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äquivalent.



Preparing for gravitational wave astronomy:
A verification of the GEO600 detection

chain by generation, injection, and
extraction of continuous signals

Thesis by Uta Weiland, accepted by
the Fachbereich Physik of the University of Hannover and

the Faculty of Physical Sciences at the University of Glasgow
for the jointly awarded degree

Doktorin der Naturwissenschaften2

-Dr. rer. nat.-

c©Uta Weiland December 2004

Referent: Prof. K. Danzmann
Korreferent: Prof. K.A. Strain
External examiner
(appointed by the University of Glasgow): Prof. E. Riis
Tag der Promotion: 23. November 2004

2This degree is equivalent to the degree Doctor of Philosophy by Research (Ph.D.) of the Uni-
versity of Glasgow.



Abstract

Promising sources of gravitational waves are spinning neutron stars with a non-zero
quadrupole moment. If the position and spin-down parameters of the neutron stars are
known (such as for pulsars), the signal waveform of the emitted gravitational wave is
well understood for a certain emission mechanism except for four remaining parameters.
To search for gravitational waves of such sources, a time-domain search algorithm has
been developed at the University of Glasgow. The algorithm can identify a continuous
gravitational wave signal emitted by a known pulsar in the output of a gravitational
wave detector which contains the signal and detector noise.

The British-German laser-interferometric gravitational wave detector GEO600 is one
of a worldwide network of earth-bound gravitational wave detectors. To test the de-
tection chain for continuous gravitational waves, a simulated, continuous gravitational
wave signal has been injected into the detector hardware of GEO600 and successfully
recovered from the data using the time-domain search algorithm. In particular, the am-
plitude and the phase were recovered with values consistent with the parameters of the
injected signal, thus proving the full detection chain for continuous gravitational waves
at GEO600. For a reliable test, the injected signal needs high phase and amplitude
accuracy. An instrument has been developed that generates a simulated, continuous
gravitational wave signal with a phase error of less than 1 % of 2π. The signal has
been measured to be stable over several months and autonomously recovers from in-
terruptions, such as data-transfer failures. The key component of the instrument is a
microcontroller operated as a direct digital frequency synthesiser to generate the signal
in an analog electronic form. A digital phase-locked loop running on a control computer
controls the phase accumulator of the microcontroller via its phase increment register.
The absolute timing of the injected signal is controlled by locking the microcontroller to
GPS time. The signal to be injected is calculated by means of the LIGO/LSC Algorithm
Library on the control computer.

After the first detections of gravitational waves, the network of detectors will start a
new type of astronomy: gravitational wave astronomy. For this purpose the best pos-
sible calibration accuracy is desirable. The theoretical accuracy of a photon pressure
actuator, that excites a main interferometer mirror by the radiation pressure of laser
light, is investigated. First measurements with a photon pressure actuator installed at
the GEO600 interferometer are presented. An advanced setup is proposed along with
the necessary steps to obtain an accuracy of a few percent.

Keywords: Gravitational wave detector, pulsar, signal generation, hardware signal
injection, photon pressure actuator, calibration accuracy.
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Zusammenfassung

Vielversprechende Quellen für Gravitationswellen sind rotierende Neutronensterne mit
einem nicht verschwindenden Quadrupolmoment. Wenn die Position und die Spin-
Down Parameter des Neutronensterns bekannt sind (wie im Fall von Pulsaren), ist die
Signalform der emittierten Gravitationswelle bei einem bestimmten Emissionsmecha-
nismus bis auf vier verbleibende Parameter bekannt. Zur Suche nach solchen Gra-
vitationswellensignalen wurde an der Universität Glasgow ein Suchalgorithmus in der
Zeitdomäne entwickelt. Dieser Suchalgorithmus kann ein kontinuierliches Gravitations-
wellensignal, wie es von einem bekannten Pulsar emittiert wird, aus dem von Rauschen
dominierten Detektorsignal extrahieren.

Der britisch-deutsche Gravitationswellendetektor GEO600 ist Teil eines weltweiten
Netzwerks erdgebundener Gravitationswellendetektoren. Um alle Elemente, die an
der Detektion von kontinuierlichen Gravitationswellen beteiligt sind, als Einheit im
realen Betrieb zu testen, wurde ein simuliertes Signal in den Detektor GEO600 einge-
speist und erfolgreich im Ausgangssignal des Detektors mit Hilfe des Suchalgorithmus
nachgewiesen. Insbesondere stimmten dabei die Werte der Amplitude und der Phase
des extrahierten Signals mit den Parametern überein, die für die Signalerzeugung be-
nutzt worden waren. Auf diese Weise wurden alle Detektionselemente für kontinuierliche
Gravitationswellensignale bei GEO600 erfolgreich getestet. Für einen aussagekräftigen
Test muß das für die Einspeisung verwendete Signal eine hohe Phasen- und Amplitu-
dengenauigkeit besitzen. Hierfür wurde ein spezieller Signalgenerator entwickelt, der
ein simuliertes, kontinuierliches Gravitationswellensignal mit einer Phasengenauigkeit
besser als 1 % (von 2π) erzeugt. Das Signal hat sich über mehrere Monate als stabil
erwiesen und stabilisiert sich nach Störungen, wie z.B. Ausfällen in der Datenübertra-
gung, wieder selbst. Die Hauptkomponente des Signalgenerators ist ein Microcontroller,
der als digitaler Frequenzgenerator betrieben wird, um das Signal in analoger elektron-
ischer Form zu produzieren. Ein digitaler Phasenregelkreis (PLL) läuft auf einem Kon-
trollrechner, der den Phasenakkumulator des Microcontrollers mittels des Phaseninkre-
mentregisters regelt. Alle zeitlichen Taktungen des Microcontrollers sind mit Signalen
synchronisiert, die von einem GPS Empfänger abgeleitet sind. Das eingespeiste Signal
wird mit Hilfe der ”LIGO/LSC Algorithm Library” auf dem Kontrollrechner bestimmt.

Sobald die ersten Detektionen von Gravitationswellen erfolgt sind, wird das Netz-
werk von Gravitationswellendetektoren zu einer neuen Form der Astronomie überge-
hen: Gravitationswellenastronomie. Um Gravitationswellenastronomie zu betreiben, ist
eine möglichst genaue Kalibrierung des Detektors anzustreben. Die theoretisch erreich-
bare Genauigkeit eines Strahlungsdruckaktuators wird untersucht, der die Hauptspiegel
des Interferometers mit dem Strahlungsdruck eines Lasers auslenkt. Erste Messun-
gen mit einem Strahlungsdruckaktuator am Hauptinterferometer von GEO600 werden
vorgestellt. Ein verbesserter Aufbau für einen Strahlungsdruckaktuator wird vorgeschla-
gen, mit dem eine Genauigkeit von wenigen Prozent erreicht werden kann.

Stichwörter: Gravitationswellendetektor, Pulsar, Signalerzeugung, Signaleinspeisung,
Strahlungsdruckaktuator, Kalibrationsgenauigkeit.
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Chapter 1

Gravitational waves

In the first part of this chapter an introduction to gravitational waves is given. Two
different detection principles along with an overview of the existing earth-bound grav-
itational wave detectors and their sensitivity are presented. The detection principle of
laser-interferometric gravitational wave detectors is summarised in more detail before
an overview of possible gravitational wave sources for the described detectors is given.
In the second part of this chapter continuous gravitational waves, which are emitted by
fast spinning neutron stars, are discussed in more detail. The possible radiation mech-
anisms for spinning neutron stars are described. Then the gravitational wave signal for
the special case of a non-axisymmetric, non-precessing, spinning neutron star is derived,
which was used for the hardware injection described in the other chapters.

1.1 Introduction

Gravitational waves are a direct consequence of Einstein’s General Theory of Relativ-
ity [1]. Already in Einstein’s pioneering work the wave solution of his linearised field
equations can be found at the beginning of the 20th century. Gravitational waves can
be looked at as ripples in the fabric of space-time. According to the General Theory
of Relativity gravitational waves are quadrupole waves and travel at the speed of light
(higher moments than quadrupole are also possible). As space-time, the fabric in which
these waves propagate, is very stiff, the effect of gravitational waves on space-time is very
small; so small that Einstein never believed that the wave solution of his field equations
would be of any relevance, as he thought the effect of these waves was undetectable.
Forty years after Einstein’s work on gravitational waves, Bondi proved that the effect
of the emission of gravitational radiation should be physically observable, as gravita-
tional waves carry energy, and that a system that emits gravitational waves should loose
energy [2]. In 1993 Hulse and Taylor received the Nobel price for the discovery of the bi-
nary pulsar system PSR B1913+16, which had opened up new possibilities for the study
of gravitation [3]. Within four years after the discovery it was shown that the loss of
kinetic energy of the binary system agrees to within 0.5 % with the assumption that the
system emits gravitational waves as predicted by the General Theory of Relativity [4].
This was the first indirect proof of the existence of gravitational waves.

Technology has evolved over the last century at such a pace that today, at the be-
ginning of the 21st century, the first direct detection of gravitational waves may occur
in the next few years. Gravitational waves are produced by accelerated masses. For
a detectable gravitational wave on Earth, only accelerated objects with very large and
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dense masses, which can only be found on an astrophysical scale, are detectable real-
istic sources. Therefore the detection of gravitational waves is not only of great value
providing confirmation of a basic prediction of the General Theory of Relativity, but
also opens the prospect of using gravitational waves to probe the astrophysics of their
sources. Thus the long term goal of the detection of gravitational waves is to conduct
gravitational wave astronomy. This new type of astronomy would allow to directly
observe astronomical objects and events which are very faint or even invisible in the
electromagnetic spectrum, but at the same time involve very massive objects and events
in which a lot of energy is released.

There are two basic methods to detect a gravitational wave. One is by measuring
the energy deposited by the wave in a resonant massive body. Detectors based on this
principle are so-called resonant-mass detectors. The other principle is by measuring
the change in space-time via measuring the change in time it takes light to travel be-
tween two distinct points, typically with an interferometer. The detectors based on
this principle are called laser-interferometric detectors. For a reasonable chance of mak-
ing astronomical observations these detectors must be able to measure changes in its
arm-length that are smaller than 1 part in 10−21 [5].

