in this model, while only 350 pairs remained fully coupled. Again, we
observe that the results of flux coupling are not reliable in incomplete metabolic
models.

Using the model of Feist et al. (2007), we compared gene expression levels of
the following two categories: reaction pairs that are still fully coupled, and reac-
tion pairs that have changed their coupling relationship to directionally coupled
or uncoupled. Results are illustrated in Fig. 2.6. In Fig. 2.6A, the two categories
are compared based on their average GEC values. The average GEC of reaction
pairs that remained fully coupled is about 0.30, while it is less than 0.25 for di-
rectionally coupled or uncoupled reaction pairs. Although the difference is not
big, it is statistically significant (P < 0.01). Reaction pairs that were “falsely”
fully coupled in the smaller model are now in a category with significantly less
correlation values in gene expression levels.

In the next step, based on their GEC values, we classified the gene pairs into
five different categories: N: negatively correlated; U: uncorrelated; S: slightly
correlated; M: moderately correlated; and H: highly correlated. For each cate-
gory, the proportion of reaction pairs that are fully coupled in the recent E. coli
model is given in Fig. 2.6B. In this diagram, the average GEC of the last cate-
gory, i.e., highly correlated pairs, is significantly greater than the other categories
(P < 0.01 for H-N, H-U and H-S comparisons; and P < 0.05 for H-M com-
parison). The pairwise difference in average GECs of the other categories is not
significant (P > 0.05 in all cases). The results indicate that highly correlated
genes have a greater chance of remaining fully coupled as the network becomes
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Figure 2.6: Repeating FCA for fully coupled reaction pairs in E. coli reported by Note-

baart et al. (2008). Since fully coupled reaction pairs in (Notebaart et al.,
2008) are based on an “incomplete” E. coli model (Reed et al., 2003), we
performed FCA on a more recent and more “complete” network of E. coli
(Feist et al., 2007). (A) Comparing GEC' distributions for reaction pairs
that are still fully coupled in the recent E. coli model and reaction pairs
that are uncoupled or directionally coupled in this model; (B) Compar-
ing the proportion of fully coupled pairs in the recent E. coli model for
reaction pairs with different levels of GEC. N: negatively correlated pairs
with GEC < —0.10; U: uncorrelated pairs with —0.10 < GEC < 0.10; S:
slightly correlated pairs with 0.10 < GEC < 0.35; M: moderately corre-
lated pairs with 0.35 < GEC < 0.60; and H: highly correlated pairs with
0.60 < GEC.

more complete.

2.3 Methods

2.3.1 Datasets: Metabolic Networks and Gene Expression
Correlations

Five metabolic networks are used in this study: Calv: photosynthate metabolic
network in the chloroplast stroma (Poolman et al., 2003) (this model has been
chosen from default metabolic networks associated with CellNetAnalyzer (Klamt
et al., 2007) and differs slightly from the original model); RBC: metabolic network
of red blood cell (Gakir et al., 2004b); EC core: central metabolic network of
E. coli (without the “Biomass” reaction) Palsson (2006); the 2003 E. coli model
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(Reed et al., 2003); and the 2007 recent E. coli model (Feist et al., 2007). The
last three models are available from http://gcrg.ucsd.edu/In_Silico_
Organisms/E_coli.

We used the flux coupling and gene expression correlation data reported by
Notebaart et al. (2008) (kindly provided by B. Papp). The flux coupling data
are related to the E. coli model published in 2003 (Reed et al., 2003). The gene
expression correlation values are based on the data reported elsewhere (Price
et al., 2006).

2.3.2 Study of Flux Coupling Changes by Removal of
Single Reactions

In order to study the effect of missing reactions in a metabolic network, three
small models, Calv, RBC, and EC core, were used. For each model, the following
procedure was performed for all reactions in the network. First of all, the set of
EMs of the network was computed by METATOOL (Pfeiffer et al., 1999). In the
next step, one reaction was chosen in each iteration and the elementary modes in
which this reaction has a non-zero flux were temporarily removed. Then, based
on the remaining EMs, coupling relations between each pair of reactions were
determined.

2.3.3 Comparison of Flux Coupling Relations in two
Versions of the E. coli Metabolic Network

In order to investigate how flux coupling relations may change by adding new
reactions, two versions of the E. coli genome-scale metabolic network were studied
(Reed et al., 2003; Feist et al., 2007). Only reactions with identical reaction IDs
in both models were considered. The FCF algorithm (Burgard et al., 2004) was
applied to determine the flux coupling relations for any reaction pair in both
networks. Then, the FCA results of both networks were compared.

2.3.4 Relationship between Gene Expression Correlations
and Flux Coupling in a Recent E. coli Model

Notebaart et al. (2008) recently reported that fully coupled reaction pairs have
positive, yet rather low, gene expression correlations. Their work was based on
a metabolic model of E. coli published in 2003 (Reed et al., 2003). By applying
the FCF algorithm (Burgard et al., 2004) on a more recent metabolic model
of E. coli (Feist et al., 2007), we determined the flux coupling relations between
those reaction pairs that were found to be fully coupled by Notebaart et al. (2008).
Like in Notebaart et al. (2008), partially coupled reaction pairs are included in
the same category as the fully coupled pairs. Moreover, similar modifications
were applied to the 2007 E. coli network, e.g. we allow inflow for all external
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metabolites and we remove the biomass reaction. Then, distribution of GEC
values of those pairs that are fully coupled in both E. coli models were compared
to GEC values of those pairs that are not fully coupled in the recent model.
In addition, we classified these gene pairs based on their GEC values into five
categories: negatively correlated (N), uncorrelated (U), slightly (S), moderately
(M) and highly (H) correlated pairs (see Fig. 2.6). The proportion of reaction
pairs that remained fully coupled in the recent model were then compared over
the five categories.

2.3.5 Statistical Analysis

In order to compare the distributions of GECs (see Fig. 2.6A), a two-sample t-
test was used. Confidence intervals in this plot are based on one-sample t-test.
In order to compare two proportions (in Fig. 2.6B), we performed a “test of two
binomial proportions” in each case. Since in all cases, the two population sizes
were large enough, a normal approximation of the binomial distribution was used
to simplify the comparisons (Hogg and Tanis, 1988), i.e., a Z-test on the following
statistic (which is assumed to be normally distributed):

P — P2

z = (2.4)
VPO =P +5)
where N
A T T T2
= 2.5
P = T, (2.5)

and where n, and ns are sample sizes, r; and x5 are the frequency of “suc-
cess” (i.e., fully coupled pairs) in samples 1 and 2, and p; and p, are estimated
probabilities of “success” in the corresponding samples.

The corresponding 0.95 confidence intervals were also computed based on the
normal approximation, i.e.:

p+1.96y/p(1 —p)/n (2.6)

where p is the proportion estimated from the statistical sample, and n is the
population size.

Summary:

e We mathematically prove the “conservation property” of elementary modes
(Lemma 2.1).

e Flux coupling relations are defined based on the set of vectors in the flux cone.
We prove that flux coupling relations can be characterized based on the set
of EMs in a similar way (Corollary 2.2).
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e When reactions are missing in a reconstructed metabolic model, only certain
changes in flux coupling relations are possible (Theorem 2.4).

e A general method is introduced to construct examples of partially coupled
reactions (in the constructive proof of Theorem 2.3).

e We show that in two consecutive genome-scale metabolic networks of E. coli,
most of flux coupling relations are different (because of the incompleteness
of the older model).

e We show that GECs between enzyme pairs are better explained by FCA when
the recent E. coli model is used instead of the older one.



CHAPTER

3

On Flux Coupling Analysis
of Metabolic Subsystems

3.1 Background

Genome-scale metabolic networks are useful models for the analysis of metabolism
at the systems level (Oberhardt et al., 2009). However, due to the existence of
hundreds to thousands of reactions in each genome-scale network, it is not easy to
analyze such networks. For this reason, some authors prefer to study only some
interesting “subsystems” within these networks.

A mathematical definition of subsystems will be presented in the next section.
Informally speaking, a subsystem can be chosen by “cutting out” the uninterest-
ing components, i.e., by redrawing the boundary of the network to include only a
subset of reactions and metabolites (see Figure 3.1). By choosing a new bound-
ary, some of the internal reactions are converted to exchange reactions of the
subsystem (i.e., reaction 3 in Figure 3.1). Other reactions may become “external”
(like reactions 6 to 9 in Figure 3.1). External reactions convert only external
metabolites to each other.

Exl—

Figure 3.1: A metabolic network with nine reactions and six internal metabolites.
The system boundary is shown as a solid black line. A subsystem of the
original network can be selected by including only three metabolites (A—
C) and five reactions (1-5). The new boundary is shown as dashed line.
Note that reaction 3 is a boundary reaction in the selected subsystem,
while it is an internal reaction in the original network.

Subsystems may appear naturally in biological networks. For example, due
to compartmentalization of eukaryotic cells, organelle networks can be considered
as subsystems within the whole-cell network. Many authors prefer to study sub-
networks, e.g. metabolic networks of eukaryotic organelles in isolation (Poolman
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et al., 2003; Vo et al., 2004). Similarly, some authors have studied other subsys-
tems in isolation (e.g. see Teusink et al., 2009). A related approach is to split
a genome-scale metabolic network into smaller subsystems and study them in
isolation (Schilling and Palsson, 2000; Schilling et al., 2002; Schwarz et al., 2005;
Verwoerd, 2010, 2011).

Analysis of metabolic subsystems has the advantage that considerable savings
can be achieved in computation time. However, this “simplification” of the net-
work may sometimes result in wrong computational conclusions. For example,
instead of the original elementary modes of the network, one may obtain “pathway
fragments” in a subsystem (Imielinski and Belta, 2008), which may not be part
of any steady-state flux distribution in the original network (Kaleta et al., 2009).
Additionally, interdependencies between pairs of fluxes, which can be determined
by flux coupling analysis (FCA), can be missed when subsystems are analyzed. It
has been previously shown that FCA of subsystems results in smaller sets of flux-
coupled reactions compared to the FCA in genome-scale networks (see Burgard
et al., 2004, page 308).

In the present chapter, we focus on subsystem-based vs. genome-scale flux
coupling analysis. We first formally introduce the concepts used in this study.
Then, we mathematically explore the effect of subsystem selection on FCA.

3.2 Formal Definition of the Concepts

3.2.1 Concepts from Linear Algebra

The i-th unit vector e; is defined as a column vector with element ¢ equals one
and all other elements equal zero, i.e., e, = (0,---,0,1,0,--- ,0), where only the
i-th element is 1. Therefore, for a column vector v, we have: e] - v = v;, which is
the i-th element of v.

A zero vector 0 is defined as a column vector with all elements equal to zero.
Additionally, [n] will be used as an abbreviation for the set {1,...,n}.

For an m x n matrix M, P C [m] and @ C [n], we denote by Mp the
submatrix of M induced by rows in P and columns in .

3.2.2 Concepts Related to Metabolic Networks

An irreversible boundary reaction which can produce internal metabolites is called
an uptake reaction. Reactions that both produce and consume only external
metabolites are considered external to the metabolic network and are not included
in its stoichiometric matrix.

We adopt the definition of subsystems suggested in Imielinski and Belta
(2008). Suppose that in a network N = (S, Irr), the set of metabolites is equal
to [m]. Without loss of generality, suppose that the stoichiometric matrix S* of
a network N* = (S*, I'rr) is obtained by deleting the set of rows {r +1,...,m}
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(with 1 < r < m) from S . We will refer to the second network N* as the sub-
system and to the first network N as the extension or the extended network. By
selecting a subsystem, it is possible to get a set of zero columns, Z. Such columns
in the stoichiometric matrix correspond to those reactions that were internal in
the extended network, but are considered external to the subsystem. By conven-
tion, one can redefine the stoichiometric matrix of the subsystem S* = Sp.(n\ 2,
which is an 7 x (n — |Z]) matrix in which only the non-zero columns of S* are
kept. Irr* = Irr\ Z is the subset of Irr including the irreversible reactions in
the subsystem.

3.3 Results and Discussion

In this section, we first observe how selecting a subsystem (or equivalently, re-
drawing network boundaries) can affect the results of flux coupling analysis. We
then mathematically study the impact of subsystem selection on flux coupling
relations. Afterwards, we briefly compare the effect of deleting reactions (cf.
Chapter 2) with subsystem selection. Finally, we study the relevance of our
results for the analysis of real metabolic networks.

3.3.1 Impact of Redrawing the Network Boundaries on
FCA

Figure 3.2A shows a metabolic network. In Appendix 3.1, the corresponding
METATOOL input file is presented. Using the METATOOL software (Pfeiffer
et al., 1999; von Kamp and Schuster, 2006), only one EM (which includes all reac-
tions) is found in this network. Therefore, reactions i and j (like other reactions)
are fully coupled.

In Appendix 3.1, a number of scenarios are shown, where different subsystems
are selected. When the subsystem in Figure 3.2B is chosen, metabolites A and B
are assumed as external. In this subsystem, two EMs are found, and reactions ¢
and j are partially coupled to each other. Choosing the subsystem in Figure 3.2C
results in a system with three EMs, where j is directionally coupled to i. If the
network boundaries are redrawn to include the subsystem in Figure 3.2D, ¢ and
J become uncoupled, or more precisely, sometimes coupled. Finally, keeping only
metabolites C and H in the subsystem will result in Figure 3.2E, where ¢ and j
are mutually exclusive.

Figure 3.3A shows another small example network. In this network no reaction
consumes metabolite D. As a result, reactions 3 and 4 are blocked under steady-
state conditions and reactions ¢ and j are mutually exclusive. However, if we
select the subsystem shown in Figure 3.3B, metabolite D is considered as an
external metabolite. In this case, reactions 3 and 4 are not blocked. Therefore,

i &9 j in this subsystem. In Appendix 3.2, the METATOOL input files of the
two networks are presented.



