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Introduction 
Sulfated zirconia (SZ) is highly active for n-butane isomerization [1,2] but deactivates 
rapidly. Because isomerization and disproportionation of n-butane seem to occur 

concomitantly it is not possible to recognize if deactivation is the result of one or the 
other reaction. For n-pentane, isomerization and disproportionation activity reach 

their maximum at different times on stream, allowing the separate observation of 

mono- and bimolecular reaction pathways. In situ UV/Vis spectroscopy has been 
used to study the interaction of n-butane and n-pentane with SZ. 

Experiments and Summary of Results 

In situ diffuse reflectance measurements during alkane reaction were conducted 
using a home-made microreactor cell with a quartz window facing the integration 

sphere. The setup was fitted into a modified Perkin–Elmer Lambda 9 UV/Vis 

spectrometer, operated at a scan speed of 240 nm/min, a slit width of 5.0 nm, a 

response time of 0.5 s, and with Spectralon® as a reference. SZ was obtained by 

calcining sulfated zirconium hydroxide (MEL Chemicals) in flowing air for 3 h at 823 

K. The calcined catalyst (˜1.3 g) was loaded into the cell and activated in 30 ml/min 
O2 for 1.5 h at 723 K. The feed mixture was 5 vol-% n-butane in He or 0.25 or 0.50 

vol-% n-pentane in He with a total flow of 50 ml/min at reaction temperatures of 358 – 

523 K for n-butane and 298 – 308 K for n-pentane. Product analysis was performed 

by on-line GC with FID. 

UV/Vis spectra showed a single broad band centered at 328 nm, which started to 
form after about 90 min of n-pentane reaction; the final intensity of this band (after 13 

h) was independent of n-pentane concentration and reaction temperature. The 

formation of a band at 310 nm was detected during n-butane reaction (all 

temperatures, inset in Fig. 1). This band was previously observed [3] on deactivated 

sulfated zirconia and assigned to monoenic allylic cations. At 523 K, additional bands 

appeared at 370 nm and 430 nm after 20 min and 6 h on stream, respectively.  
Analysis of the product stream during n-pentane reaction revealed an initial carbon 

loss of 16 to 44 %, suggesting considerable adsorption without the formation of 
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spetroscopically detectable species. At 298 K and 0.25 vol -% n-pentane, the 

maximum rate of formation of n-pentane preceded the maximum in production of i-

butane (Fig. 2). Hexanes, n-butane, and propane were byproducts. Increasing the n-

pentane concentration to 0.50 vol-% did not change the conversion but led to an 
increase in i-pentane selectivity and a decrease in i-butane selectivity. Interestingly, 

as the rate of disproportionation became significant (Fig. 2), a band at 330 nm 
appeared in the UV/Vis spectrum (Fig. 1). In the reaction of n-butane, the maximum 

conversion and the rate of deactivation increased with increasing temperature while 
the selectivity towards i-butane decreased (range 70 to 99 %). 

Conclusions 
The broad UV/Vis absorption band formed during n-pentane reaction is presumably 

composed of two bands, maybe representing different isomers of monoenic allylic 
cations. These bands reach significant intensity only after the rate of i-pentane 

formation passes through a maximum, excluding these allylic species from being 
identified as isomerization intermediates (Figs. 1 & 2). During the induction period, i-

pentane is predominantly formed through a monomolecular mechanism. The 
formation of i-butane at longer times on stream indicates a bimolecular mechanism, 

i.e. the disproportionation of C10-intermediates, which are formed in an alkylation step 

requiring alkenes. However, this bimolecular pathway is disadvantageous because 
the alkenes generated by the catalyst are precursors for site-blocking species. 
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Fig. 2: Conversion of n-pentane to i-pentane and 
i-butane and peak intensity at 330 nm vs. time on 
stream. SZ, 0.25 vol -% n-pentane, 298 K.  

Fig. 1: UV/Vis difference spectra recorded during 
n-pentane reaction with time on strea m as 
parameter. SZ, 0.25 vol -% n-pentane, 298  K. 
Inset: end of reaction (butane / pentane).  
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