Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Aging in mouse brain is a cell/tissue-level phenomenon exacerbated by proteasome loss

MPG-Autoren

Mao,  L.
Max Planck Society;

Römer,  I.
Max Planck Society;

Klein,  O.
Max Planck Society;

Hartl,  D.
Max Planck Society;

Zabel,  C.
Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mao, L., Römer, I., Nebrich, G., Klein, O., Koppelstatter, A., Hin, S. C., et al. (2010). Aging in mouse brain is a cell/tissue-level phenomenon exacerbated by proteasome loss. Journal of Proteome Research, 9(7), 3551-3560. doi:10.1021/pr100059j.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0010-7AB4-A
Zusammenfassung
Biological aging is often described by its phenotypic effect on individuals. Still, its causes are more likely found on the molecular level. Biological organisms can be considered as reliability-engineered, robust systems and applying reliability theory to their basic nonaging components, proteins, could provide insight into the aging mechanism. Reliability theory suggests that aging is an obligatory trade-off in a fault-tolerant system such as the cell which is constructed based on redundancy design. Aging is the inevitable redundancy loss of functional system components, that is proteins, over time. In our study, we investigated mouse brain development, adulthood, and aging from embryonic day 10 to 100 weeks. We determined redundancy loss of different protein categories with age using reliability theory. We observed a near-linear decrease of protein redundancy during aging. Aging may therefore be a phenotypic manifestation of redundancy loss caused by nonfunctional protein accumulation. This is supported by a loss of proteasome system components faster than dictated by reliability theory. This loss is highly detrimental to biological self-renewal and seems to be a key contributor to aging and therefore could represent a major target for therapies for aging and age-related diseases.