Figure 3.2: Flux coupling between reactions i and j depends on subsystem selection.
(A) In the original network, the network boundary is shown as solid line.
In this network, i <= j. However, depending on the selected subsystem
boundaries (dashed lines), different flux coupling relations are observed:
(B) i — j;: (C) j — i; (D) i 2% j; (E) i 25 j. See Appendix 3.1 for
more details.

(A)

Ex1)

Ex2

Figure 3.3: (A): A metabolic network with six reactions and four internal metabolites.
The system boundary is shown as a solid black line. In this network,

we have i % j; (B): A subsystem of the network is selected. The new

boundary is shown as dashed line. In this subsystem, we have 1 89, j. See
Appendix 3.2 for more details. This figure can be seen also as a schematic
representation for understanding Theorem 3.2: N* is the network in (B);

A = {4}; supp(d) = {i,7,3,4}; supp(f) = {i,1}; supp(g) = {4,2}; and
the extension N, is shown in (A).

3.3.2 Mathematical Analysis of Flux Coupling Relations
in Subsystems

In the previous section, we observed that it is possible to have certain changes in
flux coupling relation of two reactions, depending on the selection of the subsys-
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tem. The following theorems summarize these changes:

Theorem 3.1. For any pair of unblocked uptake reactions i and j in a metabolic
network N*, the following holds:

1.
2.

3.

There exists an extension N in which 1 <= j.

If 7 and j are not fully coupled in N*, then there exists an extension N in
which i «— j and not i <= j.

If © and j are uncoupled in N*, then there exists an extension N in which
j — 1 (ori — j) holds.

If i and j are mutually exclusive in N*, then there exists an extension N in
which i and j are sometimes coupled.

Proof. We denote by C* the flux cone of N*. Let m + 1 and m + 2 be the two
distinct (external) metabolites consumed by reactions i and j, respectively.

1.

Since 7 and j are unblocked, there exists u,v € C* such that u; > 0 and
v; > 0. Since ¢ and j are irreversible, for w = u + v, we have w;, w; > 0.
Hence, there exists a constant A € R such that w; = Aw; # 0.

We construct an extension N by adding an irreversible reaction n + 1 that
produces m + 1 and m + 2 (see Figure 3.4A). The flux cone of N is defined

as:
C={veR"™|S-v=0,v >0, forallic Irr} (3.1)

where Irr = Irr* U{n + 1}, and

Note that Ulj € C. Hence, 7, 7 and n + 1 are unblocked reactions in N.

Additionally, Sv = 0 implies that —v; + wW;v,41 = 0 and —v; + w;v,41 = 0.
Thus, for all v € C, v; > 0 implies v; > 0 (and v,,41 > 0) and vice versa,
with v;/v; = (Wvy41)/(Wjvn41) = A. Therefore, i <= j.

If 7 and j are unblocked and not fully coupled, then there exists A;, Ay € R
with A\; # Ay and flux distributions w, uw € C* such that w; = Ayw; > 0 and
’177; = )\26]‘ > 0.

We construct an extension N by adding two irreversible reactions n+ 1 and
n+ 2 which both produce m+ 1 and m + 2 but with different stoichiometric
coefficients (see Figure 3.4B). The flux cone of N is defined as:

C={veR"™?|S-v=0,v >0, forallic Irr} (3.2)
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(A) (B)

(©) (D)

Figure 3.4: (A-D): Schematic representations for understanding parts 1-4 of Theo-

rem 3.1. The dashed line represents the boundary of the subsystem, while
the solid line represents the boundary of the extension. In each case, i
and j are uptake reactions in the subsystem, while they become internal
reactions in the extension network.

where Irr = Irr* U {n +1,n + 2}, and

S* 0 0
—el  w; Uy
w u
First, note that | 1 |, 0] € C. Thus ¢, j, n+ 1 and n + 2 are unblocked
0 1

reactions in N. Additionally, since w;/w; # u;/u;, ¢ and j cannot be
fully coupled. Now we prove that for all v € C, v; = 0 implies v; = 0
and vice versa. Since Sv = 0, we have —v; + v, 1W; + v, 2u; = 0 and
—Vj + Uy 1Wj + Upgot; = 0. If v; = 0, we have v, W; + vppou; = 0.
However, w;,u; > 0 and v,41,v,42 > 0, which means that both v,,; and
Up4+2 must be zero. Hence, v; = 0. Similarly, for all v € C, v; = 0 implies
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v; = 0. Therefore, i «+— j.
. If ¢ and j are unblocked and uncoupled, then there exists w,u € C* such
thatzﬂi>0, @j:()andﬂi:(), EL/]>O

We construct an extension /N by adding two irreversible reactions n+ 1 and
n + 2. The first reaction only produces m + 1, while the second reaction
produces both m + 1 and m + 2 (see Figure 3.4C). The flux cone of N is
defined as:

C={veR"™?|S-v=0,v >0, forallic Irr} (3.3)

where Irr = Irr* U{n + 1,n+ 2}, and

S* 0 0
—el 0
w+u
Note, that 0 € C. Therefore, i, j and n + 2 are unblocked. More-
1

over, for all v € C, we have —v; +w; (vp41+Vp42) = 0 and —v;+0;v,49 = 0.
From these two equations, it can be seen that v; > 0 implies v; > 0. There-

fore, j — i. However, since € C, 1 — j cannot hold.

o~ 8]

. If 7 and j are unblocked and uncoupled in N*, then there exists w,u € C*
such that w; > 0, w; =0 and u; = 0, u; > 0.

We extend the network by adding three new reactions n + 1, n + 2 and
n + 3 to N*, as shown in Figure 3.4D. The extended network, N, has the
following flux cone:

C={veR"™|S-v=0,v >0, forallic Irr} (3.4)

where Irr = Irr*U{n+ 1,n+ 2,n+ 3}, and

S 0 0 O
—e? ﬁj 0 ﬂj

w u

Note that,

+
(1) € C. Asaresult, reactions 7, j and n+1 are unblocked.
0

It can be easily seen that for all v € C, we have —v; + w;(vp411 + Vpyo) =0
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and —v; + Uj(Vpt1 + Ungs) = 0. Therefore, for all v € C, v,41 > 0 implies
that v;,v; > 0. Thus, there exists an EM, f, with f;, f; > 0. Additionally,

€ C. Therefore, there exists two EMs, say g, h, with g; >

o~ o &
— o o &

0,9, = 0 and h; = 0,h; > 0. We conclude that ¢ and j are sometimes
coupled.

Theorem 3.2. Let i and j are a pair of unblocked uptake reactions with 1 &Y, ¥
in a metabolic network N*. Suppose there exists a subset A of boundary reactions
that satisfies the following three conditions: (a) for each elementary mode d, with
d;,d; # 0, there exists r € A such that d, # 0; (b) there exists an EM f in N*
with f; # 0, f; = 0 such that f, =0 for all r € A; and (c) there exists an EM g
in N* with g; = 0,g; # 0, such that g, = 0 for all r € A. Then, there exists an

extension N in which i 4% 7.
Please see Figure 3.3 for an illustrative example.

Proof. We denote by C* the flux cone of N*. We extend the network by adding
a new metabolite for each reaction in A = {ry,--- ,r5}. The extended network,
N, has the following flux cone:

C={veR"|S-v=0,v;>0, forallie Irr} (3.6)

where

TlAl

Therefore, C' = C*N{v € R" | v, =0 for all » € A}. Based on conservation
property of elementary modes (see Lemma 2.1), the EMs of N are a subset of
EMs of N*. Additionally, f,g € C. However, for each elementary mode d of N*,
if d;,d; # 0 then there exists r € A such that d, # 0, which implies that d ¢ C.

We conclude that i &% J.

The possible changes in flux coupling relations due to subsystems selection
(Theorems 3.1 and 3.2) are summarized in Figure 3.5.

Theorems 3.1 and 3.2 discuss the flux coupling relation changes only for a pair
of boundary reactions i and j. However, these subsystem-induced changes are the
only possible changes that can happen (independent of whether the reactions i
and j are boundary reactions or internal reactions). This is shown in Theorem 3.3.
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and not (i < j)

f

V(i j)and

not (i & j)

f

& ]

Figure 3.5: Possible changes in flux coupling relations due to subsystem selection. An

arrow from relation A to relation B indicates that while relation A holds in
the extended network, relation B may be observed in the subsystem. Gray
and white boxes indicate uncoupling and coupling relations, respectively.

Theorem 3.3. Let ¢ and j be reactions in a metabolic subsystem N*, and let N
be an extension of N*. All possible changes in flux coupling relations which can
occur for a pair of unblocked reactions i, j are the following:

1.

2.

3.

4.

i <= j in N vs. any other flux (un)coupling relation in N*
i«—jin N vs.i — j (or j — i) in N*

i jin N vs.i &% jin N*

i ——jin N vs. i &5 j in N*

: . : o LSO e
i—>j(orj—1)in N vs.i <= jin N

11— (orj%i)ians.iMjinN*

i 2% 5 in N ovs. i 25§ in N*

. M.E. . . . SC. ..
1+—j3in N vs.1+— jin N*



48

Proof. The flux cone of the subsystem can be defined as

C'={veR"| S v=0,u,>0, forallieIrr} (3.7)

Let N be an extension of N* obtained by adding ¢ metabolites (and possibly,
r reactions). Then, N has the following flux cone:

C={veR" |S-v=0,v>0, for alli € Irr} (3.8)

S* 0
= (3w 7)

with M € R?”*™ and P € R?". Clearly, for all © € R™ and v € R", 1; e C

where

implies © € C*. Now, we show that the only possible changes in the flux coupling
relations are the ones mentioned in the theorem:

i) If i and j are uncoupled in N, then there exists (Z) € C such that u; =0

!/

and u; # 0. Also, there exists u/ € C such that u} # 0 and u}; = 0.
v
Therefore, 7 and j cannot be directionally, partially, or fully coupled in N*.

ii) If i — j (and not i «— j) in N, then there exists G}) € C such that

u; = 0 and u; # 0. Therefore, < and j cannot be partially, or fully coupled
in N*. Similarly, j — 4 (and not i «— 7) in N implies the same result in
N*.

!/

iii) If i «— j (and not i <= j) in N, then there exists Cﬁ) , (1;,) € C such

/ /

that u;, uj, uj, v} # 0 and w;/u; # u;/u;. Therefore, i and j cannot be fully

coupled in N*.

3.3.3 Subsystem Selection vs. Reaction Deletion

In Chapter 2, we showed that flux coupling relations can change if some reac-
tion(s) are deleted from the network. Deleting a reaction (or equivalently, exis-
tence of a missing reaction) is equivalent to deletion /absence of a column from the
stoichiometric matrix (see Section 2.2.2). It was shown that pairs of uncoupled
reactions in the original network may become coupled in the resulting incom-
plete network (but not vice versa). Additionally, deletion of reactions results in
a decrease in the number of EMs.

In the present chapter, we observed that restriction to metabolic subsystems
has very different consequences. Choosing a subsystem is equivalent to deletion of
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Figure 3.6: Reaction deletion vs. subsystem selection. (A) A small metabolic network
with three reactions and two internal metabolites; (B) the same metabolic
network, when reaction 3 is deleted (or missing); (C) the same metabolic
network, when metabolite B (and reaction 3) are assumed to be external;
(D) the same metabolic network, when reaction 2 and 3 (which produce
and consume metabolite B) are deleted.

a subset of rows from the stoichiometric matrix. In a subsystem, coupled reaction
pairs in the original network may become uncoupled in the resulting subsystem
(but not vice versa). Moreover, the number of EMs in a subsystem can be greater
than the number of EMs in the original network.

It is important to notice that subsystem selection and reaction deletion are
very different concepts. When a reaction is not included in the selected subsystem,
this is not equivalent to “deleting” the reaction from the network. Figure 3.6
shows an example. One can see here that deleting reaction 3 from the network
in Figure 3.6A blocks all other reactions in steady-state (Figure 3.6B), while
considering a subsystem excluding metabolite B and reaction 3 does not have
the same effect (Figure 3.6C). This is due to the fact that by deleting a reaction,
the corresponding internal metabolites are not deleted, and therefore, they can
become unbalanced (Dandekar et al., 2003). Consequently, such metabolites will
become “dead-ends”, and the associated reactions will be blocked. Note that
considering the above subsystem (by excluding metabolite B and reaction 3) is
also different from deleting all reactions that are involved with metabolite B
(Figure 3.6D).

3.3.4 Biological Implications

It is believed that some organelles like mitochondria and plastids originated from
free-living bacteria which were endosymbionts of the ancestral eukaryotic cells
(Sagan, 1967; Gross and Bhattacharya, 2009). These organelles are enclosed
by two membranes, which strictly control the inflow and outflow of metabolites
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and proteins. Therefore, one may expect the metabolic subsystems of plastids
and mitochondria to be almost independent from the rest of the network. As
mentioned in Section 3.1, some authors have studied these subsystems in isolation
(e.g. Poolman et al., 2003; Vo et al., 2004; Urbanczik, 2007).

In contrast, one may argue that only a limited number of the proteins in
mitochondria and plastids are encoded in their genomes. In fact, most of these
proteins are encoded in the nuclear genome, synthesized in cytosol, and then
transported to these organelles. There is a possibility that during evolution,
some of these enzymatic functions are replaced by their cytosolic counterparts.
As a result, the metabolism in these organelles might be highly interconnected to
the cytosolic enzymatic activities. Therefore, the question is: can we study the
organelle subsystems in isolation, without (much) influencing the dependencies
and couplings among the fluxes?