One type of a resonant-mass detector is the so-called bar detector which consists of
a cylindrical bar weighing approximately two tons. Worldwide there are currently five
operating bar detectors, ALLEGRO [6], AURIGA [7], EXPLORER [8], NAUTILUS [9],
and NIOBÉ [10]. These bar detectors are sensitive over a small frequency region of a
few Hz with typically two resonance frequencies a few 10Hz apart. An overview on the
status of bar detectors can be found in [11].
ALLEGRO with resonance frequencies at 895 Hz and 920Hz situated in Baton Rouge,
Louisiana, USA has been running with a strain sensitivity of ∼ 8× 10−22/

√
Hz.

AURIGA with resonance frequencies at 911 Hz and 929 Hz situated in Padua, Italy
has been running with a strain sensitivity of ∼ 4× 10−22/

√
Hz.

EXPLORER with resonance frequencies at 905Hz and 921Hz situated at CERN has
been running with a strain sensitivity of ∼ 3× 10−21/

√
Hz.

NAUTILUS with originally resonance frequencies at 907 Hz and 922 Hz situated in
Rome, Italy has been running with a strain sensitivity of ∼ 4 × 10−22/

√
Hz. Recently

the detector has been tuned to 935 Hz.
NIOBÉ with resonance frequencies at 695 Hz and 713Hz situated in Perth, Australia
has been running with a strain sensitivity of ∼ 2× 10−21/

√
Hz.

Current developments of so-called double-stage transducers broaden the resonances of
the bar detectors over a few 10 Hz without loss of peak strain sensitivity.

Another development among the resonant-mass detectors are the so-called spherical
detectors, consisting of a metal sphere. They operate in the kHz frequency region with
a bandwidth of a few 100 Hz. In contrast to the bar detectors they are capable of
detecting gravitational waves from all directions and polarisations. There are currently
two projects under construction, the Dutch project MiniGRAIL [12] and the Brazilian
project Schenberger [13]. MiniGRAIL’s design sensitivity shows a minimal strain of
∼ 6 × 10−22/

√
Hz at 3.1 kHz with 300 Hz bandwidth. It has currently been running

with a strain sensitivity of ∼ 1.5 × 10−20/
√

Hz. Schenberger’s design sensitivity aims
for a sensitivity better than ∼ 10−21/

√
Hz at 3.2 kHz with 400 Hz bandwidth. So far
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the mechanical parts of the sphere have been assembled.
A totally new conceptual scheme for resonant-mass detectors, so-called dual detectors,

would allow strain sensitivities of 2 × 10−23/
√

Hz from 1 to 3 kHz. In the dual scheme
one resonant body is nested into another [14].

The measurement technique of laser-interferometric gravitational wave detectors is
based on an interferometric measurement with a Michelson interferometer operated with
highly stabilised laser light. In contrast to the bar detectors the laser-interferometric
detectors reach an astrophysically meaningful sensitivity over a broad frequency band,
approximately from 100 Hz to 2 kHz. Currently there are worldwide four earth-based
detector projects based on the laser-interferometric method. These are TAMA [15],
GEO600 [16], LIGO [17], and VIRGO [18].

TAMA is a Japanese detector with 300 m long arms situated near Tokyo. It has
Fabry-Perot cavities in the arms and has implemented power recycling. It was the first
large scale laser-interferometric gravitational wave detector to start taking scientific data
in September 1999 [19]. The current sensitivity is ∼ 3× 10−21/

√
Hz around 1 kHz.

GEO600 is a British-German detector with 600 m long arms situated in Germany
close to Hannover. The light is folded once in both arms increasing the light path to
1200 m in one arm. GEO600 has implemented both power and signal recycling [20].
With the help of signal recycling the sensitivity can be increased in a frequency band of
a few Hz allowing in particular searches of continuous gravitational waves. At GEO600
first scientific data taking started in August 2002 along with LIGO [21]. The current
sensitivity is ∼ 2× 10−21/

√
Hz around 1 kHz.

LIGO is an American project that consists of three detectors. One interferometer
with 4 km long arms is situated in Louisiana and two with 4 km and 2 km arms, re-
spectively, are included in a single vacuum system situated in Washington state. All
three detectors have the same configuration, that is Fabry-Perot cavities in the arms
and power recycling. The current setup of LIGO includes relatively easily controllable
technology. From the very beginning, the interferometer infrastructures were designed
to allow two major upgrades, leading to higher sensitivity [22]. The current detector
design is called LIGO I. The two upgrades are called LIGO II and LIGO III, respectively.
By making use of more advanced technology and interferometer configurations, such as
fused silica suspensions, electrostatic actuation, high power stabilised lasers and signal
recycling, an improvement of a factor of 10 is aimed at for LIGO II. As already stated,
LIGO I started taking scientific data in August 2002. The best LIGO I detector is cur-
rently operating with a sensitivity of ∼ 8× 10−23/

√
Hz between approximately 100 and

200 Hz.
VIRGO is a French-Italian detector with 3 km long arms situated close to Pisa in

Italy. Currently VIRGO is operating in its final commissioning state i.e. with no power
recycling yet. In its final configuration VIRGO will operate as a Michelson interferometer
with Fabry-Perot cavities in both arms and power recycling. Due to a very sophisticated
suspension system seismic noise is reduced very effectively, dominating the overall noise
only up to 3Hz [23]. The design sensitivity is below 10−21/

√
Hz from 15 Hz to 20 kHz

with a minimum of 4 × 10−23 /
√

Hz at 300 Hz.
This apparently vast amount of detectors is not competing with each other but in

contrast forms a network of detectors. Apart from the fact that only a detection in at
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least two detectors can be trusted, only a network of detectors is able to conduct useful
gravitational wave astronomy. The full information of a gravitational wave consists of
five quantities, that is the amplitudes of its two polarisations (see below for a description
of these polarisations), the phase between the two polarisations, and the position of the
source, expressible in two angles. To derive this information at least three detectors
need to detect a gravitational wave yielding six quantities; each detector measures the
combined amplitude of both polarisations at the detector site and between all of them
three differences between the time of arrival of the wave at the detectors can be deter-
mined. Furthermore the various detectors complement each other by covering different
polarisation directions and different sensitivities over the frequency detection range.

1.1.1 Detection Principle

The laser-interferometric gravitational wave detectors are based on measuring the change
in time it takes light to travel between two test masses, which are freely falling1 in space-
time. In the flat space far field approximation of Einstein’s field equations the effect of
a gravitational wave is

h

2
=

∆L
L

, (1.1)

where h is the perturbation of space-time due to the gravitational wave, L the distance
between two test masses and ∆L their apparent change in optical pathlength. According
to Equation 1.1 the effect of a gravitational wave can be looked at as a relative length
change over a defined distance. In Figure 1.1 the effect of a gravitational wave on
freely falling test masses arranged in a circle is illustrated. Plotted are the effects for
the so-called plus-polarisation, h+, and cross-polarisation, h×, at phases 0, π/2, π, and
3/2 π of the wave. In the picture it is assumed that the wave hits the drawing plane
perpendicular.

In a Michelson interferometer, the effect of a gravitational wave with amplitude h
passing the interferometer perpendicular is according to [25] section 1.2 equivalent to
Equation 1.1, where then L is then length of one arm and ∆L is the length change in
one arm.

1.1.2 Gravitational wave sources

Gravitational wave sources can be divided by the types of gravitational wave signals
which they produce. These types are classified by the predicted waveforms of the signals
and the duration of the signals. Currently, one differentiates between four types of
gravitational wave signals: Continuous , inspiral , and burst signals and the stochastic
background. The knowledge about the waveform of the signals ranges from very accurate
knowledge to complete ignorance. For a detailed overview of these signals and their
predicted event rates see [26].

Sources for continuous gravitational waves are slightly deformed, spinning neu-
tron stars. The waveforms of these signals are well known and emitted due to a

1So-called freely falling test masses cannot be realised at DC, but at frequencies within the measurement
band. For the definition of freely falling see [24], in particular chapter 10.
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Figure 1.1: The effect of a gravitational wave impinging perpendicular the drawing plane on
freely falling test masses arranged in a circle. Depicted are the two polarisations of the
transverse quadrupole wave h+ and h×. The apparent differential length change is illustrated
at phase 0, π/2, π, and 3/2 π.

quadrupole moment of the spinning neutron star. Candidates are neutron stars in low-
mass X-ray binaries, young pulsars, millisecond pulsars, and spinning neutron stars.
Emission scenarios are a quadrupole moment due to accretion, r-mode ringing, toroidal
B-fields, and precession. Continuous gravitational wave signals are continuously present.
Depending on the emission mechanism they are expected to be coherent from over several
days up to several years. The frequency region of continuous gravitational waves range
from a few Hz up to a few kHz, the breakup frequency of neutron stars. In section 1.2
the various radiation mechanisms are presented in more detail.

Sources for inspiral gravitational wave signals are binary neutron star systems
and binary black-hole systems in the last few minutes of their inspiral. Also a neutron
star black-hole binary in the last few minutes of its inspiral when the neutron star is
tidally disrupted by its black hole companion is a source for inspiral gravitational waves.
The waveforms of the signal during the inspiraling and the vibrational ringdown after
the merger are well known. The waveforms of signals emitted during the actual merging
process, however, are hardly understood, yet. The observed inspiral wave signal will
last between ∼ 1000 and ∼ 10, 000 cycles depending on the binary masses. Depending
on the masses of the involved objects the signal frequencies vary between mHz and kHz.

Sources for burst like gravitational wave signals are stellar core collapses in
supernovae and the accretion induced collapse of white dwarfs. As the details of a stellar
collapse are poorly understood, the waveforms of these signals are almost unknown. The
signals are supposed to last a few ms. The frequency spectrum of the signals is expected
to cover a broad band of frequencies.

Sources for a stochastic gravitational wave background are processes in the
very early universe. Inflationary models and superstring theory along with a wide va-
riety of postulated mechanisms predict various levels of stochastic gravitational wave
background. Even though their detection with earth-bound interferometers is unlikely,
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upper limits could be set that would rule out some of the suggested models. A stochastic
gravitational background can also originate from unresolvable background noise. As one
searches for a stochastic gravitational wave background by correlating the outputs of
at least two detectors, the upper frequency limit for the detection band is given by the
distance of the two detectors.

Besides all the known expected sources of gravitational waves their might be a large
number of unknown sources, reflecting the current ignorance about the physics and
astrophysics of gravitational waves.