In order to answer this question, we studied eight organelles (see Section 3.4.1).
Plastid subsystems were selected from the genome-scale metabolic networks of
Hordeum vulgare (barley), Arabidopsis thaliana and Chlamydomonas reinhardtii.
Moreover, five mitochondrial subsystems were selected from the genome-scale
metabolic network of barley, A. thaliana, C. reinhardtii, homo sapiens (human)
and Saccharomyces cerevisiae (baker’s yeast). We considered all pairs of un-
blocked reactions in each subsystem, and computed pairwise flux coupling rela-
tions: (i) when the genome-scale network is analyzed; and (ii) when the isolated
subsystem is analyzed. The results of cases (i) and (ii) are compared in Figure 3.7.

Table 3.1 shows the frequencies of changes in flux coupling relations due to
analysis of organelle subsystems instead of the complete network. The ratio of
the changed flux coupling relations to the total coupling relations is shown in this
table. This ratio can be seen as a “measure” of the independence of the metabolic
subsystem: very small ratio means that most of the flux coupling relations are
not changed, and therefore, isolation of the subsystem does not much change the
functional dependencies of the metabolic fluxes. On the other hand, an increased
ratio means that a higher number of functional dependencies of the metabolic
fluxes are changed due to analysis of the subsystem in isolation, and therefore,
the subsystem is more dependent on the fluxes outside the subsystem.

From this table, one can see that the mitochondrial subsystems are relatively
independent of the rest of the metabolic networks, with change ratios ranging
between 0.1% to 4.6%. This observation suggests that mitochondrial metabolic
functions do not depend much on the “extra-organelle” metabolic fluxes. Thus,
these subsystems can be studied in isolation without losing much information
about the functional dependencies. In the plastids of modern plants, however, the
change ratio is much higher, 11.2% — 22.7%. The change ratio is very low in case
of C. reinhardtii, which is a very simple single-celled green alga. This observation
suggests that the analysis of plastid subsystems in isolation can result in the loss
of functional dependencies between metabolic fluxes.

The discrepancy between the level of independence in the plastids and mito-
chondria subsystems might be simply an artefact of metabolic network reconstruc-
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Figure 3.7: Observed changes in flux (un)coupling relations due to subsystem selection
for the four subsystems: AP: plastid of A. thaliana; AM: mitochondrion
of A. thaliana; BP: plastid of barley; BM: mitochondrion of barley; CP:
plastid of C. reinhardtii; CM: mitochondrion of C. reinhardtii; HM: mito-
chondrion of human; and SM: mitochondrion of S. cerevisiae. An arrow
from relation A to relation B indicates that while relation A holds in the
extended network, relation B may be observed in the subsystem. Gray
and white boxes indicate uncoupling and coupling relations, respectively.

tion. If this is not the case, one possible explanation for the difference between
the plastids and mitochondria could be that during evolution, some pathways
might have evolved in modern plants which increase the dependencies between
the internal and external fluxes of the plastids. Such pathways, however, might
be missing in a simple unicellular alga like C. reinhardtii. Another possibility
is that such pathways are not included in the C. reinhardtii metabolic model
as a result of its specific reconstruction method. The reconstruction procedure
relies on verification of transcripts in C. reinhardtii when grown in constant light.



Model name Organelle subsystem  Total number of  Number of Change
subsystem size coupling relations changes ratio
Barley plastid 139 9591 2173 22.7%
A. thaliana plastid 112 6216 695 11.2%
C. reinhardtii plastid 81 3240 11 0.34%
Barley mitochondrion 45 990 46 4.6%
A. thaliana mitochondrion 51 2250 39 1.5%
C. reinhardtii  mitochondrion 49 1176 41 3.5%
Human mitochondrion 484 116 886 132 0.11%
Yeast mitochondrion 161 12 880 22 0.17%

Table 3.1: Frequencies of changes in flux coupling relations due to analysis of organelle
subsystems instead of the complete network. Subsystem size is the number
of reactions of a subsystem which are unblocked in the complete genome-
scale network.

Therefore, the “chloroplast” reactions (and possibly not all plastid reactions) are
included. If more comprehensive genome-scale metabolic networks of plants are
available in future, one can test these hypotheses.

3.4 Methods

3.4.1 Datasets: Genome-scale Network Models and
Organelle Subsystems

Five genome-scale metabolic network models are used in this study: the network
of Hordeum vulgare (barley) (Grafahrend-Belau et al., 2009); AraGEM, the net-
work of Arabidopsis thaliana, (de Oliveira Dal’Molin et al., 2010); iAM303, the
network of Chlamydomonas reinhardtii (Manichaikul et al., 2009); Recon 1, the
network of Homo sapiens (human) (Duarte et al., 2007); and iND750, the network
of Saccharomyces cerevisiae (baker’s yeast) (Duarte et al., 2004).

Eight organelle subsystems were considered: plastid subsystems from barley
(140 reactions including 139 unblocked ones), A. thaliana (123 reactions includ-
ing 112 unblocked ones), and C. reinhardtii (99 reactions including 81 unblocked
ones); and mitochondrial subsystems from barley (45 reactions, all unblocked),
A. thaliana (58 reactions including 51 unblocked ones), C. reinhardtii (58 reac-
tions including 49 unblocked ones), human (600 reactions including 484 unblocked
ones) and baker’s yeast (263 reactions including 161 unblocked ones). To select
each organelle subsystem from the stoichiometric matrix of the genome-scale net-
work, we considered a submatrix which includes all the rows corresponding to
the metabolites in the organelle subsystem.
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3.4.2 Flux Coupling Analysis

Flux coupling analysis was performed by FFCA software (see Chapter 4). We
considered all pairs of unblocked reactions in each subsystem, and computed
pairwise flux coupling relations: (i) when the genome-scale network is analyzed,;
and (ii) when the isolated subsystem is analyzed.

Summary:

e Selecting a subsystem of reactions from a metabolic network, i.e., redrawing
network boundaries, is equivalent to selecting a row submatrix of the stoi-
chiometric matrix (in contrast to deleting reactions, which is equivalent to
selecting a column submatrix).

e Two coupled reactions in an isolated subsystem, if remaining unblocked, will
stay coupled in the extended network (possibly with a different coupling
relation). However, uncoupled reaction pairs in an isolated subsystem may
or may not remain uncoupled.

e As mentioned, some pairs of reactions in a certain subsystem may change their
flux coupling relations if the subsystem is studied in isolation. The change
ratio, i.e., ratio of changed coupling relations to all coupling relations can
be a measure of the dependence of the subsystem to the rest of the network.

e Plastids of Hordeum vulgare (barley) and Arabidopsis thaliana show a rela-
tively high change ratio compared to the plastid of Chlamydomonas rein-
hardtii or mitochondria of any studied organism.
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Appendix 3.1

(A) Original network: (B) Setting “A” and “B” as external
(and removing “1”):

METATOOL input: METATOOL input:
—-ENZREV —-ENZREV
—ENZIRREV —ENZIRREV
123456782917 2345678917
—-METINT —-METINT
abcdefghii jj cde £f ghii jj
-METEXT -METEXT

ab
—-CAT
i:la=1°¢c. —-CAT
J:1h=114ii . i:1la=1c
1:=1Db+3a j:1h=11ii
2 l1b=14d4d. 2 l1b=14d
3 lc=1c¢e 3 lc=1c¢e
4 le+1d=2h 4 le+1d=2h
5 lc=1T¢€. 5 lc=1FT¢£
6 :1f=1g . 6 :1f=1g
7:1g=1hn. 7:1g=1hn.
8 :1c=117j 8 :1c=117j
9 : 1 33 + 3 ii = 9 : 1 93 + 3 ii =
Elementary mode(s): Elementary mode(s):
11111111133 3330002256

0003331143
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(C) Setting CCA’?, 66B?9’ CCI” and CCJ” as (D) Setting “A”’ “B”’ “F77, CCG_” , “I”
external (and removing “1” and “9”): and “J” as external (and removing
“1”’ 666” and “9”):

METATOOL input: METATOOL input:
—ENZREV —ENZREV
—ENZIRREV —ENZIRREV

23456781 7 2345783

—METINT _METINT

cde f gh cden
—METEXT _METEXT

a b ii j] abiijjfag
—CAT —CAT

i: 1 a=1°¢c. i 1 a=1c
3 : 1 h=1141i i 1 h =1 14
2 : 1 b=14d. 2 1 b=14d
3 :1c=1%e. 3 1 c=1 e
4 : 1 e+ 1d=2h 4 1 e+1d=2n
5 :1c=1T€. 5 1 ¢c=1 f
6 : 1 £=1g. 7 1g=1h.
7zlg=1}‘1.. 8 1c=1 37
8 : 1 c =1 33

Elementary mode(s):

Elementary mode(s):

00000O01T1O0 00010010
111000012 00000110
000111011 00001001

11100012
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(E) Setting “A”, “D”, “E”, “F”, “G”, “I” and “J” as external (and removing “1”,
“27, ¢“6” and “9”). Additionally, metabolite “B” is removed because it is not
involved in any reaction:

METATOOL input:

—-ENZREV

~ENZIRREV
34578 1i 7

—METINT

c h

—METEXT

a ii jj £ g d e

—-CAT
i:1a=1¢c.

3 : 1 h=11i

3 :1c=1=e.

4 : 1 e+ 1 d=2h
5:1c=1T1€.
7 : 1 g=1h.
8 : 1 c=1 33

Elementary mode(s):

1000010
0010010
0000110
0100002
0001001



Appendix 3.2

(A) Original network: (B) Setting “D” as external:
METATOOL input: METATOOL input:

—ENZREV —-ENZREV

—ENZIRREV —ENZIRREV

123417 1234173

~METINT ~METINT
abcd abec
~METEXT ~METEXT
d
—CAT
i:=1a ~CAT
3 - 151 i =1 a
1:1a-= j+=1Db
2 :1b = L las=
3:1a+1b=1c 2+ b=
L lce-14q 3:1a+1b=1c
4 1l c¢c=14d

Elementary mode(s): Elementary mode(s):

o
= O
o O
o O
o
= o
o O
o = O
R O O
R O O
= o
= = O
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CHAPTER

A FFCA: A Feasibility-based
Method for Flux Coupling
Analysis

4.1 Background

Constraint-based analysis of metabolic networks has become an important tech-
nique to describe and predict the behavior of living organisms (Reed, 2009; Fell
et al., 2010). While a growing number of metabolic network reconstructions has
become available during the last years, the computational analysis of genome-
scale networks with hundreds or thousands of reactions may still be very time-
consuming. Therefore, there is a need for more efficient algorithms and tools
(see e.g. Terzer and Stelling, 2008; Haus et al., 2008; Gudmundsson and Thiele,
2010)).

Flux coupling analysis (FCA) (Burgard et al., 2004) is a useful method to
find dependencies between fluxes of a metabolic network at steady-state. Several
studies have used FCA for exploring various biological questions such as network
evolution (Notebaart et al., 2009; Pal et al., 2005a; Seshasayee et al., 2009),
gene essentiality (Notebaart et al., 2009), analysis of experimentally measured
fluxes (Suthers et al., 2010; Bundy et al., 2007) or gene regulation (Notebaart
et al., 2008). Having a time efficient implementation of FCA is important in such
studies.

In the rest of this chapter, we first recall some basic definitions. Then we
briefly review the previously proposed FCA methods.

4.1.1 Mathematical definitions
Basic preliminaries

In a metabolic network, if a reversible reaction has a positive (resp. negative)
flux, we say that it is working in forward (resp. backward) direction. Splitting
a reversible reaction ¢ means making reaction ¢ irreversible and adding one more
irreversible reaction ¢ +n to the network, which works in the backward direction.
Without loss of generality, we assume that in the numbering of reactions, the first
| Rev| reactions are the reversible ones.

The set of unblocked reactions can be further partitioned based on the re-
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versibility type of reactions (Larhlimi and Bockmayr, 2006). We define Irev as
the set of all reactions that can work only in one direction, i.e., those reactions
that take only non-negative or only non-positive flux values at steady-state. The
set of reactions that can work in both directions at steady-state is further divided
into two subsets: Prev, the set of pseudo-irreversible reactions, and F'rev, the
set of fully reversible reaction. A reaction i is in Prewv if for all flux vectors v in
the lineality space of the flux cone, we have v; = 0. Accordingly, we define Frev
as the set of those reactions that can have a non-zero flux value if fluxes through
all irreversible reactions are set to zero.

Elementary flux patterns

Suppose v € C'is a flux vector and A C R is a subnetwork. The flux pattern of v
for A is defined as AN supp(v), which is the set of those reactions in A which have
non-zero values in v (Kaleta et al., 2009). A flux pattern is called an elementary
flux pattern (EFP) if it cannot be written as the union of other flux patterns.
For studying EFPs, Kaleta et al. (2009) assume that the network contains only
irreversible reactions. To achieve this, every reversible reaction should be split
into two irreversible reactions (forward and backward).

4.1.2 Approaches to Flux Coupling Analysis

In this section, we briefly introduce different approaches to flux coupling analysis.
For additional information and the technical details on the implementation of
these algorithms, see Section 4.3.3.

Flux Coupling Finder Algorithm (FCF)

The most widely used method for FCA is the Flux Coupling Finder (FCF) al-
gorithm (Burgard et al., 2004). This approach is based on solving linear pro-
gramming (LP) problems, and therefore, is an optimality-based method. After
finding blocked reactions and splitting reversible reactions, for every pair of un-
blocked reactions ¢ and 7, two LP problems are solved. Depending on the optimal
values obtained, the coupling relation between ¢ and j is determined. There is
a post-processing step in FCF. Since the reversible reactions have been split,
flux coupling relations for these reactions have to be obtained from the coupling
relations for the corresponding irreversible forward and backward reactions.

The FCF algorithm has been successfully used for finding coupling relations
in a number of metabolic networks (Burgard et al., 2004; Notebaart et al., 2008,
2009; Suthers et al., 2010; Pal et al., 2005a; Bundy et al., 2007; Seshasayee
et al., 2009). However, this approach is rather time-consuming for genome-scale
metabolic networks with thousands of reactions, although it is still one of the
fastest FCA methods. To the best of our knowledge, no implementation of the
FCF algorithm is publicly available at the moment.
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FCA based on Minimal Metabolic Behaviors (MMB-FCA)

Larhlimi and Bockmayr (2006, 2009) have proposed a different strategy for flux
coupling analysis. In this approach, a minimal set of generating vectors of the
flux cone is computed. Then, the coupling relation for any pair of reactions is
inferred based on the co-appearance of non-zero fluxes in the generating vectors.
Additionally, they show that depending on the reversibility type of the reactions,
only certain flux coupling relations can occur. The authors suggest that this
may result in a considerable speed-up of any FCA method, including their own
approach (Larhlimi and Bockmayr, 2006).

FCA based on elementary flux patterns (EFP-FCA)

Recently, Kaleta et al. (2009) introduced the concept of elementary flux patterns
(EFPs) for analysis of minimal active reactions in a “subnetwork”, which account
for possible steady-state flux distributions in a (possibly big) metabolic network.
They also presented a method based on mixed integer linear programming (MILP)
to compute EFPs. Kaleta et al. suggested that EFPs can be used for character-
izing flux coupling relations (see Supplemental Material in Kaleta et al., 2009).
Consider a subnetwork including two unblocked reactions 7 and j. If each of these

reactions can have a non-zero flux independently of the other (i.e., i LN 7), {i}
and {j} are the only EFPs in this subnetwork. On the other hand, if we assume
(without loss of generality) that i is directionally coupled to j, then the EFPs of
this subnetwork are {i,j} and {j}. Finally, if the reactions are partially coupled,
we will have only one EFP, which is {i,j}. With this method, it is not possible
to distinguish between partial and full coupling, since flux patterns only contain
the information about the activity or inactivity of the fluxes, but not the flux
values.

4.1.3 Goals of the Present Chapter

Although FCA is a promising tool for metabolic network analysis, to the best of
our knowledge there is currently no publicly-available tool for performing genome-
scale FCA. Several approaches for FCA have been proposed in the literature. It
is not known which of these methods is the fastest in practice. In this chapter,
we present a novel “feasibility-based” flux coupling analysis method (FFCA) and
compare it to previously existing approaches. A corresponding software tool will
be freely available for non-commercial use.
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4.2 Results and Discussion

4.2.1 FFCA: Feasibility-based Flux Coupling Analysis

We introduce a new approach for flux coupling analysis which is based on feasi-
bility testing (a system of linear inequalities Ax < b is feasible if the polyhedron
P ={z € R"| Az < b} is not empty).

According to Larhlimi and Bockmayr (2006), two unblocked reactions i and
j can be coupled only if one of the following four cases holds (note that initially
3 x 3 = 9 reversibility types for the pair (i, j) would be possible):

1. 4,7 € Irev: In this case, ¢ and 5 can be directionally, partially or fully
coupled.

2. 1 € Irev and j € Prev: The only possibility is 7 — .
3. 1,J € Prev: In this case, we can only have i <= j.

4. 1,7 € Frev: In this case, we can only have i <= j.

Therefore, it is enough to determine the reversibility type of ¢ and j, and then
check if the corresponding coupling relation holds. This will be referred to as
“Reversibility-Type prunings” (or simply, RT-prunings).

Taking this observation into account, we propose the following procedure for
FFCA:

1. 4,7 € Irev: In this case, we check the feasibility of two systems of linear
inequalities:

vi=1, v; =0, Sv=0, v, >0, forall r € I'rr, (P1)

and

v, =0, vy=1, Sv=0, v, >0, forall r € Irr. (P2)
If (P1) and (P2) are both feasible, then i and j are not coupled to each
other (i LR j). If (P1) (resp. (P2)) is infeasible, then i — j (resp.
j — 1). If (P1) and (P2) are both infeasible, then i and j are partially
(and maybe fully) coupled. To check whether they are fully coupled, one

has to use other methods, e.g. computing enzyme subsets (Pfeiffer et al.,
1999) or solving two LPs as in the FCF algorithm (Burgard et al., 2004).

2. i € Irev and j € Prev: The only possible coupling relation is j — i (but
not i — 7). Hence, (P1) will be always feasible, because feasibility of (P1)
means that ¢ — 7 does not hold. However, we need to check the feasibility
of (P2). Additionally, since j can take negative values, one more system
should be checked for feasibility:

v; =0, vy=-1, Sv=0, v, >0, forall r € Irr. (P3)
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It can be easily shown that if (P2) and (P3) are both infeasible, then j — 3.
Otherwise, ¢ and j are uncoupled.

3. 4,j € Prev: If (P2) and (P3) are both infeasible, then i <= j (because
feasibility of (P2) and (P3) implies j — 4, which in turn implies | <= j
based on Proposition 2 in Larhlimi and Bockmayr (2006)). If (P2) or (P3)
are feasible, then ¢ and j are uncoupled.

4. 1,5 € Frev: Similar to the latter case.

To perform FFCA, a method is needed to check the feasibility of a system
of linear inequalities. In practice this can be done by solving an LP constructed
by the system of inequalities together with a constant objective function. Any
feasible solution will be an optimal solution of the LP, and therefore, the LP solver
will finish after finding the first feasible solution. For example, for checking the
feasibility of (P1), one can solve the following LP:

max c a constant value
s.t. Z Syt = 0 VYm e M
reR
v, >0 Vr e Irr
v, =1
v; =0

Since v; is constant, the optimal value exists iff this problem is feasible. Similar
LPs can be solved to check the feasibility of (P2) and (P3).

In Table 4.1, the characteristics of the FFCA approach are compared to the
other FCA methods studied in this article.

4.2.2 Comparison of the four FCA approaches

To compare the different approaches, namely FCF, MMB-FCA, EFP-FCA and
FFCA, we implemented all of them in Matlab (see Section 4.3.3). A benchmark
set of six metabolic network models was used to evaluate the running times. The
number of unblocked reactions in these models ranges from 18 to 765. Table 4.2
summarizes the results. One can see that in all cases FFCA is 2 to 3 times
faster than FCF and orders of magnitude faster than EFP-FCA. The table also
shows that FFCA is more appropriate for FCA in genome-scale networks. MMB-
FCA is the fastest method for the three smallest networks. However, already
for the middle-sized H. pylori network and even more for the large networks of
S. cerevisiae and E. coli, FFCA proves to be faster than MMB-FCA. The compu-
tation time required for MMB-FCA rapidly grows when the number of reactions
increases. This is possibly due to the exponential size of the set of generating
vectors which has to be computed before finding the coupled reactions (see Sec-
tion 4.4 in Larhlimi, 2008). EFP-FCA, which is based on solving mixed integer
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Preprocessing Main procedure Postprocessing
for reversible
reactions?
Type of Further distinguishing
linear program of partial and full
Method name and solution coupling required?
MMB-FCA computing MMBs + n/a No No
reaction classification
EFP-FCA splitting reversible reactions ~ MILP, optimal Yes Yes
FCF splitting reversible reactions LP, optimal No Yes
FCFyos n/a LP, optimal No No
FCFRT,wos reaction classification LP, optimal No No
FFCA reaction classification LP, feasible Yes No

Table 4.1: General comparison of different approaches to flux coupling analysis. In
the three methods which use RT-prunings, namely MMB-FCA, FCFRT wos
and FFCA, blocked reactions are determined within the preprocessing step.
In the other methods, blocked reactions are found in the main procedure.

number of MMB- EFP- FCF FCFyos FCFRT,wos FFCA

unblocked FCA FCA

reactions
ILLUSNET 18 0.01 26.3 0.25 0.14 0.09 0.08
RBC 38 0.05 152 1.39 0.80 0.68 0.63
EC core 63 0.22 585 6.58 3.03 3.13 2.50
H. pylori 217 69.8 > 1 day 196 83.6 67.0 60.9
S. cerevisiae 639 >1day >1lday 85x10% 4.0x103 3.4 x 103 3.1 x 103
E. coli 765 >1day >1lday 1.2x10* 7.4x103 6.3 x 103 5.6 x 103

Table 4.2: CPU running time (in seconds) required for flux coupling analysis of the
benchmark networks. See the text for more details.

linear programs, turns out to be much slower than other methods. Although the
concept of elementary flux patterns is very useful in the analysis of subnetworks,
its applicability in full FCA therefore seems to be limited.

FFCA vs. FCF

Both the FCF algorithm and the current implementation of FFCA solve LPs for
flux coupling analysis. One may ask why FFCA is faster than the classical FCF
method. There are at least four major differences:

— When an LP is solved in FFCA, finding the first feasible solution is enough,
while the LPs should be solved to optimality in case of the FCF algorithm.

— In the FCF method, in contrast to FFCA, every reversible reaction is split
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into two (forward and backward) irreversible reactions. This step slows
down the procedure and increases the size of the LPs to be solved.

— For computing the flux coupling relation between any pair of reactions, we
always need two LPs in FFCA, while in FCF sometimes more LPs have to
be solved. For example, for computing the coupling relation between an
irreversible and a reversible reaction (after splitting), four LPs are solved
(see Section 4.3.3).

— Only in FFCA we consider the Reversibility-Type prunings (Larhlimi and
Bockmayr, 2006) to reduce the number of possible coupled reaction pairs.

The first difference is because of the natures of FFCA and FCF. Nevertheless,
one can think of implementing FCF without splitting reversible reactions and/or
with the RT-prunings. In order to assess the importance of these issues, two
improved versions of FCF were implemented as suggested by Larhlimi (2008) (see
Section 4.3.3 and also Table 4.1): (i) FCF was re-implemented without splitting
reactions (FCF,g); and (ii) FCF was re-implemented without splitting reactions
and with the RT-prunings (FCFgrr wos)-

In Table 4.2 the computational running times of these methods are also shown.
As expected, the two versions of the improved FCF algorithm are better than the
classical FCF algorithm, while they are still slower that FFCA.

4.3 Materials and Methods

4.3.1 Metabolic Network Models

Six metabolic networks were used in this study: (i) ILLUSNET network from
Larhlimi and Bockmayr (2006); (ii) RBC: metabolic network of red blood cell
(Wiback and Palsson, 2002); (iii) EC core: central metabolic network of E. coli
(Palsson, 2006); (iv) H. pylori genome-scale metabolic network (Thiele et al.,
2005); (v) yeast (S. cerevisiae) genome-scale metabolic network (Duarte et al.,
2004); and (vi) E. coli genome-scale metabolic network (Reed et al., 2003).

For FCA, all uptake reactions were assumed to be able to carry non-zero
fluxes.

4.3.2 Comparison of different FCA methods

All computations were performed on a 64-bit Debian Linux system with Intel
Xeon 3.0 GHz processor. The running times include the CPU time for pre-
processing, computation of flux coupling relations, and post-processing (where
necessary).
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4.3.3 Implementation Details

To the best of our knowledge, no implementation of flux coupling methods is pub-
licly available. Therefore, we implemented the different approaches to compare
their time efficiency. Unless indicated otherwise, all tools were implemented in
Matlab v7.4. MMB-FCA, EFP-FCA and FCF are the previous approaches which
were (re-)implemented in this study. Additionally, our new method called FFCA,
together with two improved versions of the FCF method, namely FCFy,s (FCF
without splitting reversible reactions) and FCFgr wos (FCF with Reversibility-
Type prunings and without splitting reversible reactions) were implemented in
order to get a better picture about the efficiency of the different approaches.

Implementation of MMB-FCA

In this approach, a convex basis of the flux cone is needed. We use the soft-
ware cdd (Fukuda and Prodon, 1996), a tool based on the double description
method, to compute a minimum set of generating vectors. These correspond
to the lineality space and the minimal proper faces (or minimal metabolic be-
haviors, MMBs) of the flux cone (see Larhlimi and Bockmayr, 2009, for more
details). Next the reversibility type of the reactions is determined by computing
the sets Blk, Irev, Prev, and Frev. The flux coupling relations are then obtained
as described in Larhlimi and Bockmayr (2006). The following pseudo-code (Al-
gorithm 1) summarizes the procedure. CouplingRelation is a matrix where the
entry (i,7), with i < j, describes the coupling relation between two unblocked
reactions ¢ and j.
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Algorithm 1: MMB-FCA, an FCA approach based on the generators of
flux cone (Larhlimi and Bockmayr, 2006)

Input:

— S (the m x n stoichiometric matrix)

— Irr C{1,...,n} (the set of irreversible reactions)
Output:

— Blk (the set of blocked reactions)

— CouplingRelation
Initialization:

Rev :={1,...,n}\ Irr
Blk := @; Irev := &; Prev := &; Frev := &

Preprocessing:
/* Classification of reactions based on their
reversibility type */
B := COMPUTELINEALITYSPACE(S - v = 0,v; > 0, for all i € Irr)
b := NUMBEROFROWS(B)
G := COMPUTEMINIMALPROPERFACES(S - v = 0,v; > 0, for all i € Irr)
g := NUMBEROFROWS(G)
for i € R do
if B[b],{z‘} 7'é 0 then
| Frev:= FrevU{i}
else if G|y iy = 0 then
| Blk := Blk U {i}
else if G[Q]y{i} >0 or G[g]y{i} < 0 then
| Irev:= IrevU{i
else
| Prev:= PrevU{i}
end

end

Main procedure:

foreach i,j € Prev with i < j do
if I\ € R such that g; = Ag; for all g € G then

| CouplingRelation]i, j] := “<="
else
‘ CouplingRelationli, j] := « Un oy
end
end

foreach i,j € Frev with i < 5 do

if I\ € R such that g; = A\g; for all g € G and b; = \b; for allb € B
then
| CouplingRelation]i, j] := “<="
else
‘ CouplingRelationli, j] := « Un
end

end
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Algorithm 1: MMB-FCA, an FCA approach based on the generators of
flux cone, continued

foreach i, j € Irev U Prev with i # j and {i,7} ¢ Prev do
if g; =0 or g; #0 for all g € G then

‘ OoupllngRelatlon[z,]] N
else
‘ CouplingRelationl|i, j] := Un
end
end

foreach i,j € Irev with i < 7 do

if CouplingRelationli, j| =“—" and CouplingRelation(j,i) = “—"
then
if )\ € R such that g; = Ag; for all g € G then
| CouplingRelation]i, j] := “<="
else
| CouplingRelation]i, j] := “«—"
end
end
end

Implementation of EFP-FCA

We first introduce some auxiliary functions. minimize and maximize are two
functionals used to solve a linear program (LP), i.e., to optimize a linear objective
function subject to a set of linear constraints. For example, if Con = {Azx <
b,Cz = d} and c defines the objective function, then mazimize(c’z | Con)
computes the maximum value of ¢’z subject to the constraints Con. If Con
admits no real solution, then both minimize and maximize return the special
value L (i.e., infeasible). If C'on is feasible, but the optimum is unbounded, then
minimize (resp. maximize) return —oo (resp. +00).