Depending on the knowledge of the signal waveform, the application of matched filters
can significantly increase the signal-to-noise ratio of a detection for a given sensitivity of
a detector. In particular this applies for continuous gravitational wave signals emitted
by spinning neutron stars [27], which emit sinusoidal signals. Matched filtering works
by multiplying the output of the detector by a function of time that represents the
expected waveform (called template) and integrating the result. The longer the time
a signal is integrated over, the better the signal-to-noise ratio, S/N , gets, as the mean
noise decreases inversely to the square root of the integration time while the signal is
constant. This is described by the following relation

S

N
∝
√
T . (1.2)

Equation 1.2 only holds if the used template is correct and its phase evolution is coherent
over the full integration time. For a sinusoidal signal once the template is shifted by
π/2 the signal-to-noise ratio starts to decrease again. For the search of continuous
gravitational wave signals integration times of the order of years are aimed at. This
requires very good templates, in particular with a very accurate phase evolution.

1.2 Continuous gravitational wave signals

As described in the previous section, a very good signal template is required for matched
filtering. In order to calculate such a signal, a good model of the emission mechanism is
required. In the first part of this section different radiation mechanisms for continuous
gravitational wave signals are introduced. In the second part the exact waveform for one
of these mechanisms is derived. This signal is currently used as a template for the data
analysis of continuous gravitational wave signals. This signal is therefore also used for
the hardware injections, as the hardware injections were performed to test the search
algorithms with real instrumental data.

1.2.1 Radiation mechanisms for continuous gravitational wave signals

In order to emit gravitational waves, a neutron star needs a non-zero second (or quadru-
pole) moment of its mass distribution around its rotation axis (see Appendix A). The
frequencies at which it then can emit gravitational waves are at the rotation frequency,
twice the rotation frequency, and the frequency bands around these two frequencies,
depending on the emission mechanism. Promising continuous gravitational wave sources
for earth-bound laser-interferometric gravitational wave detectors are therefore neutron
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stars that spin at frequencies between a few 10 Hz up to several kHz. In the following,
electromagnetic observations of spinning neutron stars in the relevant frequency region
are summarised. The current observations show evidence that spinning neutron stars
should emit gravitational waves. The evidence is presented and mechanisms that can
lead to the emission of gravitational waves are introduced.

If a neutron star is a pulsar, it is relatively easy to observe its apparent spin frequency.
A pulsar is a neutron star with a magnetic axis that is not aligned with the star’s spin
axis [28]. If the neutron star then rotates, electromagnetic radiation arises from charged
particles above the neutron star which are accelerated in the moving magnetic field. If
the magnetic poles point into the line of sight to an observer on the Earth during a cycle
of the star, a pulse of electromagnetic radiation is periodically observed. Currently there
are almost 1500 known pulsars [29]. These can be divided into two different populations,
the normal pulsars and the millisecond pulsars [30].

Normal pulsars have spin periods of order one second and show spin-down rates of
typically 10−15 Hz/s. Their age is typically 106 years. The millisecond pulsars have
spin periods primarily between 1.5 and 30 ms and show very low spin-down rates of
≤ 10−19 Hz/s. They belong to an older population of pulsars with an age of 109 years
and are believed to have spun up earlier by accretion during a low-mass X-ray binary
(LMXB) phase [31]. There are approximately 100 known millisecond pulsars. The
fastest known millisecond pulsar B1937+21 has a spin period of 0.001557806472448817 s
(spin frequency ∼ 642 Hz) [32]. There are more then 90 pulsars found in binaries.
Approximately 80 % of these pulsars in binaries are millisecond pulsars.

Another way to determine the spin frequencies of neutron stars is to infer them from
millisecond oscillations in X-ray binaries [33]. Though no model valid to all observed
phenomena exists yet, recent observations show a clear link between the so-called quasi-
periodic oscillations in X-ray bursts from LMXB and the spin frequency of the accreting
neutron star [34, 35].

Neutron star spin frequencies in LMXBs lie between 270 Hz and 619 Hz. From the
distribution of this data it can be derived that with a 95 % confidence the spin frequency
of neutron stars in LMXBs lies below 760Hz [35]. General relativistic calculations on
the contrast show that the spin-up of rotating neutron stars stops only when their spin
frequency reaches at least 1180 Hz [36]. The discrepancy between observation and the-
ory suggests that some mechanisms prevent further spin-up. One possible mechanism is
that density or velocity fluctuations within the neutron star might lead to a quadrupole
momentum producing gravitational radiation, reducing the star’s angular momentum
and hence limiting the spin frequency [37]. The neutron star will loose angular momen-
tum at a rate ∼ ω5 where ω is the angular spin frequency of the neutron star. According
to [38, 39] balancing the spin-down torque with the spin-up accretion torque leads to
a critical frequency ωs beyond which accretion can no longer spin-up the star. This
critical frequency is given by

ωs ∼ Ṁ1/5Q−2/5 , (1.3)

where Ṁ is the accretion rate and Q the quadrupole moment of the neutron star. The
weak dependence of ωs on the critical values Ṁ and Q lets expect very similar ωs. This
is one of the strongest arguments that neutron stars should emit gravitational waves.
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There have been three main possible physical mechanisms identified that can be re-
sponsible for continuous gravitational wave emission by neutron stars. These are neutron
star spin precession, an excited neutron star oscillation mode, and small distortions of
the neutron star’s shape away from axisymmetry.

A possible emission mechanism of continuous gravitational waves is free precession
of a neutron star. Let the angular momentum of the star be not aligned with any
principal axis of its inertia tensor. Then the angular velocity vector rotates around
the fixed angular momentum at the inertial precession frequency. The neutron star
then emits gravitational waves at the inertial precession frequency which is nearly the
rotation frequency of the neutron star. The dissipation time scale of the precession is
orders of magnitude smaller than the typical lifetime of a millisecond pulsar [40]. Also
no astrophysical pumping mechanisms are known that maintain the free precession.
Therefore freely precessing neutron stars are not a very promising source for observable
continuous gravitational waves.

Another possible emission mechanism of continuous gravitational waves are oscillation
modes in neutron stars. The so-called r-modes are unstable due to the emission of
gravitational waves [41, 42]. But as the saturation amplitude of the r-modes is quite
small, gravitational waves emitted due to this mechanism are supposed to be too weak
to be detected by the current gravitational wave detectors [43].

A third emission mechanism of continuous gravitational waves are small non-axi-
symmetries in the neutron star’s shape, that is small ellipticities. If such a neutron
star with a quadrupole moment due to the non-axisymmetries rotates, it will emit
gravitational waves at twice its rotation frequency. The quadrupole moment can be
generated in the crust due to electron capture. For LMXB lateral temperature variations
of order ≤ 5% in the deep crust of the neutron star or 0.5% lateral variation in the
charge-to-mass ratio can lead to quadrupole moments sufficient to balance the accretion
torque by emission of gravitational waves [44]. Another mechanism that can lead to
a neutron star not rotating about its axis of symmetry are neutron stars with large
toroidal B-fields [45]. These fields can be generated during the neutron star formation
by differential rotation. A toroidal B-field tends to distort a neutron star in a prolate
shape. By dissipation the symmetry axis of the toroidal B-field is reorientated until it
is perpendicular to the rotation axis, leading to maximal equatorial ellipticity.

At present the mechanism of distortions from axisymmetry is considered the most
favourable source of detectable gravitational waves. Within the LIGO scientific collab-
oration (LSC) upper limits have been set for this particular mechanism [46]. In the
following section the signal signature for neutron stars with small ellipticity is derived
in detail for the special case that the neutron star is not precessing.
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1.2.2 Derivation of the signal

The continuous gravitational wave signal from a non-axisymmetric, non-precessing, spin-
ning neutron star (i.e. with a “wobble angle”2 of π/2) produces a strain

h(t) = F+(t, ψ)h+(t) + F×(t, ψ)h×(t) , (1.4)

with

h+(t) =
1
2
h0(1 + cos2 ι) cos 2φ(t) , (1.5)

h×(t) = h0 cos ι sin 2φ(t) (1.6)

at a detector on Earth [47]. Here h+(t) and h×(t) are the two independent polarisations
of the gravitational wave, h0 is the strain amplitude, ι the angle between the neutron
star’s angular momentum and the propagation direction of the gravitational wave, φ(t)
the phase evolution of the Doppler shifted star’s spin, F+(t, ψ) and F×(t, ψ) are the
antenna response functions of the detector to the plus- and cross-polarisations of the
gravitational wave, and ψ is the polarisation angle of the wave. The amplitude h0 is
given by [47]

h0 =
16π2G

c4
εIzzf

2
0

R
, (1.7)

where f0 is the rotation frequency of the neutron star, Izz is its principal moment
of inertia with respect to the rotation axis, ε is the ellipticity of the star given by
ε = (Iyy − Ixx)/Izz, R the distance from the detector to the star, G the gravitational
constant, and c the speed of light. Equation 1.5 to 1.7 are derived in Appendix A
from the second moment of the mass distribution (or quadrupole moment) of a spinning
ellipsoid. The gravitational wave signal frequency at the detector is constantly changing
due to the spin-down of the neutron star and the Doppler shift caused by the detector’s
motion relative to the solar system barycentre. This phase evolution information is
contained in φ(t). The antenna response functions F+(t, ψ) and F×(t, ψ) describe the
amplitude modulation of the gravitational wave signal due to the changing orientation
of the detector towards the neutron star as the detector rotates with the Earth. A more
detailed description of ψ is given below.

The phase evolution

The phase evolution of the pulsar can be described as a truncated Taylor series as follows
[46]

φ(t) = φ0 + 2π
[
f0(T − T0) +

1
2
ḟ0(T − T0)2 +

1
6
f̈0(T − T0)3

]
, (1.8)

where φ0 is the phase of the signal at a fiducial time T0, the so-called epoch, f0 the
rotation frequency of the neutron star at this fiducial time T0, ḟ0 and f̈0 are the first

2The wobble angle is the angle between the total angular momentum vector of the star and the star’s
principal axis of symmetry.
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Chapter 1 Gravitational waves

and second time derivatives of f0 at T0, the so-called spin-down parameters, and T is
the time of arrival of a signal at the solar system barycentre (SSB) given by

T = t−
−→r D · −→e NS

c
+ ∆E� −∆S� , (1.9)

where t is the time of arrival of a signal at the detector, −→e NS is a constant unit vector
pointing in the direction of the star in the SSB reference frame, −→r D the position of
the detector in the SSB reference frame, ∆E� the solar system Einstein time delay and
∆S� the solar system Shapiro time delay. The latter two are relativistic corrections.
The Einstein delay originates in the difference between the coordinate time T and the
proper time t in the detector’s reference frame. The difference is due to the combined
effect of the gravitational redshift and the time dilation. The Shapiro delay is caused
by propagation of the gravitational wave through the curved space-time of the solar
system. For a more detailed discussion of the Einstein and Shapiro delay see [47].
Putting Equation 1.8 into Equations 1.4 to 1.6 one can see that the gravitational wave
is emitted at twice the rotational frequency f0 of the neutron star.