Any available LP solver can be used to perform these computations. Here, we
used CLP, the LP solver from the COIN-OR package (Lougee-Heimer, 2003).

Another function is COUPLINGRELATIONRECOMPUTE. In some of the FCA
approaches, it is necessary to split reversible reactions ¢ in two irreversible re-
actions, namely i* (forward direction) and ¢~ (backward direction). Suppose
that for an irreversible reaction j, we have @ = CouplingRelation(i*,j) and
® = CouplingRelation(i~, j). Then a function is needed to compute the flux
coupling relation between i and j, based on @ and ®. The aim of COUPLINGRE-
LATIONRECOMPUTE is to take such an @, ® pair and compute the flux coupling
relation for the original (non-split) reversible reaction. For computing the cou-
pling relation of two reversible reactions after splitting, this function should be
called three times, since CouplingRelation|i, j]=
COUPLINGRELATIONRECOMPUTE(Coupling Relation (i, j),Coupling Relation(i~, 7).
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Algorithm 2: Procedure COUPLINGRELATIONRECOMPUTE

Input:

- @€ {—,—, , =, un } (the first coupling relation)

- ®e{— —, , =, un } (the second coupling relation)
Output: @ € {+—, —, , <=, un } (a new coupling relation)

switch (@, ®) do

case (:4: s ) , « 77)
‘ @ ::cc 9
case (ug s 2 4:_>77)
e 777
| @:=—
case (“é : ” u<_77)
L 9
| @=—
case (:c »n o, Un 77)
— ’
Un
‘ @ ::u i
case (u ) u_>:7)
‘ @ ::u_;v
case (4: 2 ¢:<_77)
‘ @ ,:cc<_;77
case (u »n o« Un 77)
’
Un
‘ @ ::u 9
case (4:_>777 ¢:<_77)
‘ @ T Un
case (u_>:77 «, Un ;7)
‘ @ T Un
case (u<_n’ :(_)n)
‘ @ L Un ,,
case (u<_777 «, Un 77)
‘ @ T Un
otherwise
| =
end

end

We also introduce the function BLKFINDERREVCORRECTOR(S, Ir7) to find
the blocked reactions and correct the reversiblity types of those reactions which
can work either in forward or in backward direction. Algorithm 3 summarizes
this procedure.
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Algorithm 3: Procedure BLKFINDERREVCORRECTOR

Input:

— S (the m x n stoichiometric matrix)

— Irr C{1,...,n} (the set of irreversible reactions)
Output:

— BIlEk* (the set of blocked reactions)

— S* (the stoichiometric matrix after correcting the reversibility of reactions)

— Irr* (the set of irreversible reactions after correcting the reversibility of
reactions)

Initialization:
Blk* .= @; Irr* .= Irr; S*:= S
foreach i € {1,...,n} do
Con :={Sv=0,v, >0 for all r € Irr}
mazx := mazimize(v; | Con)
if ¢ € Rev then
min := minimize(v; | Con)
if min = max = 0 then

Blk* = Blk* U {i}

S = S5 05 Spm fit1,..m)]

end
else if min = 0, mazr > 0 then

| Irr = Trrr U {i}
end

else if min < 0, max = 0 then
Irr* .= Irr* U {i}

end
else
if max = 0 then
Blk* = Blk* U {i}
S =[Sy i-1, 0, Spml,gi+1,...mn]
end

end

end

EFP-FCA is a recent FCA method suggested by Kaleta et al. (2009). In EFP-
FCA we first split the reversible reactions. Subsequently, we use the standard
implementation of the EFPTools package (Kaleta, 2009), which uses CLP to
solve MILPs, for computing EFPs. Then directional and partial coupling, and
also uncoupling relations are inferred. The whole procedure is summarized in
Algorithm 4. A new function, COMPUTEELEMENTARY FLUXPATTERNS(w, S*) is
used, which computes the EFPs of a network (with stoichiometric matrix S*) for
a subnetwork of selected reactions in w.



Algorithm 4: EFP-FCA, an FCA approach based on elementary flux pat-
terns (Kaleta et al., 2009)

Input:

— S (the m x n stoichiometric matrix)

— Irr C{1,...,n} (the set of irreversible reactions)
Output:

— Blk (the set of blocked reactions)

— CouplingRelation
Preprocessing:

/* Finding blocked reactions and updating Irr and
splitting reversible reactions x/
(Blk*, S*, Irr*) :== BLKFINDERREVCORRECTOR(S, Ir7)
Rev* :=[n] \ (Irr* U BIk*)
Shi= [S, _S[m],Rev*}
Main procedure:
foreach i,j € [n + |Rev*|] \ Blk* withi < j do
S// — Sl
if j € Rev*,j < n then replace the (j + n)-th column of S” with zero
column
if j € Rev*,j > n+ 1 then replace the (j — n)-th column of S” with
zero column
if i € Rev*,i < n then replace the (i + n)-th column of S” with zero
column
if i € Rev*,i > n + 1 then replace the (i — n)-th column of S” with
zero column
E := COMPUTEELEMENTARYFLUXPATTERNS((, j), S”)
switch £ do
case {(1,1)}
CouplingRelation[i, j] := “«—"
min := minimize(v; | {S"v =0,v > 0,v; = 1})
maz = mazimize(v; | {S"v =0,v > 0,v; = 1})

if min = max then CouplingRelationl[i, j] := * ”
case {(1,1), (0,1)} —
| CouplingRelationli, j] := “—"

case {(1,1),(1,0)}

| CouplingRelation|i, j] := “«—"
case {(1,0),(0,1)}

‘ CouplingRelationli, j] :=
end

« Un s

end
end
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Algorithm 4: EFP-FCA, an FCA approach based on elementary flux pat-
terns, continued

Postprocessing:
for every i,j with ¢ € Rev* and j € Irr* do
@ := CouplingRelationli, j
® := CouplingRelation(i + n, j)
CouplingRelation[i, j] := COUPLINGRELATIONRECOMPUTE(®), ®)
end
for every i,7 € Rev* with 1 < j do
@ := CouplingRelationl[i, j|
® := CouplingRelation(i + n, j)
@ := COUPLINGRELATIONRECOMPUTE(®, ®)
@ := CouplingRelation(i,j + n)
® := CouplingRelation(i + n,j + n)
@ := COUPLINGRELATIONRECOMPUTE(®, ®)

CouplingRelation|[i, j| := COUPLINGRELATIONRECOMPUTE(@), @)
end

Implementation of FCF

FCF is based on linear programming (LP) (Burgard et al., 2004). For every pair of
irreversible reactions, two LPs are solved, in which the flux through one reaction
is fixed and the flux through the other reaction is maximized or minimized. Based
on the optimal values, the flux coupling relation between these two reactions can
be inferred. Again we used CLP, the LP solver from the COIN-OR package
(Lougee-Heimer, 2003). After computing all coupling relations, a post-processing
step is required to obtain the coupling relations for the fluxes in the original
network. Algorithm 5 summarizes the procedure.

Algorithm 5: FCF, the classical Flux Coupling Finder algorithm (Burgard
et al., 2004)

Input:

— S (the m x n stoichiometric matrix)

— Irr C{1,...,n} (the set of irreversible reactions)
Output:

— Blk (the set of blocked reactions)

— CouplingRelation
Preprocessing:

(Blk*, S*, Irr*) := BLKFINDERREVCORRECTOR(S, I77)
Rev* :=[n] \ (Irr* U BIk*)
S/ = [S, _S[m],Rev*}
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Algorithm 5: FCF, the classical Flux Coupling Finder algorithm, cont’d

Main procedure:

foreach i, j € [n+ |Rev*|] \ Blk* do

S// = S/

if 7 € Rev*,j < n then replace the (j + n)-th column of S” with zero
column

if j € Rev*,j > n+ 1 then replace the (j — n)-th column of S” with
zero column

if i € Rev*,i < n then replace the (i + n)-th column of S” with zero
column

if i € Rev*,i > n + 1 then replace the (i — n)-th column of S” with
zero column

min := minimize(v; | {S"v =0,v > 0,v; = 1})

mazx = mazimize(v; | {S"v =0,v > 0,v; = 1})

end

switch (min, max) do

case (0,00)

‘ CouplingRelationli, j] :
case (> 0,00)
| CouplingRelationl|i, j] :="*«—
case (0,> 0)
| CouplingRelation|i, j] :=*—
case (> 0,>0)
if (min = max) then

| CouplingRelationli, j] :="*<="
else
| CouplingRelation|i, j] :="*«—"
end
end
end
Postprocessing:

for every i,j with i € Rev* and j € Irr* do
@ := CouplingRelationli, j|
® := CouplingRelation[i + n, j]
CouplingRelation][i, j] := COUPLINGRELATIONRECOMPUTE(®), ®)
end
for every i,7 € Rev* with 1 < j do
@ := CouplingRelationli, j|
® := CouplingRelation|i + n, j]
@ := COUPLINGRELATIONRECOMPUTE(®, ®)
@ := CouplingRelationl[i, j + n]
® := CouplingRelation[i + n, j + n]
@ := COUPLINGRELATIONRECOMPUTE(®, ®)

CouplingRelation[i, j] := COUPLINGRELATIONRECOMPUTE(®), @)
end
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Implementation of FCF,,g

Splitting reactions slows down the FCF algorithm for a variety of reasons, includ-
ing the bigger size of reconfigured network, the larger number of LPs to be solved,
and the need for post-processing. FCF,s (and also FCFgr wos) have been imple-
mented as splitting-free FCF methods to get a fair comparison between FFCA
and the optimality-based FCF. FCF,s uses a new function REVITOIRREVCOU-
PLING to compute the flux coupling relations between a reversible reaction and
an irreversible reaction. This function reads the maximum and minimum flux
value through a reversible reaction, when the flux through the irreversible reac-
tion is set to a constant. The output of the function is the flux coupling relation
between the two reactions. It should be noted that the same function can be used
for computing the coupling relation between a pair of reversible reactions ¢ and
j. First the coupling relation between ¢ and j*, and also between i and j~ are
computed as explained before. Then, COUPLINGRELATIONRECOMPUTE can be
used to obtain the flux coupling relation between i and j.

Algorithm 6: The REVIOIRREVCOUPLING procedure

Input:
— min (minimum value of the reversible flux when the irreversible flux is constant)

Outr maz (maximum value of the reversible flux when the irreversible flux is constant)
utput:

— @ (the coupling relation between the reversible and the irreversible flux)
switch (min, max) do
case (—00, < 0)

‘ @ PR
case (—o00, > 0)
‘ @ - Un

case (> 0,>0)

if (min = maz) then
O

else
| @

end

case (< 0,<0)

if (min = max) then
@ =

else
QCEO.

end

case (<0,>0)

‘ @ ::u ”

case (< 0,00)

‘ @ L Un ,,

case (—00,00)

‘ @ - Un

end
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To find flux coupling relations between a pair of reactions, FCF.s considers
three cases (in contrast to the classical FCF algorithm). If both reactions are
irreversible, the procedure is similar to the FCF method. However, if one reac-
tion is reversible and the other is irreversible, the new REVTOIRREVCOUPLING
function is used. Finally, when both reactions are reversible, the coupling rela-
tions between one reaction and the forward or backward direction of the other is
computed with REVTOIRREVCOUPLING. The final coupling relation is inferred
by COUPLINGRELATIONRECOMPUTE. Algorithm 7 summarizes the procedure.

Algorithm 7: FCF,g, modified FCF algorithm without splitting reactions

Input:

— S (the m x n stoichiometric matrix)

— Irr C{1,...,n} (the set of irreversible reactions)
Output:

— Blk (the set of blocked reactions)

— CouplingRelation
Preprocessing:

/* Finding blocked reactions and updating Irr =/
(Blk*, S*, Irr*) := BLKFINDERREVCORRECTOR(S, [77)
Rev* :=[n] \ (Irr* U BIk*)

Main procedure:

foreach i,j € Irr* with i < j do
min := minimize(v; | {S*v = 0,v; = 1,v, > 0 for all r € Irr*})
max := mazimize(v; | {S*v =0,v; = 1,v, >0 for all r € Irr*})
switch (min, maz) do
case (0,00)

‘ CouplingRelation]i, j] =t Iy
case (> 0,00)

| CouplingRelation]i, j] :="*«—
case (0,> 0)

| CouplingRelation|i, j] :="*—
case (> 0,>0)

if (min = max) then

2

2

| CouplingRelationli, j] :=*<="
else
| CouplingRelation]i, j] :=*«—"
end

end

end

end
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Algorithm 7: FCF,,g, modified FCF' algorithm without splitting reactions,
continued

foreach i € Irr* and j € Rev* do

min := minimize(v; | {S*v = 0,v; = 1,v, > 0 for all r € Irr*})
max := mazimize(v; | {S*v =0,v; = 1,v, >0 for all r € Irr*})
Coupling Relation[i, j] := REVTOIRREVCOUPLING(min, max)
end

oreach i,j € Rev* with i < j do

ming = minimize(v; | {S*v = 0,v; = 1,v, > 0 for all r € Irr*})
mazx; == mazimize(v; | {S*v = 0,v; = 1,v, > 0 for all r € Irr*})
ming = minimize(v; | {S*v = 0,v; = —1,v, > 0 for all r € Irr*})
maxy := mazimize(v; | {S*v = 0,v; = —1,v, > 0 for all r € Irr*})
@ := REVTOIRREVCOUPLING (miny, max;)

® := REVTOIRREVCOUPLING (miny, mazs)
CouplingRelation][i, j] := COUPLINGRELATIONRECOMPUTE(®), ®)
end

—

Implementation of FCF gy s

FCFRrr wos i1s another improved version of the FCF algorithm, which has been
designed and implemented in the present work. As before, reversible reactions
are not split. In addition, the number of LLPs to be solved is reduced by apply-
ing the Reversibility-Type prunings (Larhlimi and Bockmayr, 2006). The Algo-
rithm 8 summarizes the procedure. The function SETTOORDEREDVECTOR(A)
receives a set of numbers and transforms it into an ordered vector. For example,
SETTOORDEREDVEC({5,1,6,3}) = (1, 3,5,6).

Algorithm 8: FCFgr yog, modified FCF algorithm with RT-prunings and
without splitting reactions

Input:
— S (the m x n stoichiometric matrix)

— Irr C{1,...,n} (the set of irreversible reactions)
Output:

— Blk (the set of blocked reactions)

— CouplingRelation
Preprocessing:
/+ Finding blocked reactions and updating Irr x/
(Blk*, S*, Irr*) := BLKFINDERREVCORRECTOR(S, Ir7)
Rev* := [n] \ (Irm* U Blk*); w := SETTOORDERED VEC(Rev*)
Irev := Irr*
K = NULLSPACE(S), Rev+ ); € := NUMBEROFCOLUMNS(K)
foreach i € Rev* do

if K{Z}’[C] = OT then

| Prev:= PrevU{w;}

else Frev := FrevU {w;}

end
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Algorithm 8: FCFgr s, modified FCF algorithm with RT-prunings and
without splitting reactions, continued

Main Procedure:

foreach i,j € Irev with i < 7 do

min = minimize(v; | {S*v = 0,v; = 1,v, > 0 for all r € Irr*})
max := mazimize(v; | {S*v = 0,v; = 1,v, >0 for all r € Irr*})
switch (min, max) do

case (0, 00)

| CouplingRelation]i, j] ="
case (> 0,00)
| CouplingRelationli, j] :="*«—"

case (0,> 0)
| CouplingRelation]i, j] :="*—"
case (> 0,>0)
if (min = maz) then

| CouplingRelation]i, j] :="*<="
else
| CouplingRelation]i, j] :="*«—"
end
end
end
end

—h

oreach i € Irev and j € Prev do

min = minimize(v; | {S*v = 0,v; = 1,v, > 0 for all r € Irr*})
max := mazimize(v; | {S*v = 0,v; = 1,v, >0 for all r € Irr*})
Coupling Relation[i, j] := REVTOIRREVCOUPLING(min, max)
end

foreach i,j € Prev ori,j € Frev, withi < j do

ming = minimize(v; | {S*v = 0,v; = 1,v, > 0 for all r € Irr*})
maxy = mazimize(v; | {S*v = 0,v; = 1,v, > 0 for all r € Irr*})
ming = minimize(v; | {S*v = 0,v; = —1,v, > 0 for all r € Irr*})
mazy = mazimize(v; | {S*v =0,v; = —1,v, > 0 for all r € Irr*})
@ := REVTOIRREVCOUPLING (min;, max;)

® := REVTOIRREVCOUPLING (miny, mazs)

CouplingRelation[i, j] := COUPLINGRELATIONRECOMPUTE(®), ®)
end

Implementation of FFCA

In FFCA (Feasibility-based Flux Coupling Analysis), we firstly classify the re-
actions into different subsets based on their reversibility types. Based on this
classification, the feasibility of two LPs is checked in those cases where flux cou-
pling is possible (see Section 4.2.1). Algorithm 9 summarizes the procedure.
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Algorithm 9: FFCA, Feasibility-based flux coupling analysis

Input:

— S (the m x n stoichiometric matrix)

— Irr C{1,...,n} (the set of irreversible reactions)
Output:

— Blk (the set of blocked reactions)

— CouplingRelation
Preprocessing:

/* Finding blocked reactions and updating Irr =/
(Blk*, S*, Irr*) :== BLKFINDERREVCORRECTOR(S, I77)
Rev* := [n] \ (Irr* U BIk*)
w := SETTOORDEREDVEC(Rev*)
Irev := Irr*; Prev := J; Frev .= @
K = NULLSPACE(S[m), Rev+)
¢ := NUMBEROFCOLUMNS(K)
foreach i € Rev* do

if K{i},[c} = OT then

| Prev:= PrevU{w;}

else Frev:= Frev U {w;}
end
Main procedure:
foreach i,j € Irev with i < 5 do
my = maximize(0 | {v; =1,v; =0,5%v = 0,v, > 0 for all r € Irr*})
my := maximize(0 | {v; =0,v; =1,5%v = 0,v, > 0 for all r € Irr*})
if mq, my € R then

Un
(13 79

‘ CouplingRelationl[i, j| :=
else if m; € R and my; = 1 then

| CouplingRelationli, j] := “«—"
else if m; = L and ms € R then
| CouplingRelationli, j] := “—"
else
CouplingRelation[i, j| := “«—"

min := minimize(v; | {v; = 1,5%v = 0,v, > 0 for all r € Irr*})
maz = mazimize(v; | {v; =1,5%v = 0,v, > 0 for all r € Irr*})

if min = max then CouplingRelationli, j| .= “<="
end
end
foreach i € Prev and j € Irev do

my = mazimize(0 | {v; = 1,v; =0,5*v = 0,v, > 0 for all r € Irr*})
my = maximize(0 | {v; = —1,v; = 0,50 = 0,v, > 0 for all r € Irr*})
if my = L and my = L then

| CouplingRelation]i, j] := “—
else

7

Un
« Yn oy

‘ CouplingRelationl[i, j| :=
end

end
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Algorithm 9: FFCA, Feasibility-based flux coupling analysis, continued

foreach i,j € Prev ori,j € Frev do
my = maximize(0 | {v; =1,v; =0, 5*v = 0})
if m; = 1L then

| CouplingRelation]i, j] := “<="
else
‘ CouplingRelation|i, j] := « Un .y
end
end

4.3.4 FCA and Random Sampling of the Flux Space

As explained in Chapter 1, functional relations of metabolic fluxes can be studied
by uniform random sampling of the flux space (Price et al., 2004b). The random
sampling is usually performed by COBRA toolbox (Becker et al., 2007).

Algorithm 10, which is suggested in Xi et al. (2011), is introduced as an FCA
procedure based on randomly sampled vectors. Xi et al. (2011), correctly pointed
out that although fully coupled reaction pairs always have |p; ;| = 1, such a
perfect correlation does not always imply ¢ <= j. Therefore, this algorithm has
a perfect sensitivity, but it may fail in finding with perfect specificity the set of
fully coupled reactions. In the authors’ words, “this approach is complete but not
sound when it is used to calculate perfect Co-Sets” (Xi et al., 2011).

Nevertheless, one can think of a modified version of Algorithm 10 by devis-
ing a different strategy for computing the set of fully coupled reactions, e.g. the
enzyme subsets method (Pfeiffer et al., 1999). However, even such a modified
algorithm is not able to correctly compute the flux coupling relations for at least
two reasons. Firstly, it should be emphasized that all FCA algorithms reported
in Chapter 4 are exact methods, while Algorithm 10 is based on a finite set of
random flux distributions. Therefore, this method does not guarantee that the
computed flux coupling relations are valid for all possible feasible flux distribu-
tions. Secondly, at least with the current implementation of random sampling of
vectors in the COBRA toolbox, (almost) always non-zero flux values are gener-
ated if the corresponding reactions are unblocked. Therefore, for (almost) every
sampled vector, we will have v; # 0 for all i € R\ Blk. Therefore, there is a large
chance that in the main procedure, both I and J sets become empty sets, and
therefore, we incorrectly infer ¢ «— j for every pair of reactions which are not
fully coupled.
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Algorithm 10: Alleged FCA algorithm based on randomly sampled flux
distributions; based on ‘Algorithm 2’ in Xi et al. (2011)

Input:
— S (the m x n stoichiometric matrix)
— Irr C{1,...,n} (the set of irreversible reactions)
— l,u € R™ (the lower and upper bound vectors)

— A € N (the number of fluxes to be sampled)
Output:

— Blk (the set of blocked reactions)
— CouplingRelation
Initialization:
Blk =0, X =0

Main procedure:

X := RANDOMSAMPLING(X; S, Irr, [, u)
foreach r € {1,...,n} do

if for all w € X, w, = 0 then

Blk := Blk U {r}

end
end
oreach i,j € R\ Blk withi < j do
pi,j = CORRELATIONCOEFF (4, j); bbased on vectors in X
if |p; ;| =1 then
|  CouplingRelation[i, j| :=*<="
else

-

I ={veX|v =0}
J:={veX|v;=0}
if I=J then

|  CouplingRelation[i, j] :="*«—
else if I D J then

| CouplingRelation[i, j| :=“—
else if I C J then

| CouplingRelation[i, j] :=*«—

2

7

)

else CouplingRelation][i, j] = Uy

end
end

Summary:

e FFCA, a feasibility-based FCA method is introduced. A corresponding soft-
ware tool is also available for non-commercial use.

e On a set of benchmark metabolic networks, FFCA was compared to other FCA
approaches, namely MMB-FCA, EFP-FCA and FCF. FFCA is the fastest
FCA method for genome-scale networks (H. pylori, E. coli and S. cerevisiae),
and the second best method (after MMB-FCA) for small-scale networks.

o We showed that FFCA is also faster than new improved implementations of
the FCF algorithms with reversibility-type prunings and without splitting
reversible reactions.



CHAPTER

5 Analysis of Metabolic

Subnetworks by Flux Cone
Projection

5.1 Introduction

Metabolic pathway analysis is the study of meaningful minimal pathways or
routes of connected reactions in metabolic network models (Klamt and Stelling,
2003; Terzer et al., 2009). Two closely related concepts are often used for ex-
plaining such pathways: elementary modes (EMs) (Schuster and Hilgetag, 1994;
Schuster et al., 2000) and extreme pathways (EXPAs) (Schilling et al., 2000).
Mathematically speaking, EMs and EXPAs are generating sets of the flux cone
(Klamt and Stelling, 2003; Jevremovic et al., 2010). Several approaches have
been proposed for the computation of such pathways in metabolic models (Pfeif-
fer et al., 1999; Wagner, 2004; Gagneur and Klamt, 2004; Klamt et al., 2005;
von Kamp and Schuster, 2006; Terzer and Stelling, 2008, 2010; Bell and Palsson,
2005).

EM and EXPA analysis are promising approaches for studying metabolic net-
works (Schilling et al., 1999; Trinh et al., 2009). However, due to the combi-
natorial explosion of the number of such pathways (Klamt and Stelling, 2002),
this kind of analysis cannot be performed for “large” networks. Recent advances
in the computation of EMs and extreme rays of polyhedral cones (Terzer and
Stelling, 2008, 2010) has made it possible to compute tens of millions of EMs;
but computing all EMs for large genome-scale networks may still be impossible.
Additionally, we are usually interested a certain subset of reactions, not all of
them. Therefore, even if the EMs are computable, possibly many of them are not
interesting pathways because they are not related to the interesting reactions.

The goal of the present chapter is to introduce a new concept which can be
useful in the analysis of fluxes in metabolic subnetworks. The chapter is organized
as follows. Firstly, the mathematical concepts used in the chapter are formally
defined. Secondly, we review the studies which have tried to investigate (some
of) the EMs or EXPAs of large-scale networks. In the next step, we present
the concept of Projected Cone EMs (ProCEMs) and we propose a method to
compute them. We also compare ProCEMs with EFPs from the mathematical
and computational point of view.
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5.2 Formal Definitions

A polyhedron ) C R" is a set of the form:

Q={veR"| A -v<b} (5.1)

with a matrix A € R™*" and b € R™.

Let £ = {1,...,m} and F = {1,...,n}. The inequality Agy,r-v < by is
called redundant if {v | Ag\fiy;r - v < bp\iy} = Q.

Suppose that A C RP and B C R? for some p,q € N. Given a polyhedron
@ C A x B the projection of () onto A is defined as:

Pu(Q)={r € A| 3y eB,(r,y) € Q} (5.2)

Consider a metabolic network N with irreversible reactions only, and the corre-
sponding flux cone C' C A x B. The set Pa(C) is called the projected cone onto
A. Each generating vector j of P,(C) will be called a projected cone elemen-
tary mode (ProCEM). In the rest of this text, we assume that all reactions in
metabolic networks are irreversible. This means that every reversible reactions
should be split into two irreversible reactions.