PSfrag replacements

neutron
star

−→z CS

δ
−→y CS

α

−→x CS

Figure 1.2: Position of a neutron star in celestial equatorial coordinates expressed in right
ascension α and declination δ. The light grey ellipse represents the plane spanned by the
vectors −→x CS and −→y CS. It corresponds to the Earth’s equatorial plane.

In the following paragraphs, the vector −→e NS is derived. As mentioned before −→e NS is
a constant unit vector pointing in the direction of the star in the SSB reference frame.
To determine −→e NS first the position of the neutron star is determined in the celestial
equatorial coordinate system3. From Figure 1.2 the position of the neutron star in the
celestial equatorial coordinate system can be expressed in terms of its right ascension
α and declination δ. It is given by the vector (cos α cos δ, sin α cos δ, sin δ). Now
only the matrix that transforms the celestial equatorial coordinate system to the SSB
reference frame needs to be applied to this vector to yield −→e NS.

To determine a transformation matrix T of rotation from one Cartesian coordinate
system (−→e x′ ,−→e y′ ,−→e z′) to another (−→e x′′ ,−→e y′′ ,−→e z′′), one needs to write the unit vectors

3For a description of the celestial equatorial coordinate system see Appendix B.
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1.2 Continuous gravitational wave signals

of (−→e x′′ ,−→e y′′ ,−→e z′′) in the coordinates of (−→e x′ ,−→e y′ ,−→e z′) into the rows of T (Equation
4.2 [48])

T =

← −→e x′′ →
← −→e y′′ →
← −→e z′′ →

 . (1.10)

PSfrag replacements

−→y CS
−→y SSB

−→z CS

−→x CS

−→z SSB

ε

ε

Figure 1.3: For the transformation of the celestial equatorial coordinate system into the solar
system barycentre reference frame the celestial coordinate system needs to be rotated coun-
terclockwise about its x-axis by the angle ε, which is the angle between the ecliptic and the
Earth’s equatorial plane. This rotation is described by a simple matrix of rotation which can
be read from the above figure. The grey ellipse spans a plane perpendicular to −→x CS, the
vector of rotation. All vectors which end on the rim of that ellipse are situated in this plane.
The transformation matrix giving the transformation from the celestial equatorial coordinate
system to the SSB reference frame depends only on ε.

The unit vector −→e NS pointing in the SSB reference frame to the neutron star can
be derived by multiplying the unit vector pointing in the celestial equatorial coordinate
system to the neutron with the matrix of rotation from the celestial equatorial coordinate
system to the SSB reference frame. In the coordinate system of the SSB reference
frame, the x-axis is parallel to the xCS-axis of the celestial equatorial coordinate system;
the z-axis of the SSB reference frame is perpendicular to the ecliptic and coincides
with the orbital angular momentum vector of the Earth; the x-, y-, and z-axes of the
SSB reference frame form a right-hand system. From Figure 1.3 the transformation
matrix from the celestial equatorial coordinate system to the SSB reference frame can
be read and applied to the position vector of the neutron star in the celestial equatorial
coordinate system to yield

−→e NS =

1 0 0
0 cos ε sin ε
0 − sin ε cos ε

 cos α cos δ
sin α cos δ

sin δ

 , (1.11)

where ε is the angle between the ecliptic and the Earth’s equatorial plane, δ the dec-
lination, and α the right ascension of the position of the neutron star in the celestial
equatorial coordinate system.

The position vector of the detector in the SSB reference frame, −→r D, is given by the
sum of the vector pointing from the SSB to the Earth centre and the vector pointing
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Chapter 1 Gravitational waves

from the Earth centre to the detector, both in the SSB reference frame. As the SSB
and the Earth centre lie by definition in one plane in the SSB reference frame, the unit
vector, −→e SE , pointing from the SSB to the Earth centre in the SSB reference frame is

−→e SE =

cos(φ0 + Ω0t)
sin(φ0 + Ω0t)

0

 . (1.12)

Here Ω0 is the orbital angular velocity of the Earth and φ0 is a deterministic phase
which defines the position of the Earth in its orbital motion at t = 0. From picture III
of Figure 1.5 (here −→e ED equals −→z CD), the unit vector, −→e ED, pointing from the Earth
centre to the detector in the celestial equatorial coordinate system can be found to be

−→e ED =

cos λ cos(φr + Ωr t)
cos λ sin(φr + Ωr t)

sin λ

 . (1.13)

Here λ is the latitude of the detector’s site, Ωr the rotational angular velocity of the
Earth in the SSB reference frame, and φr is a deterministic phase which defines the
position of the Earth in its diurnal motion at t = 0. To transform this vector into the
SSB reference frame, it needs to be multiplied with the transformation matrix used in
Equation 1.11. This yields the position of the detector in the SSB reference frame

−→r D = RSE

cos(φ0 + Ω0t)
sin(φ0 + Ω0t)

0

 +RED

1 0 0
0 cos ε sin ε
0 − sin ε cos ε

 cos λ cos(φr + Ωr t)
cos λ sin(φr + Ωr t)

sin λ

 , (1.14)

where RSE is the distance from the SSB to the Earth centre, and RED is the distance
from the Earth centre to the detector. Now it can be seen that the phase evolution is a
function that depends on 13 parameters apart from the time t.

φ(t) = φ(t; f0, ḟ0, f̈0, α, δ, ε, φ0,Ω0, λ, φr,Ωr, RSE, RED) (1.15)

Due to the elliptic orbit of the Earth around the Sun the parameters RSE and Ω0 are time
dependent. All other parameters of the function for the phase evolution are constant in
time.

The antenna response functions

As mentioned in subsection 1.2.2, the antenna response functions F+(t, ψ) and F×(t, ψ)
describe the signal amplitude modulation due to the changing orientation of the detec-
tor towards the neutron star as the detector rotates with the Earth. Because of this
motion, the antenna response functions are periodic in time with a period of one sidereal
day. In order to extract this explicit time dependence and express the antenna response
F+(t, ψ) and F×(t, ψ) as functions of the position of the neutron star, right ascension α
and declination δ, and its polarisation angle ψ, one has to transform the gravitational
wave signal from the gravitational wave coordinate system to the so-called “detector
proper reference frame coordinates”. This can be achieved through three transforma-
tions: first the transformation from the gravitational wave coordinate system to the

12



1.2 Continuous gravitational wave signals

celestial equatorial coordinate system, second from the celestial equatorial coordinate
system to the cardinal coordinate system located at the detector, and third from the
cardinal coordinate system to the detector proper reference frame coordinate system4.

In the gravitational wave coordinate system, the gravitational wave propagates in the
positive z-direction. Thus, the z-axis coincides with the line of sight from the neutron
star to the Earth. The x-axis of the gravitational wave coordinate system lies in the
gravitational wave plane; it is perpendicular to the z-axis and perpendicular to the star’s
rotation axis. The 3×3 matrix H(t) of the spatial metric perturbation produced by the
gravitational wave in the wave coordinate system has the form

H(t) =

h+(t) h×(t) 0
h×(t) −h+(t) 0

0 0 0

 . (1.16)

To determine the 3× 3 matrix H̃(t) of the spatial metric perturbation produced by the
gravitational wave in the detector proper reference frame coordinate system, H(t) needs
to be transformed into the desired coordinate system via

H̃(t) = M(t) H(t) M(t)T , (1.17)

with
M = M3 M2 M1 . (1.18)

M1 is the matrix of transformation from the gravitational wave coordinate system to
the celestial equatorial coordinate system, M2 is the matrix of transformation from the
celestial equatorial coordinate system to the cardinal coordinate system located at the
detector, and M3 is the matrix of transformation from the cardinal coordinate system
to the detector proper reference frame coordinate system. In the following a detailed
description of the three matrices is given. Most of the steps and description are taken
from the publications5 [47, 49, 50].

The matrix M1 is defined in terms of the position of the neutron star in the celestial
equatorial coordinate system, i.e. by its declination, δ, and right ascension, α, and the
polarisation angle ψ. The polarisation angle, ψ, is defined as the angle between lines a
and b shown in picture III of Figure 1.4. Line a is the intersection of the gravitational
wave plane (the plane transverse to the propagation direction) and the equatorial plane
of the Earth. Line b is perpendicular to the neutron star’s angular momentum and also
lies in the gravitational wave plane. From these three angles (α, δ, and ψ) the Euler
angles can be derived, which transform the celestial equatorial coordinate system to the
gravitational wave coordinate system and yield MT

1 . Here the convention of the Euler
angles as described in [50] will be applied.

In Figure 1.4 the three rotations for the coordinate system transformation are pic-
tured. First, the celestial equatorial coordinate system (−→x CS,

−→y CS,
−→z CS) is rotated

counterclockwise about its −→z CS-axis by the angle φ, where φ equals (α − π/2). This
leads to the intermediate coordinate system (−→x ′,−→y ′,−→z ′) in which −→z ′ corresponds to

4For a description of the celestial equatorial coordinate system, the cardinal coordinate system, and
the detector proper reference frame coordinate system see Appendix B.