Similarly, the projection of a vector w € A x B onto A can be defined as:

Ppa(w)={z € A|TyeB,(z,y) =w} (5.3)

A projected elementary mode (PEM) is the projection of an EM onto the subspace
of interest. If a subnetwork (and not the complete network) is studied, PEMs
might be more relevant than EMs, as they are in lower dimensions and easier to
study. Currently, the only known method to compute PEMs is to enumerate the
complete set of EMs and then project them onto the subspace of interest.

5.3 The State of the Art

As mentioned in the Section 5.1, the set of EMs of a genome-scale network may be
large, and in general, it cannot be computed with the available tools. Even if this
is possible, one cannot simply extract interesting information from it. Therefore,
a subset of EMs (or in case that we are interested in a subset of reactions, the
set of PEMs) should be computed to reduce the computation time and/or the
output size of the pathway computation method. Several approaches to this
problem have been proposed in the literature. These strategies can be classified
into four main categories:

5.3.1 Computation of a Subset of EMs

The first strategy is to constrain the complete set of EMs (or EXPAs) to a subset
describing a phenotype space or a set of phenotypic data. For example, Covert
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and Palsson (2003) showed that consideration of regulatory constraints in the
analysis of a small “core metabolism” model can reduce the set of 80 EXPAs to a
set of 2 to 26 EXPAs, depending on the applied regulatory constraints. On the
other hand, Urbanczik (2007) suggested to compute “constrained” elementary
modes which satisfy certain optimality criteria. As a result, instead of a full
enumeration of EMs, only a subset of them should be computed, which results in
a big computational gain. The idea of reducing the set of EMs is used recently
by Song and Ramkrishna (2009) in an approach called yield analysis. In this
approach, the yield space (or solution space) is defined as a bounded convex hull.
Then, the minimal generating set spanning the yield space is recalculated, and
therefore, all EMs with negligible contribution to the yield space can be excluded.
The authors show that their method results in 91% reduction of the EM set for
glucose/xylose-fermenting yeast.

5.3.2 Computation of EMs in Isolated Subsystems

A second strategy to focus on the EMs (or EXPAs) of interest is to select a
(possibly disconnected) subnetwork, rather than the complete metabolic model,
by assuming all other reactions and metabolites to be “external”; and computing
the EMs (or EXPAs) of this selected subsystem. This idea, i.e., cutting out
subsystems or splitting big networks into several subsystems, is broadly used in
the literature (e.g. see Nuno et al., 1997; Schuster et al., 1999; Schilling and
Palsson, 2000; Schilling et al., 2002; Schuster et al., 2002b; Stelling et al., 2002;
Cakar et al., 2004a; Schwarz et al., 2005; Verwoerd, 2007, 2011; Kim et al., 2008;
Imielinski and Belta, 2008; Teusink et al., 2009; Kenanov et al., 2010). In some of
these studies, not only the network boundary is redrawn, but also some reactions
may be removed for further simplifying the network.

Although this strategy is useful, it can result in serious errors in the com-
putational analysis of network properties (Kaleta et al., 2009). For example,
dependencies and coupling relationships between reactions can be influenced by
redrawing the system boundaries. As mentioned in Chapter 3, Burgard et al.
(2004) showed that subsystem-based coupling analysis of the H. pylori network
(Schilling et al., 2002) results in an incomplete detection of coupled reactions.
Kaleta et al. (2009) suggest that neglecting such a coupling can lead to fluxes
which are not part of any feasible EM in the original complete network. Ex-
istence of such infeasible “pathway fragments” (Imielinski and Belta, 2008) can
result in incorrect conclusions.

To better understand this problem, we consider Figure 5.1A as an example.
Let us assume that we are interested in a subnetwork composed of reactions
1,...,9. This subnetwork is called SuN. If we simply assume “non-interesting”
reactions and metabolites to be external reactions and metabolites, we will obtain
the subsystem shown in Figure 5.1B. This subnetwork has only four EMs, two of
which are not part of any feasible steady-state flux vector in the complete network.
For example, the EM composed of reactions 5 and 7 in Figure 5.1B cannot appear
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(A): A small metabolic network with 17 reactions. Metabolites are shown as nodes, while
reactions are shown by arrows. Reactions 1, 8, 9, 15 and 16 are boundary reactions, while
all other reactions are internal reactions. We might be interested only in a subnetwork
containing nine reactions: 1,...,9, which are shown by thick arrows. This subnetwork
will be called SuN. (B): The reduced subsystem comprising only the nine interesting
reactions.

in steady-state in the original complete network, because the coupling between
reaction 1 and reaction 5 is broken. Therefore, analyzing this subnetwork instead
of the complete original network can result in false conclusions.

5.3.3 Computation of Elementary Flux Patterns

We observed that some errors may appear in the analysis of isolated subsystems.
One possible solution to this problem is to compute a “large” subset of PEMs, or
alternatively, as suggested by Kaleta et al. (2009), to compute the support of a
subset of PEMs. These authors proposed a procedure to compute the elementary
flux patterns (EFPs) of a subnetwork within a genome-scale network. A flux
pattern is defined as a set of reactions in a subnetwork that is included in the
support of some steady-state flux vector of the entire network (Kaleta et al., 2009).
A flux pattern is called an elementary flux pattern if it cannot be generated by
combination of two or more different flux patterns. Each EFP is the support of
(at least) one PEM. It is suggested that in many applications, the set of EFPs
can be used instead of EMs (Kaleta et al., 2009).

Although EFPs are promising tools for the analysis of metabolic pathways,
they also have their own shortcomings. The first important drawback of EFPs is
that they cannot be used in place of EMs in certain applications (Gagneur and
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EFPs EFP set ProCEMs PEMs vector

F1 {9} ul pl (0,0,0,0,0,0,0,0, 1)
E2 {8} u2 P2 (0,0,0,0,0,0,0, 1, 0)
E3 {1,4} u3 p3 (1,0,0,1,0,0,0,0,0)
F4 {1,2,3} ud p4 (1,1,1,0,0,0,0,0,0)
E5 {1,5,7} ub pd (1,0,0,0,1,0,1,0,0)
E6 {1,4,6,7} ub 6 (1,0,0,1,0,1,1,0,0)
E7 {1,2,3,6,7} u7 p7 (1,1,1,0,0,1,1,0,0)
— — u8 p8 (1,1,1,0,1,0,1,0,0)
— — u9 »9 (1,0,0,1,1,0,1,0,0)
— — — pl0 (0,0,0,0,0,0,0,1, 1)

Table 5.1: List of elementary flux patterns, projected elementary modes and projected
cone elementary modes of SuN. Flux through reactions 1,...,9, respec-
tively, are the elements of the shown vectors. Zero vector and also the
empty set are excluded.

Klamt, 2004), where the precise flux values are required. For example, in the
identification of all pathways with optimal yield (Schuster et al., 1999, 2001) and
in the analysis of control-effective fluxes (Stelling et al., 2002; Cakir et al., 2004a;
Zhao and Kurata, 2009), the flux values of the respective reactions in the EMs
should be taken into account.

Another important shortcoming of EFP analysis is that it is possible to have
very different EMs represented by the same EFP, since flux values are ignored
in EFPs. For example, consider the case that two reactions i and j are partially
coupled (Burgard et al., 2004). This means that there exist at least two EMs,
say e and f, such that e;/e; # fi/f; (see Chapter 2). However, if we consider
a subnetwork composed of these two reactions, then we will only have one EFP,
namely {7, j}. From the theoretical point of view, finding all EMs that correspond
to a certain EFP can be NP-hard (see Theorem 2.7 in Acufia et al., 2010).

Every EFP is related to at least one EM in the original metabolic network.
However, one of the limitations of EFP analysis is that EFPs are activity patterns
of some EMs, not necessarily all of them. We will show this by an example. In
Figure 5.1A, the flux cone is a subset of R'”, while the subnetwork SuN induces
a 9-dimensional subspace A = R?. If G is the set of EMs in Figure 5.1A, then
the set of PEMs can be computed as P = {Ps(e) | e € G}. The set of the 10
PEMs of SuN in Figure 5.1A is shown in Table 5.1.

For the same network and subnetwork, we used EFPTools (Kaleta, 2009) to
compute the set of the EFPs. The resulting 7 EFPs are presented in Table 5.1. If
we compare the PEMs and EFPs in this table, we will find out that the support of
each of the first 7 PEMs is equal to one of the EFPs. However, for the last three
PEMs no corresponding EFP can be found in Table 5.1. This is due to the fact
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that supp(p8) = FAUES, supp(p9) = E3UE5, and supp(pl0) = E1UFE2. Hence,
the flux patterns corresponding to these PEMs are not elementary. Therefore,
some EMs may exist in the network which have no corresponding EFP on a certain
subnetwork. This means that by EFP analysis possibly many EMs of the original
network can not be recovered. Informally speaking, the question is whether the
set of EFPs is the largest set of PEM supports which can be computed without
enumerating all EMs.

5.3.4 Projection Methods

A possible strategy to simplify the analysis of networks is to project the flux cone
onto a lower-dimensional space of interest. In other words, if we are interested in
a subnetwork, one can project the flux cone onto the low-dimensional subspace
defined by the “interesting” reactions. Note that the projection of the flux cone is
in general different from removing reactions from the network. Consider the sim-
ple network shown in Figure 5.2A and its corresponding flux cone in Figure 5.2B
(i.e., the open triangle shown in light gray). This network has two EMs, which
are the generating vectors of the flux cone, ¢g; and ¢go. Now, if we are interested
in a subnetwork composed of reactions 1 and 2, then we can project the flux
cone to the 2D subspace produced by these two reactions. This is comparable
to light projection on a 3D object to make 2D shadows. The projected cone is
shown in dark gray. When the flux cone is projected onto the low-dimensional
space, new generating vectors may appear. In this example, g; and g3 (in 2D
space) are the generating vectors of the projected cone. This projected flux cone
is certainly different from the flux cone of a network made by deleting reaction 3
(Figure 5.2C). Such a network has only one EM, and its corresponding flux cone
can be generated by only one vector, namely, ¢;.

Historically, the idea of flux cone projection has been considered in a few stud-
ies. Wiback and Palsson (2002) suggested that the space of cofactor production of
red blood cell can be studied by projecting the cell-scale metabolic network onto a
2D subspace corresponding to ATP and NADPH production. A similar approach
was used by Covert and Palsson (2003) and also by Wagner and Urbanczik (2005)
to analyze the relationship between carbon uptake, oxygen uptake and biomass
production. All the above studies considered very small networks. Therefore,
the authors computed the extreme rays of the flux cone and then projected them
onto the subspace of interest, without really projecting the flux cone. Urbanczik
and Wagner (2005) later introduced the concept of elementary conversion modes
(ECMs), which are in principle the extreme rays of the cone obtained by project-
ing the original flux cone onto the subspace of boundary reactions. They suggest
that the extreme rays of this “conversion” cone, i.e., the ECMs, can be computed
even for large networks (Urbanczik, 2006).

Following this idea, we introduce the ProCEM set (“Projected Cone Elemen-
tary Mode” set), which is the set of EMs of the projected flux cone. In contrast
to Urbanczik and Wagner (2005), we formulate the problem in a way that any
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(B)

X3

Figure 5.2: (A): A small metabolic network. The reactions in the interesting subnet-
work are shown as thick arrows. (B): The flux cone of this network, shown
in light gray, can be generated by vectors g; and go. The projected cone is
shown in dark gray. The projected cone can be generated by g1 and g3 in
a 2D plane. (C): the same metabolic network as in A, but with reaction
3 removed. The flux cone of this network is generated by only one vector,
namely g1 .

subnetwork can be chosen, not only the boundary reactions. Additionally, we
compare the closely related concepts of ProCEMs, PEMs and EFPs.

5.4 Method and Implementation

5.4.1 Computational Procedure

For computing ProCEMs of a certain subnetwork, we use block elimination algo-
rithm (Balas and Pulleyblank, 1983), which is based on the “projection lemma”
(see Section 5.4.2 in Breutel, 2004). The algorithm needs three input objects: the
stoichiometric matrix (S) of the network; the binary vector of the reversibility
type of reactions (Irr); and the set of reactions in the subnetwork of interest
(3 C [n]). The algorithm performs the following steps for computing ProCEMs:

Preprocessing: At the beginning, based on ¥ we sort the columns of S in the
form:

S=(A B) (5.4)

where the reaction corresponding to the i-th column belongs to ¥ iff 7 is in
A. Then, the blocked reactions are removed. Finally, each of the reversible
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reactions is split into two irreversible “forward” and“ backward” reactions.
The final stoichiometric matrix will be in the form:

S'=(A B) (5.5)

where the columns of A represent the interesting reactions after splitting
reversible reactions and removing the blocked reactions.

Cone Projection: For cone projection with the block elimination method, we
consider the following (pointed) cone:

X={x|xz>0,H" -2=0} (5.6)
where:
-B
H=| B (5.7)
I

For the cone X, we enumerate the set of extreme rays, say {wy, we, ..., w}.
The projected cone P is given by (Breutel, 2004):

P={z|W- -G -2<0} (5.8)

where

and

G=| A (5.10)
I
This representation may contain a large number of redundant inequalities
(Jones et al., 2008). The redundant inequalities are removed at this step.

Finding ProCEMs: In the final step, the extreme rays of the projected cone,
i.e., the ProCEMSs, are enumerated.
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5.4.2 Implementation and Computational Experiments

Block elimination algorithm is implemented in MATLAB v7.5. In our implemen-
tation, polco tool v4.7.1 (Terzer and Stelling, 2008, 2010) is used for the enumer-
ation of extreme rays (both for cone projection and for finding ProCEMs). For
removing redundant inequalities, the software redund from the Irslib v4.2 is used
(Avis, 2000). All computations were performed on a 64-bit Debian Linux system
with Intel Core 2 Duo 3.0 GHz processor.

5.4.3 Dataset

The metabolic network model of red blood cell (RBC) (Wiback and Palsson,
2002) was used in this study. The network was taken from the example metabolic
networks associated with CellNetAnalyzer (Klamt et al., 2007) and differs slightly
from the original model.

5.5 Results and Discussion

5.5.1 Mathematical Relationships among PEMs, EFPs
and ProCEMs

From Table 5.1, one can observe that the set of ProCEMs in Figure 1A is included
in the set of PEMs. Additionally, the set of EFPs is included in the set of ProCEM
supports. Here, we prove that these two properties are true in general. This means
that analysis of ProCEMs has at least two advantages compared to the analysis
of EFPs. Firstly, ProCEMs can tell us about the flux ratio of different reactions
in an elementary mode, while EFPs can only tell us whether the reaction has a
non-zero value in that mode. Secondly, enumeration of ProCEMs may result in
modes which cannot be obtained by EFP analysis.

Theorem 5.1. In a metabolic network N with irreversible reactions only, let J
(resp. P) be the set of ProCEMs (resp. PEMs) for a given subspace A. Then
JCP.

Proof. We have to show that for every u € J there exists an elementary mode
e € C'in N such that Py(e) = u. We know that for any u € J there exists v € C
such that Py (v) = u.

Any v € C can be written in the form v = >, _, ¢ - e® where e!,... e"
are elementary modes of N and ¢y,...,¢. > 0. It follows that u = Py(v) =

S cp - Paler).
k=1
If all the vectors Py (e*) are pairwise equivalent, u is a PEM.
Otherwise, u is a linear combination of at least two non-equivalent PEMs,

which are vectors in P, (C'). This implies that u is not an extreme ray of Py (C'),
in contradiction with Lemma 1 in Gagneur and Klamt (2004) saying that in



90

a metabolic network with irreversible reactions only, the EMs are exactly the
extreme rays. [

Theorem 5.2. In a metabolic network N with irreversible reactions only, let E
(resp. J) be the set of EFPs (resp. ProCEMs) for a given subspace A. Then,
E C {supp(u) | ue J}.

Proof. Suppose that for some F' € FE, there exists no v € J such that F' =
supp(v). Since F' is an EFP, there exists p € P such that F' = supp(p). It
follows p ¢ J, but p € Py(C), where C is the flux cone. Therefore, there exist

"
r > 2 different ProCEMs, say u!,...,u" € J, such that p = Y ¢ - u*, with
k=1

cp > 0 for all k. Since u* > 0, for all k, we have supp(p) = | supp(u*), with
k=1

supp(u®) # supp(p) for all k. Since supp(u®) is a flux pattern for all k, this is a
contradiction with F' being an EFP. -

5.5.2 Computing the Set of EFPs from the Set of
ProCEMs

Here, we present a simple algorithm to show that it is possible to compute the
set of EFPs when the set of ProCEMs is known. Algorithm 11 summarizes this
procedure.

Algorithm 11: Computing the set of EFPs based on the set of ProCEMs

Input:
— J (the set of ProCEMs)
Output:

— E (the set of EFPs)

Initialization:
EF =0

Main procedure:
foreach u € J do
Z = supp(u)
foreach v € J do
if supp(v) C supp(u) then
| Z:=Z\ supp(v)

end
end
if Z # @ then
| E = EU{supp(u)}
end

end
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We know that the support of every ProCEM wu is a flux pattern Z. In the
main procedure, we check whether every such flux pattern is elementary or not.
If Z is not elementary, then it is equal to the union of some other flux patterns.
Therefore, if all other flux patterns which are subsets of supp(u) are subtracted
from Z, this set becomes empty. This algorithm has the complexity O(ng?),
where ¢ is the number of ProCEMs and n is the number of reactions.

5.5.3 Comparing EFPs and ProCEMs
Analysis of Subnetworks in the Metabolic Network of RBC

In order to compare our approach (computation of ProCEMs) with enumeration
of the EFPs, we tested these methods for the analysis of subnetworks in the
RBC model (Wiback and Palsson, 2002). For the analysis of this network, we
split every reversible reactions into one forward and one backward irreversible
reaction. The resulting network contains 67 reactions, including 20 boundary
reactions, and a total number of 811 EMs. For comparing the methods, the set
of all boundary reactions was considered as the interesting subsystem, resulting
in 502 PEMs.

When we computed the EFPs of this network by EFPTools (Kaleta, 2009),
only 90 EFPs are determined. However, for the same subnetwork, we computed
252 ProCEMs. This means that the ProCEMs set covers more than half of the
PEMs, while the EFPs set covers less than one fifth of the PEMs. These results
confirm the relevance of using ProCEMs for the analysis of subnetworks.

In order to compare the computation of EFPs and ProCEMs, the following
task was performed on the RBC model (Wiback and Palsson, 2002). In each
iteration, a random subnetwork containing r reactions was selected. Then, EFPs
and ProCEMs were computed. The task was repeated for different subnetwork
sizes. The computational results can be found in Figure 5.3.

From Figure 5.3, it can be seen that EFP computation is faster than Pro-
CEM computation for small subnetworks. However, when the subnetwork size r
increases, computation of ProCEMs does not become slower, while computation
of EFPs significantly slows down. This is an important observation, because the
difference between the number of EFPs and ProCEMs also increases with r.

Analysis of Subnetworks in the Plastid Metabolic Network of A.
thaliana

ProCEM analysis becomes important when PEMs cannot be computed. This may
happen frequently in the analysis of large-scale metabolic networks, as memory
consumption is a major challenge in computation of EMs Terzer and Stelling
(2008). In such cases, cone projection might still be feasible.
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Figure 5.3: Left: Number of ProCEMs and EFPs computed for random subnetworks
of different sizes. Right: The computation times (per second) required
for computing the ProCEMs and EFPs in the left chart. A: ProCEMs;
O: EFPs. Confidence intervals in this plot are based on one-sample t-test
(95% c.i.). For large subnetworks (r > 40), we did not compute the EFPs
because the program was very slow.

As an example, the metabolic network of A. thaliana plastid was studied
(Additional file 1). This network contains 102 metabolites and 123 reactions
(205 reactions after splitting reversible reactions). Using efmtool (and also polco)
Terzer and Stelling (2008), even after specifying 2 GB of memory, computation of
EMs was not possible due to running out of memory. Therefore, for no subnetwork
of the plastid network PEMs are computable. However, if the analysis is restricted
to the 57 reactions involved in sugar and starch metabolism (see Additional file
1), one can compute the ProCEMs or EFPs of this subnetwork. We computed
the ProCEMs as described in the Method and Implementation section, using
a projection step size of 5 reactions. The complete set of 1310 ProCEMs was
computed in approximately 15 minutes. However, when we tried to compute the
set of EFPs using EFPTools Kaleta et al. (2009); Kaleta (2009), only 279 EFPs
were computed after 4 days of running the program (270 EFPs were computed
in the first two days). On the other hand, using a Matlab implementation of
Algorithm 11, the complete set of 1054 EFPs was computed in 30 seconds. In
conclusion, in metabolic networks for which the set of EMs cannot be enumerated,
ProCEMs prove to be a useful concept to get insight into reaction activities.
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Summary:

o When we are interested in a subnetwork, computation of all EMs is unnecessary.
The interesting set of vectors is the set of projected EMs (PEMs). However,
the only known method for computation of PEMs is to enumerate the EMs
first.

e We introduce the concept of projected cone elementary modes (ProCEMs).
This set is a subset of the PEMs set, and it can computed without enumer-
ation of all EMs.

e The set of EFPs is a subset of the set of supports of ProCEMs. Additionally, in
contrast to EFPs, ProCEMs contain the information about the flux values.
Therefore, ProCEMs contain more information than EFPs.

e For large subnetworks, ProCEMs can be computed faster than EFPs.
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CHAPTER

§

Conclusions and Further
Research

Constraint-based methods are useful in the analysis of metabolic networks. Some
of these methods, however, are not fast enough for being applied to genome-
scale metabolic models. Additionally, the results may change if subsystems or
subnetworks are studied instead of the complete metabolic models.

In Chapter 2, we show that when reactions are missing in a reconstructed
metabolic model, flux coupling analysis may result in wrong conclusions about
(un-)coupling relations for certain reaction pairs. We also prove that only certain
changes in flux coupling relations are possible. For example, it is impossible to
have two coupled reactions in the original network that are uncoupled in the
incomplete reconstructed model, while the opposite is possible. Therefore, the
results of flux coupling analysis should be used with care.

Since flux uncoupling is not influenced by missing network contents, we believe
that further research on the properties of flux uncoupling is needed. For instance,
if two reactions are coupled to each other, they cannot appear in a minimal
cut set (Klamt and Gilles, 2004). Therefore, it is interesting to see how cut
sets are related to flux uncoupling. While the relationship between evolution of
metabolic genes and flux coupling has already been addressed by a number of
authors (P4l et al., 2005a,b; Notebaart et al., 2009; Seshasayee et al., 2009) it
would be interesting to see how genes evolve when their corresponding fluxes are
uncoupled.

We believe that our findings are useful for both, the reconstruction of genome-
scale metabolic networks and the validation of current models. For example,
imagine two reactions that are expected to be (fully) coupled in a genome-scale
metabolic model, while the corresponding genes show a very low gene expression
correlation. In this case, some alternative pathway may exist in the real system
which, however, is missing in the reconstructed model. If we find two reactions
that are assumed to be uncoupled but have a high gene expression correlation,
it is fair to assume that the corresponding genes are wrongly annotated and/or
wrongly added to the metabolic model. We are currently studying how such a
“model-driven gap-filling approach” (Feist et al., 2009) may lead to genome-scale
models with better predictive capabilities.

In Chapter 3, we show that the analyzing a subsystem instead of the com-
plete network can lead to certain changes in flux coupling. In particular, a pair of
(fully, partially or directionally) coupled reactions may be detected as uncoupled
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in the chosen subsystem, but not vice versa. Interestingly, this behavior is the
opposite of the flux coupling changes that may happen due to the existence of
missing reactions, or equivalently, deletion of reactions (Chapter 2). We empha-
size that it is better to perform FCA in genome-scale networks, even when we
focus on the reactions in a certain subsystem.

With the analysis of real-world metabolic models, we observed that a non-
negligible number of reaction pairs in the plastids of modern plants have altered
flux coupling relations when the plastids are studied in isolation. We suggested
that the fraction of altered coupling relations can be seen as a measure of “de-
pendence” of the subsystem. In contrast to the previous cases, we observed that
in case of C. reinhardtii plastid, and also in case of all mitochondrial subsystems,
a relatively small fraction of the reaction pairs will have different flux coupling
relations if these subsystems are studied in isolation. This small change suggests
that these organelles are relatively independent of the rest of the metabolic net-
work. One may ask how small is this fraction for a randomly selected subsystem.
This question is yet to be answered.

In Chapter 4 we introduce FFCA as a new method for flux coupling analysis,
and proved it to be faster than any other available approach. Our implementation
of FFCA is fast enough to perform FCA for every pair of reactions in S. cerevisiae
and E. coli genome-scale networks in a few hours. A corresponding software tool
is available for non-commercial use and we recommend it for FCA of genome-scale
networks.

The only known method for computation of projected EMs is to enumerate the
EMs first. In Chapter 5, we introduce the concept of projected cone elementary
modes (ProCEMs). The set of ProCEMs is a set of vectors which covers more
PEMs than EFPs. Therefore, ProCEMs contain more information compared to
EFPs. The ProCEMs set is computable without enumerating all EMs. Is there a
bigger set of vectors that covers more PEMs and does not require full enumeration
of EMs? This is yet to be answered.

One possible extension to this work is to use a more efficient implementation
of polyhedral projection. With such an implementation, analysis of different
subnetworks in genome-scale network models using ProCEMs is an interesting
possibility for further research. For example, the ProCEMs can be used in the
identification of all pathways with optimal yield (Schuster et al., 1999) and in the
analysis of control-effective fluxes (Stelling et al., 2002).
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APPENDIX

Nomenclature

A

Abbreviations

CBM

: constraint-based modeling
c.i. : confidence interval
Co-Set : correlated reaction set
ECM : elementary conversion mode
EM : elementary (flux) mode
EFP : elementary flux pattern

EFP-FCA : flux coupling analysis based
on elementary flux patterns

EXPA : extreme pathway

FBA : flux balance analysis

FCA : flux coupling analysis

FCF : flux coupling finder (algorithm)

FFCA : feasibility-based flux coupling
analysis

FVA : flux variability analysis
GEC : gene expression correlation

LP : linear program (or programming)

MCS : minimal cut set

M.E. : mutually exclusive

MILP : mixed integer linear program (or
programming)

MMB : minimal metabolic behavior

MMB-FCA : flux coupling analysis
based on minimal metabolic behav-
iors

ODE : ordinary differential equation

PEM : projected elementary mode

ProCEM :
mode

projected cone elementary

RBC : red blood cell

RT : reversibility-type

S.C. : sometimes coupled

woS : without splitting reversible reac-
tions
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Mathematical Notations

0 : zero vector & : equivalent (vectors)

¢ : rate of changes in ¢ — (or «—) : directionally coupled
e; : the i-th unit vector «—— : partially coupled

[n] @ the set {1,...,n} <= : Fully coupled

Mp.q : submatrix of M induced by rows s.C. .
. . < : sometimes coupled
in P and columns in )

dim(X) : dimension of X < @ mutually exclusive

supp(v) : the set of nonzero elements of v «— : uncoupled

Pa(Q) : projection of @ onto A 1 : infeasible (linear program)
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