5Please be aware that Equation 8 of [47] contains a sign error and Figure 8 in [49] is misleading.
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Figure 1.4: Euler angles to transform the celestial equatorial coordinate system to the gravita-
tional wave coordinate system. The grey ellipses span a plane perpendicular to a vector of
rotation. All vectors which end on the rim of an ellipse are situated in this plane. In I −→x CS

and −→y CS are rotated counterclockwise by (α − π/2) about the −→z CS-axis. In II −→y ′ and −→z ′

are rotated counterclockwise by (δ + π/2) about the −→x ′-axis. In III −→x ′′ and −→y ′′ are rotated
counterclockwise by ψ about the −→z ′′-axis. After the rotations performed by step I and II, the
−→z ′′-axis points into the opposite direction of the line of sight from the Earth to the neutron
star. In III the here called lines a and b that define the polarisation angle ψ are pictured. Line
a is the intersection of the gravitational wave plane (the plane transverse to the propagation
direction) and the equatorial plane of the Earth. Line b is perpendicular to the neutron star’s
angular momentum and also lies in the gravitational wave plane.
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1.2 Continuous gravitational wave signals

−→z CS. In the second step, the coordinate system (−→x ′,−→y ′,−→z ′) is rotated counterclockwise
about its −→x ′-axis by the angle θ, where θ = (δ + π/2). This leads to the intermediate
coordinate system (−→x ′′,−→y ′′,−→z ′′) in which −→x ′′ corresponds to −→x ′. After these two ro-
tations −→z ′′ coincides with the z-axis of the gravitational wave coordinate system. The
information about the position of the neutron star in the celestial equatorial coordinate
system leads to the transformation of −→z CS to −→z GW. Thus, the z′′-axis points in the
opposite direction of the line of sight from the Earth to the neutron star. In the third
and last step, the coordinate system (−→x ′′,−→y ′′,−→z ′′) is rotated about its −→z ′′-axis by the
angle ψ, the polarisation angle. By definition of ψ this transforms (−→x ′′,−→y ′′,−→z ′′) into
the gravitational wave coordinate system (−→x GW,

−→y GW,
−→z GW). With the Euler angles

(δ+π/2, α−π/2, ψ) according to Equation 4.46 and 4.47 in [50], MT
1 and M1 are given

by

MT
1 =

 sin α cos ψ − cos α sin δ sin ψ − cos α cos ψ − sin α sin δ sin ψ cos δ sin ψ
− sin α sin ψ − cos α sin δ cos ψ cos α sin ψ − sin α sin δ cos ψ cos δ cos ψ

− cos α cos δ − sin α cos δ − sin δ

 (1.19)

and

M1 =

 sin α cos ψ − cos α sin δ sin ψ − sin α sin ψ − cos α sin δ cos ψ − cos α cos δ
− cos α cos ψ − sin α sin δ sin ψ cos α sin ψ − sin α sin δ cos ψ − sin α cos δ

cos δ sin ψ cos δ cos ψ − sin δ

 .

(1.20)

The matrix M2 transforms from the celestial equatorial coordinate system to the car-
dinal coordinate system located at the detector. It is defined in terms of the latitude,
λ, of the detector’s site, the total rotational angular velocity of the Earth, Ωr, and a
deterministic phase, φr, which defines the position of the Earth in its diurnal motion
at t = 0. From Figure 1.5 it can be seen that the unit vectors of the cardinal coordi-
nate system (−→x CD,

−→y CD,
−→z CD) take the following form when expressed in the celestial

equatorial coordinate system

−→x CD =

sin λ cos(φr + Ωr t)
sin λ sin(φr + Ωr t)

− cos λ

 , −→y CD =

− sin(φr + Ωr t)
cos(φr + Ωr t)

0

 ,

−→z CD =

cos λ cos(φr + Ωr t)
cos λ sin(φr + Ωr t)

sin λ

 .

(1.21)

Equations 1.10 and 1.21 yield the matrix M2

M2(t) =

sin λ cos(φr + Ωr t) sin λ sin(φr + Ωr t) − cos λ
− sin(φr + Ωr t) cos(φr + Ωr t) 0

cos λ cos(φr + Ωr t) cos λ sin(φr + Ωr t) sin λ

 . (1.22)

The matrix M3 is defined in terms of the angle γ measured counterclockwise from
East to the bisector of the interferometer arms and ζ the angle between the inter-
ferometer arms. M3 can be derived in the same way as M2. As can be seen in
Figure 1.6, the unit vectors of the detector proper reference frame coordinate system
(−→x DT,

−→y DT,
−→z DT) have the following form when expressed in the cardinal coordinate

system (−→x CD,
−→y CD,

−→z CD)
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Figure 1.5: Presentation of the vectors spanning the cardinal coordinate system
(−→x CD,

−→y CD,
−→z CD) in the celestial equatorial coordinate system (−→x CS,

−→y CS,
−→z CS). The grey

(light and dark) ellipses in I and III span a plane on which all vectors are situated, that end
at the rim of an ellipse. The light grey ellipses represent the equatorial plane of the celes-
tial equatorial coordinate system. For the representation of −→y CD in II, only the equatorial
plane of the celestial equatorial coordinate system is pictured, because −→y CD is parallel to the
equatorial plane. As an aid to directly read the coordinates of −→y CD in (−→x CS,

−→y CS,
−→z CS) a

vector parallel to −→y CD is drawn, starting in the origin of the celestial equatorial coordinate
system. In III, the coordinates of −→z CD in (−→x CS,

−→y CS,
−→z CS) can bee seen. −→z CD is pointing

by definition from the geocentre to the detector. If a plane that is spanned by −→x CD and −→z CD

is added to picture III one receives picture I. This plane, presented by the dark grey ellipse, is
perpendicular by definition to the equatorial plane of the celestial coordinate system. Again,
as an aid to directly read the coordinates of −→x CD in (−→x CS,

−→y CS,
−→z CS), a vector parallel to

−→x CD is drawn, starting in the origin of the celestial equatorial coordinate system.
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−→x DT =

− sin(γ − ζ/2)
cos(γ − ζ/2)

0

 ,−→y DT =

− cos(γ − ζ/2)
− sin(γ − ζ/2)

0

 ,−→z DT =

0
0
1

 . (1.23)

Equations (1.10) and (1.23) yield the matrix M3
6

M3 =

− sin(γ − ζ/2) cos(γ − ζ/2) 0
− cos(γ − ζ/2) − sin(γ − ζ/2) 0

0 0 1

 . (1.24)

Now h(t) can be directly computed with

h(t) =
1
2
−→e 1

[
H̃(t) −→e 1

]
− 1

2
−→e 2

[
H̃(t) −→e 2

]
, (1.25)

where −→e 1 and −→e 2 denote the unit vectors parallel to the first and second arm of the
interferometer, respectively. That means −→e 1 is always parallel to −→x DT and −→e 2 =
(cos ζ, sin ζ, 0). For the case of an interferometer where the arms are perpendicular to
each other, −→e 2 is parallel to −→y DT. Combining Equations 1.16 to 1.25 and extensive

6Please note that in [47] in Equation 8 the argument of all trigonometric functions should be (γ− ζ/2)
instead of (γ + ζ/2).
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algebraic manipulations yield the expressions

F+(t) = sin ζ [a(t) cos 2ψ + b(t) sin 2ψ] (1.26)
F×(t) = sin ζ [b(t) cos 2ψ − a(t) sin 2ψ] , (1.27)

where

a(t) =
1
16

sin 2γ (3− cos 2λ) (3− cos 2δ) cos
[
2(α− φr − Ωrt)

]
− 1

4
cos 2γ sin λ (3− cos 2δ) sin

[
2(α− φr − Ωrt)

]
+

1
4

sin 2γ sin 2λ sin 2δ cos
[
α− φr − Ωrt

]
− 1

2
cos 2γ cos λ sin 2δ sin

[
α− φr − Ωrt

]
+

3
4

sin 2γ cos2 λ cos2 δ ,

(1.28)

b(t) = cos 2γ sin λ sin δ cos
[
2(α− φr − Ωrt)

]
+

1
4

sin 2γ (3− cos 2λ) sin δ sin
[
2(α− φr − Ωrt)

]
+ cos 2γ cos λ cos δ cos

[
α− φr − Ωrt

]
+

1
2

sin 2γ sin 2λ cos δ sin
[
α− φr − Ωrt

]
.

(1.29)

Thus it can be seen that the antenna response functions, F+(t) and F×(t), actually de-
pend on eight angles, that is F+(t, ψ, α, δ, λ, φr,Ωr, γ, ζ) and F×(t, ψ, α, δ, λ, φr, Ωr, γ, ζ).
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Chapter 2

Production of a simulated, continuous gravitational
wave signal

In order to inject a simulated strain signal into the interferometer, an analog electronic
signal proportional to the gravitational wave amplitude is generated. This electronic
signal is used to produce a force that acts upon one of the interferometer main mirrors,
thereby changing the differential length of the two arms and simulating the effect of
a gravitational wave. Splitting the continuous gravitational wave signal into a slowly
varying amplitude component and a sinusoidal phase component, as described below, al-
lows us to generate these two components independently of each other. A Hitachi 3048F
microcontroller with two on-chip D/A converters is used as a direct digital frequency
synthesiser (DDS) to generate the signal. The sinusoidal component and the slowly
varying amplitude factor are separately generated by the two D/A converters and are
then combined by analog electronic multiplication. The complicated phase evolution of
the signal is controlled by a PC running a C program that uses GPS timing signals and
the LIGO/LSC algorithm library (LAL).

Our setup for the hardware injection aims for a phase error of less than 1 % of 2π rad
from the correct signal phase and an amplitude error below 1% of the maximal amplitude
for injection times of several months and signal frequencies between 100Hz and 2 kHz.
A phase error of 1 % will not affect the sensitivity of the search algorithms and an
amplitude accuracy of 1 % is better than the accuracy of the actuators used for the
hardware injection (see section 3.2).

For the first time a simulated, continuous gravitational wave signal was injected at
GEO600 during S3 II (second part of science run three lasting from 2003-12-30 15:00:00
UTC to 2004-01-13 16:00:00 UTC). Over this whole period the signal was applied to
an actuator of the main interferometer and the signal was recorded directly with the
data acquisition system. As it turned out later there was electronic cross-talk of the
directly recorded signal to the interferometer channels. Therefore the injection during
S3 II could not be used for analysis. For convenience the directly recorded signal during
S3 II has been used to investigate the performance of the signal. Therefore most of the
investigations of the generated signal are performed during time stretches of S3 II.

In the first part of this chapter the simulated, continuous gravitational wave signal
is converted into a form with only one amplitude and one oscillatory term. Then it is
explained how this signal is generated on the software side. In the second part of this
chapter the hardware used for the signal production is described in detail.
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Chapter 2 Production of a simulated, continuous gravitational wave signal

2.1 Signal generation software

The continuous gravitational wave signal from a non-axisymmetric, non-precessing, spin-
ning neutron star, as given in Equations 1.4 to 1.6,

h(t) = F+(t, ψ)
1
2
h0(1 + cos2 ι) cos 2φ(t) + F×(t, ψ)h0 cos ι sin 2φ(t) , (2.1)

can be rewritten (by expressing the continuous gravitational wave signal in terms of an
amplitude a(t) and an oscillatory part sinϕ(t) only), according to section 2.5.2.1.4 of
[51], as

h(t) =h0

√
F 2

+(t, ψ)
1
4
(1 + cos2 ι)2 + F 2

×(t, ψ) cos2 ι︸ ︷︷ ︸
a(t)

× sin

[
2φ(t) + arctan

F+(t, ψ)(1 + cos2 ι)
2F×(t, ψ) cos ι

]
︸ ︷︷ ︸

ϕ(t)

.

(2.2)

For the explanation of the quantities see subsection 1.2.2. h(t), a(t) and ϕ(t) can be de-
termined numerically using the LIGO/LSC Algorithm Library (LAL) [52]. Equation 2.2
shows how the amplitude a(t) and the oscillatory part sinϕ(t) can be produced electron-
ically independently of each other and then combined by analog electronic multiplication
to give the full simulated signal.

2.1.1 Calculating the phase

The function ϕ(t) is the phase evolution of the continuous gravitational wave sig-
nal and, according to Equations 1.8 to 1.14, a function of f0, ḟ0, f̈0, α, δ, ε, φ0,Ω0(t), λ,
φr,Ωr, RSE(t), RED, ι, ψ, γ, and ζ. The orbital angular velocity of the Earth, Ω0(t), the
deterministic phase, φ0, which defines the position of the Earth in its diurnal motion
at t = 0, the rotational angular velocity of the Earth, Ωr, the deterministic phase, φr,
which defines the position of the Earth in its diurnal motion at t = 0, and the distance,
RSE(t), from the SSB to the Earth centre are read within the LAL code from ephemeris
data1. The phase ϕ(t) is calculated in a C program running on a control computer with
the function atan2 used for the arctan in Equation 2.2. This function makes phase
jumps of 2π when the denominator is negative and the numerator has a zero crossing as
can bee seen in Figure 2.1. These jumps are subtracted from the overall ϕ(t) yielding a
continuous form of ϕ(t), which is needed to control the phase as described in section 2.2.

The gravitational wave signal frequency at the detector is constantly changing due to
the spin-down of the neutron star (ḟ0 and f̈0) and a Doppler shift caused by the detector
motion relative to the neutron star. This relative motion can be split into a motion due
to the Earth’s diurnal motion and one due to the Earth’s orbit around the sun. The

1Ephemerides contain the exact positions and velocities of celestial bodies at certain times, which are
calculated and adjusted by observational data.
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Figure 2.1: Behaviour of the atan2 function in C. In the above graphs the numerator and
denominator of the atan2 function are plotted. The curve identified as atan2 is the
atan2(numerator,denominator). Only if the denominator is negative and the numerator
changes sign, phase jumps of 2π rad occur. If the numerator changes from negative to positive
a jump of +2π rad occurs. If the numerator changes from positive to negative a jump of
−2π rad occurs.
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Chapter 2 Production of a simulated, continuous gravitational wave signal

absolute value of the upper limit of a relative frequency shift due to the Doppler shift
caused by the Earth’s motion is given by

|∆fmax|
fSSB

=
v

c
, (2.3)

where ∆fmax is the maximal frequency shift, fSSB the gravitational wave signal frequency
at the SSB (the spin-down is already taken into account), v the maximal velocity of the
detector in the SSB reference frame, and c the velocity of light. The maximal frequency
shift ∆fmax is defined such that the instantaneous signal frequency, f , always falls in
the interval (fSSB −∆fmax, fSSB + ∆fmax).

The maximal Doppler shift due to the diurnal motion can be estimated by calculating
the maximal velocity at a point on the Earth’s surface due to its rotation. With an
equatorial radius of 6378 km and a mean sidereal day of 86164 s [53], the maximal
velocity on the Earth’s surface is v⊕rot = 465m/s. According to Equation 2.3 this gives
a relative maximal frequency shift of ∆fmax/fSSB = 1.6 × 10−6 over one sidereal day.
With a maximal orbital velocity of v⊕orb = 30290m/s the relative maximal frequency
shift due to the orbital motion is given by ∆fmax/fSSB = 1.0 × 10−4 for one sidereal
year. The gravitational wave signal frequency will therefore have a small modulation
with a period of one sidereal day on top of a larger modulation with a period of one
sidereal year.

In the following paragraph it is shown how the frequency of a gravitational wave
signal of a neutron star can be calculated within LAL at any time given the neutron
star parameters. This method allows for the determination of the effect of the spin-down
and the Doppler shift on the frequency of the gravitational wave signal. According to
Equation (8.47) of [54] the first derivative of a function g(x) is given by

g′(x1) =
g(x2)− g(x1)

h
− h

2
g′′(x1 + ϑh) , (2.4)

where h = x2 − x1 and 0 < ϑ < 1. As

f(t) =
1
2π
ϕ′(t) ,

the gravitational wave signal frequency is to first order approximation

f(t1) =
ϕ(t2)− ϕ(t1)

2π∆t
, (2.5)

where ∆t = t2 − t1 = SR, with SR being the sample rate of ϕ(tn). To estimate how
good the first order approximation is, the error

ferr =
∆t
4π
ϕ′′(t1 + ϑ∆t) (2.6)

is estimated. To estimate the maximal error of f(tn) the maximum of ϕ′′(tn) needs
to be determined. Knowing the maximal relative frequency shift ∆fmax/fSSB due to
the orbital and diurnal motion and taking a sinusoidal approach for the orbital and
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2.1 Signal generation software

diurnal motion, the maximum of ϕ′′(tn) can be estimated. With the maximal relative
frequency shift ∆fmax/fSSB for the orbital motion being 1.0× 10−4 over a period of one
sidereal year the maximum of ϕ′′(tn) becomes 2.0×10−11 1/s2 for a signal at 1Hz. With
∆t = 400 s the maximal error, ferr, is 6.4×10−8 %. With the maximal relative frequency
shift ∆f/fSSB for the diurnal motion being 1.6× 10−6 over a period of one sidereal day
the maximum of ϕ′′(tn) becomes 1.2×10−10 1/s2 for a signal at 1 Hz. With ∆t = 1 s the
maximal error, ferr, is 9.5× 10−10 %. Thus Equation 2.5 is a very good approximation
to determine the instantaneous signal frequency. The estimation of ϕ′′(tn) was made
under the assumption that the frequency shift over a year due to spin-down is negligible
compared to the frequency shift due to the orbital and diurnal Doppler shift. This is
true for real spin-down values, i.e. ḟ0 ≤ 10−111/s2.

Figure 2.2 shows the gravitational wave signal frequency offset to its original frequency,
2f0, for GEO600 for the year 2003. The neutron star parameters were set to ψ =
0.372640504, δ = 0, α = 0.776235274, ι = 0.837452625, and 2f0 = 1125.647365 Hz2.
All angles are given in radians. The sample rate was chosen to be SR = 0.0025 Hz. In
the black curves of both graphs the spin-down was set to ḟ = 0 Hz/s. Thus the black
curves show a frequency offset due to Doppler shift only. On the other hand, for the
grey curves the spin-down was set to ḟ = 10−9 Hz/s and they hence show a frequency
offset due to Doppler shift and spin-down. It can be seen that the Doppler shift is
periodic in one (sidereal) year. For the case of the negative spin-down this periodicity is
overlaid by a constant drop of the gravitational wave signal frequency at the SSB. In the
left-hand graph the epoch (a fiducial time at which the values f0, ḟ , and f̈ are given)
was chosen to coincide with the start of the data; therefore the curves with spin-down
ḟ = 0 Hz/s and ḟ = 10−9 Hz/s start in the same point. In the right-hand graph the
epoch was chosen to be half a year before the start of the data; therefore the curve with
the negative spin-down ḟ = 10−9 Hz/s starts at a larger negative offset than the one for
ḟ = 0Hz/s.

Figure 2.3 shows the gravitational wave signal frequency offset to its original frequency,
2f0, for GEO600 over two days. The neutron star parameters are set to the same values
as in the previous example (Figure 2.2). The frequency epoch was chosen to be GPS
second 725414413 (1 January 2003) and the spin-down was set to ḟ = 0Hz/s. So the
frequency offset arises from the Doppler shift only. Figure 2.3 is a zoom of the black
curve in Figure 2.2 at two different times in the year 2003. The periodicity of the
Doppler shift in one (sidereal) day due to the effect of the Earth rotation about its axis
can be seen. In the left-hand graph of Figure 2.3 the frequency offset is plotted for the
days 30-31 of 2003. As can be seen in Figure 2.2 the Doppler shift due to the Earth’s
orbital motion is at this time largest for the chosen parameters and almost constant. In
the right-hand graph of Figure 2.3 the frequency offset is plotted for the days 123-124 of
2003, when the Doppler shift due to the Earth’s orbital motion is smallest and changes
most rapidly. In the right-hand graph of Figure 2.3 it can be seen how the amplitude of
the diurnal Doppler shift is distorted by the superposition of the orbital Doppler shift.

The spikes in both graphs of Figure 2.3 that occur every four hours are due to the

2LAL requires as one input the distance of the source, which was chosen to be 3600 pc for all calculations
in this work. For distances above 1 kpc the signal values do not change for different distance values.
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ḟ = 0ḟ = 0
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Figure 2.2: Gravitational wave signal frequency offset to 2f0 for GEO600 for the year 2003.
The neutron star parameters were set to ψ = 0.372640504, δ = 0, α = 0.776235274, ι =
0.837452625, and 2f0 = 1125.647365 Hz. All angles are given in radians. The epoch in the
left-hand graph was chosen to coincide with the start time of the data. The epoch in the right-
hand graph was chosen to be half a year ahead of the start time of the data. The periodicity
of the Doppler shift in one (sidereal) year due to the Earth’s orbital motion can be seen. Also
the effect of ḟ 6= 0 and the epoch on the frequency offset are visible.

discretisation of the ephemeris data used by the LAL code. The ephemeris data are only
updated every four hours, which can result in step-like changes of the phase when the
ephemeris data are updated. The updates of the ephemeris data make the position of the
Earth and thus of the detector used for calculating the signal “jump” every four hours.
If the “jump” in velocity is along the propagation direction of the gravitational wave, it
causes a maximal change of the signal frequency. It shows up only as a single spike in
the frequency offset plots, as there is only a discontinuity between the adjacent times
in between which the new ephemeris entry falls. If the “jump” in velocity is orthogonal
to the propagation direction of the gravitational wave, it hardly effects the frequency of
the signal. These two extremes can be seen in Figure 2.3 where the spikes in the left-
hand graph are much larger than in the right-hand graph, 93 days later in the year. The
maximal error in travel time τ for the signal from the SSB to the detector can accumulate
due to this effect up to τ = 0.5 µs. This is of the order of the numerical errors of the
LAL code [55]. It leads to a phase error of ∆φ = 3.14 mrad × [2f0/1 kHz] × [τ/0.5 µs].
In the case of 2f0 = 1125.647365 Hz the discretisation of the ephemeris data can lead to
a maximal phase error of 3.5 mrad which is 0.06 % of a full cycle and hence well below
the target phase accuracy.

2.1.2 Mapping the amplitude envelope

The amplitude is produced with one of the D/A converters of the microcontroller, that
is used for the signal generation. The continuous amplitude a(t) therefore needs to be
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Figure 2.3: Gravitational wave signal frequency offset to 2f0 for GEO600 for four days of the
year 2003. The neutron star parameters are set to ψ = 0.372640504, δ = 0, α = 0.776235274,
ι = 0.837452625, and 2f0 = 1125.647365Hz. All angles are given in radians. The frequency
epoch was chosen to be GPS second 725414413 (1 January 2003) and the spin-down was set
to ḟ = 0 Hz/s. The periodicity of the Doppler shift in one (sidereal) day due to the Earth
rotation about its axis can be seen. In the left-hand graph the Doppler shift due to the Earth’s
orbital motion is largest and almost constant. In the right-hand graph the Doppler shift due
to the Earth’s orbital motion is smallest and at its most rapid change. It can be seen how the
amplitude of the diurnal Doppler shift is distorted by the superposition of the orbital Doppler
shift. The spikes in the both graphs are due to the discretisation of the ephemeris data used
by the LAL code.

mapped onto one of the 8-bit D/A converters. This is achieved by digitising the function
a(t).

The amplitude a(t) is the absolute value of the envelope of the continuous gravi-
tational wave signal and, according to Equation 2.2 and subsection 1.2.2, a function
of h0, ι, ψ, α, δ, λ, φr,Ωr, γ, and ζ (for the definition of these parameters see subsec-
tion 1.2.2). The function a(t) describes the signal amplitude modulation due to the
changing orientation of the detector towards the neutron star as the detector rotates
with the Earth. It is periodic in time with a period of one sidereal day.

During the design of the electronics in which the microcontroller is embedded, the
signal that represents the amplitude envelope a(t) was chosen to be bipolar, in order to
allow phase shifts of π of the oscillatory signal. Out of the 256 possible 8-bit integers
0-255, the integer 255 stays unused, and the range 0-254 is used for the signal. To make
it bipolar, integer 127 is mapped to 0 V. The non-negative amplitude envelope a(t) can
then be mapped onto the integers 127-254 or 0-127 of the 8-bit D/A converter of the
microcontroller. This allows a positive or negative sign of the amplitude or in other
words a phase shift of π. The maximal amplitude is mapped onto integer 0 or integer
254, depending on the sign.

Thus the full amplitude is spread over 128 integers exploiting 50% of the full dynamic
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Figure 2.4: The left graph shows the gravitational wave signal amplitude envelope a(t) of a neu-
tron star scaled to h0 = 1, ι = π/2, ψ = 0.372640504, α = 0.776235274 and δ = −0.616383646
for GEO600 on 31 December 2003. All angles are given in radians. The right graph shows
how the amplitude envelope a(t) of the left graph is mapped onto an 8-bit D/A converter for
minutes 380 to 480 on 31 December 2003 (corresponding to the time from 6:20:00 to 8:00:00).

range of the 8-bit D/A converter. In Table 2.1 the a(t) signal range for the according
integer and analog output is listed for the 8-bit D/A converter. In this table

∆a =
amax

127
, (2.7)

where amax is the maximum of a(t). Vmax is the maximal output of the D/A converter,
which is 10 V for the Hitachi 3048F. The digitisation error referred to the maximal
amplitude is then below 0.8% and hence better than the amplitude accuracy of the
injection hardware (see section 3.2).

Figure 2.4 gives the gravitational wave signal amplitude envelope a(t) of a neutron star
scaled to h0 = 1, ι = π/2, ψ = 0.372640504, α = 0.776235274, and δ = −0.616383646
for GEO600 on 31 December 2003 with a sample rate of 1 Hz. For all calculations in this
subsection 2.1.2 the gravitational wave signal frequency 2f0 was set to 1125.647365Hz,
the spin-down to 0 Hz/s, the phase epoch to GPS second 751680013, and the phase offset
to 1.993746459. The left-hand graph shows the gravitational wave signal amplitude
envelope a(t) determined with LAL. In the right-hand graph the gravitational wave
signal amplitude envelope a(t) of the left graph is mapped onto the 8-bit D/A converter
for minutes 380 to 480 for 31 December 2003. The amplitude is mapped into the bins
127-254. For this signal over a whole day the time period over which the amplitude is
set to the same 8-bit integer is 78 seconds at the steepest slope and 1541 seconds at the
shallowest slope. A sample rate of 1 Hz was used for these calculations.

Figure 2.5 shows the gravitational wave signal amplitude envelopes a(t) of neutron
stars scaled to h0 = 1.0, α = 0.776235274 and ψ = 0.372640504 for GEO600 on 31 De-
cember 2003 (UTC). The parameters ι and δ are varied; ι is given the value π/2 or
0.837452625 and δ is given the value π/2 or −0.616383646. As can be seen in Figure 2.5
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Mapping of the amplitude
a(t) integer analog output

(253
2 ∆a, 127∆a] 254 Vmax

(251
2 ∆a, 253

2 ∆a] 253 126
127Vmax

... ... ...
(1
2∆a, 3

2∆a] 128 1
127Vmax

(−1
2∆a, 1

2∆a] 127 0

(−3
2∆a,−1

2∆a] 126 − 1
127Vmax

... ... ...
(−253

2 ∆a,−252
2 ∆a] 1 −126

127Vmax

[−127∆a,−253
2 ∆a] 0 −Vmax

Table 2.1: This table shows which a(t) range is mapped onto which integer and what the
according analog output is for an 8-bit D/A converter (∆a = amax/127). Vmax is the maximal
output of the D/A converter, which is 10 V for the Hitachi 3048F.

the resulting gravitational wave signal amplitude envelope is usually not sinusoidal.

2.1.3 Software comparison of the time-domain search algorithm and the
hardware injection code

In this section the signal produced by the time-domain search algorithm and the signal
produced by the hardware signal injection code are compared against each other. Both
signals can differ, as the search algorithm calculates the signal according to Equation 2.1
and the hardware injection code according to Equation 2.2.

For the software comparison the signal parameters of the recorded simulated grav-
itational wave signal during S3 II3 at GEO600 were used. The signal parameters are
listed in Table 2.2. The signals generated with the hardware injection code and the
time-domain search algorithm are compared at the maximal and minimal amplitude of
the signal on 31 December 2003. In the lower left graph of Figure 2.6 the amplitude of
this signal is plotted over the whole day. It can be seen that the maximal amplitude
is around 7:35:00 of that day and the minimal amplitude around 21:24:00. The signals
generated with the two different codes are plotted in the left graphs of Figure 2.7 over
a few µs. In the right graphs of Figure 2.7 their difference is expressed in percentage of
the maximal amplitude of the signal in the second the data is taken from. The upper

3S3 II stands for science run 3 part II, that lasted from 2003-12-30 15:00:00 UTC until 2004-01-13
16:00:00 UTC. The hardware injection performed during S3 II is invalid, as electronic cross-talk in
the data acquisition system from a direct recording of the electronic simulated signal occurred by
various interferometer channels. For convenience the data of the directly recorded signal is used for
investigations on the signal generation hardware. Therefore the software tests are done as well in
this time period.
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Figure 2.5: Gravitational wave signal amplitude envelopes of neutron stars scaled to h0 = 1.0,
α = 0.776235274 and ψ = 0.372640504 for GEO600 on 31 December 2003 (UTC). In graph I
ι = π/2 and δ = π/2; in graph II ι = 0.837452625 and δ = π/2; in graph III ι = π/2 and
δ = −0.616383646; in graph IV ι = 0.837452625 and δ = −0.616383646. All angles are given
in radians.

plots of Figure 2.7 correspond to times of maximal amplitude around 7:35:00 and the
lower plots correspond to times of minimal amplitude around 21:24:00 on 31 December
2003. It can be seen that the difference stays well below 0.001%.

The timing routines used within LAL to compute the phase of the signal were checked
against the widely-used radio astronomy package TEMPO [46, 57, 58].

In the upper left graph of Figure 2.6 the signal frequency offset to the neutron star
spin frequency is plotted for the continuous gravitational wave signal at GEO600 on
31 December 2003 (for the neutron star parameters see Table 2.2). It can be seen that
there is a dip around 21:20:00 of that day. This occurs when both antenna response
functions, F+(t) and F×(t), are around 0 at the same time. As the absolute error of
the beam pattern functions (determined within LAL) is up to 6× 10−4 [59], the relative
error of the phase ϕ(t) increases when both F+(t) and F×(t) are around 0 at the same
time. Under these conditions the amplitude a(t) is also around 0. Therefore the effect
of this inaccuracy in the phase ϕ(t) of the signal is negligible for the overall signal.
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Figure 2.6: The upper left graph shows the signal frequency offset to its original frequency for
the continuous gravitational wave signal recorded at GEO600 on 31 December 2003 (for the
neutron star parameters see Table 2.2). The dip in the phase of the signal around 21:24:00
occurs when both antenna response functions, F+(t) and F×(t), are around 0 at the same time,
as can be seen in the upper right and lower right graph. By definition (see Equation 2.2) the
amplitude of the signal is around 0 during these times, as can be seen in the lower left graph.
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Figure 2.7: The left graphs show the signal generated with the time-domain search algorithm and
the hardware injection code for GEO600 at maximal amplitude around 7:35:00 and minimal
amplitude around 21:24:00 on 31 December 2003. The parameters for the neutron star are
given in Table 2.2. A difference is not visible by eye. The right graphs show the difference of
the two signals expressed in percent of the maximal amplitude of the seconds from which the
time stretches are taken.
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S3 II pulsar parameters
h0 7.52231× 10−22

2f0 1125.647365 [Hz]
ḟ −2.87× 10−11 [Hz/s]
f̈ 0.0 [Hz/s2]
α 0.776235274 [rad]
δ -0.616383646 [rad]
ψ 0.372640504 [rad]
ι 0.837452625 [rad]
φ0 1.993746459 [rad]

epoch 751680013 [s] (November 1, 2003, 00:00:00 UTC)

Table 2.2: Pulsar parameters of the recorded, simulated gravitational wave signal during S3 II
at GEO600. The same parameters were used for the software comparison and the hardware
injection performed in June 2004.

2.2 Signal production hardware

In the following section the hardware used to generate the simulated, continuous grav-
itational wave signal is described in detail. A Hitachi 3048F microcontroller with two
on-chip D/A converters is used as a direct digital frequency synthesiser (DDS) to gen-
erate the continuous gravitational wave signal. The DDS produces the sinusoidal part
of the signal under control of a PC running a LAL-based program. First a descrip-
tion of how a DDS functions is given followed by what determines the accuracy of a
DDS. Then the DDS running on the microcontroller is specified and how the instan-
taneous frequency of the simulated, continuous gravitational wave signal is controlled
via a phase-locked loop (PLL). Also the timing of the signal production via GPS is
explained and the performance of the phase accuracy is given. In addition the setting
of the amplitude on the microcontroller is described. Figure 2.8 shows an overview of
the principle hardware signal injection setup.
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Figure 2.8: Schematic of the hardware signal injection setup
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2.2.1 Operating mode of a direct digital synthesiser

While in general a DDS can produce arbitrary waveforms, it is used here to generate a
sinusoidal signal with the help of a phase accumulator, a phase increment register, a sine
look-up table, and an external clock. Figure 2.9 shows the schematic of a DSS producing
a sinusoidal signal. The phase accumulator holds at all times the instantaneous phase
of the signal, ϕACC(t). This phase, modulo 2π, is used as an index into a sine look-
up table, the output of which is fed to the D/A converter. The external clock of a
constant frequency, fCL, increments the phase accumulator by the contents of the phase
increment register (PIR) once per cycle. The fundamental frequency of the signal, fDDS,
at the D/A converter output is then given by

fDDS =
fCL PIR

2π
, (2.8)

where the contents of PIR is interpreted as a number measured in radians. Figure 2.10
shows how a sinusoidal signal is mapped onto a D/A converter with a resolution of 3-bit.
In Table 2.3 the corresponding sine look-up table for a PIR resolution of

∆PIR =
2π
23

(2.9)

is given.
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Figure 2.9: Schematic of a DDS, which generates a sinusoidal signal. The phase accumulator,
holding the instantaneous phase of the signal, ϕACC(t), is incremented by the contents of the
phase increment register (PIR) at each pulse of an external clock, fCL. The phase, modulo
2π, is used as an index into a sine look-up table, the output of which is given to the D/A
converter thus generating a sinusoidal signal.

The phase accuracy of the sinusoidal DDS signal depends on the frequency stability
of the external clock, fCL, and the resolution of the phase increment register, ∆PIR. If
the frequency standard of the external clock, fCL, drifts, the DDS signal follows these
drifts. The PIR resolution determines which exact frequencies can be produced with the
DDS. In other words it sets the minimal frequency step, ∆fstep, between two adjacent
frequencies, which can be exactly produced by Equation 2.8. The minimal frequency
steps are given by

∆fstep =
fCL

2π
∆PIR . (2.10)

If a frequency needs to be produced that falls in the middle of two possible adjacent
frequencies, the phase error, ϕerror(t), in radians that accumulates over time is given by
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ϕerror(t) = 2π
∆fstep

2
t =

fCL

2
∆PIR t . (2.11)
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Figure 2.10: Graphical illustration of a sine look-up table in which a sinusoidal signal is mapped
onto 3-bit against the phase. In the sine look-up table the bit integer values and their corre-
spondent phase intervals are given. Table 2.3 lists the values of the sine look-up table displayed
here.

2.2.2 The use of the microcontroller

On the microcontroller with two on-chip D/A converters, one D/A converter is run as a
DDS producing the sinusoidal part, sinϕ(t), of the simulated gravitational wave signal
and the other is used to produce the amplitude envelope, a(t), of the signal. Both D/A
converters have a resolution of 8-bit. The parameters of the DDS and the amplitude
values are set by a control computer (an office-type PC running Linux). On the control
computer, ϕ(t) and a(t) are calculated using LAL. In the following, the parameters of
the DDS are specified, as well as how the correct frequency of the signal is achieved via
a phase-locked loop4 (PLL) running on the control computer. The timing of the signal
injection is described as well as how the amplitude setting is achieved. Precautions
taken to ensure a stable performance are described and the performance of the PLL is
investigated.

In the microcontroller for the DDS the phase accumulator is implemented as a 64-bit
fixed-point number with a 32-bit integer part and a 32-bit fractional part. Thus the PIR
resolution, ∆PIR, is 2π/232. The clock frequency is 32768Hz. The step between two
adjacent possible output frequencies of the microcontroller is then ∆fstep ≈ 7.6 µHz.
The external clock frequency is produced by dividing a 222 Hz signal (≈ 4 MHz) from
the GPS-locked data acquisition system by 128 [61]. Thus the DDS and the recording

4For an introduction to PLLs see [60] section 9.27.

33



Chapter 2 Production of a simulated, continuous gravitational wave signal

Sine look-up table
phase [rad] binary value
[0,0.723] 0

(0.723,1.047] 1
(1.047,1.318] 2
(1.318,1.571] 3
(1.571,1.823] 4
(1.823,2.094] 5
(2.094,2.418] 6
(2.418,3.864] 7
(3.864,4.188] 6
(4.188,4.459] 5
(4.459,4.712] 4
(4.712,4.965] 3
(4.965,5.236] 2
(5.236,5.560] 1
(5.560,2π] 0

Table 2.3: Sine look-up table which corresponds to the projection of a sinusoidal signal onto
3-bit as illustrated in Figure 2.10

of the signal use synchronised clocks. The external clock, which increments the phase
accumulator, is used as a non-maskable interrupt on the microcontroller. An interrupt
causes a microcontroller to temporarily halt the execution of the current commands in
order to perform immediately some other commands, that are initiated by the inter-
rupt. A non-maskable interrupt is the interrupt with the highest priority. Initiating
the incrementation of the phase accumulator with a non-maskable interrupt ensures the
immediate processing of the phase accumulator incrementation with highest priority.

As shown in subsection 2.1.1, the frequency of the gravitational wave signal is con-
stantly and continuously changing. As the DDS cannot follow the exact frequency of
the signal, the DDS frequency needs to be controlled such that the overall phase error
between the phase of the DDS produced sinusoidal signal and the simulated gravita-
tional wave signal stays below 1% of one full cycle of the signal. This is achieved by
forcing the phase accumulator of the microcontroller to follow the desired signal phase
by a digital PLL running on the control computer. A schematic of the PLL is depicted
in Figure 2.11. The difference between the phase accumulator, ϕACC(t), and the correct
signal phase from LAL, ϕ(t), provides the error signal for the control loop. A digital
filter is used in the loop to produce a suitable open loop gain, and its output changes
the phase increment register in the microcontroller once per second. The parameters
for the DDS are thus set by the control computer. Controlling the signal phase in such
a closed-loop feedback system ensures that any glitches, e.g. on the clock line, are auto-
matically detected and compensated, as opposed to feedforward systems. This feature
is essential for a stable long-term operation.
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Figure 2.11: Schematic of the PLL running on the control computer which controls the phase
accumulator ϕACC(t) on the microcontroller. The phase accumulator value ϕACC(tn) is sent
every GPS second to the control computer. The error signal of the PLL is determined by taking
the difference between the correct simulated gravitational wave signal phase, ϕ(tn), calculated
within LAL and the phase accumulator value, ϕACC(tn). The error signal is converted with
the help of a digital filter into a phase increment register value to correct for the phase
error. This phase increment register value is then sent to the microcontroller and stored in
a buffer. With the next GPS second the value is written to the phase increment register of
the microcontroller. The sample rate (SR) of the digital loop is 1Hz, as the start of the GPS
seconds are used for the timing of the PLL.

The absolute timing of the signal injection is controlled by pulses from the data
acquisition system coinciding with the start of a GPS second. These pulses increment
an internal counter of the microcontroller which provides the current GPS second. They
are also used as a low priority interrupt to the microcontroller, which initiates an update
of the PIR and reads out the phase accumulator for the current GPS second. The phase
accumulator value and the current GPS second are then sent to the control computer.
The control computer computes the phase error between the phase accumulator and the
correct signal phase determined within LAL for that GPS second. Then it determines
with the help of the digital filter of the PLL the new value of the PIR for the next GPS
second to correct for the phase error. This value is then sent to the microcontroller and
written to a buffer, from where it is copied to the PIR at the next GPS interrupt. Thus
the phase increment register value computed with the help of ϕACC(tn) will be applied
in second n + 1. The PIR value applied in second n + 1 will be called PIR(tn+1). The
sample rate (SR) of the digital loop is hence 1 Hz, as the GPS second pulses are used to
read the phase accumulator value ϕACC(t) and update the PIR. The timing of the PLL
is illustrated in Figure 2.12.
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Figure 2.12: Timing of the PLL

Letting the control computer write the new phase increment register value first into
a buffer instead of directly to the phase increment register increases the performance
of the PLL. As the time which the control computer needs to determine the phase
increment register value varies as well as the time the microcontroller needs to read the
sent new PIR value, the times at which the phase increment register would be set would
fluctuate, if the control computer was writing directly to the phase increment register.
By writing into a buffer first and then copying the buffer into the real PIR at the GPS
second interrupt, the time intervals between the setting of the phase increment register
are well defined. The additional time delay does not affect the PLL open loop design,
but still allows satisfactory performance.

The microcontroller clock was originally a 16MHz crystal, which is also the specifi-
cation limit. It was changed to a GPS-derived 224 Hz (≈ 16.78 MHz) clock, which is
thus coherent with the (DDS) update clock and the 1PPS signal. This increases the
performance of the PLL, as now the frequency at which the computing steps of the mi-
crocontroller are performed does not drift against the frequency fCL with which the DDS
increments the phase accumulator. With this setup the PLL suppresses the deviation of
the phase accumulator value, ϕACC(t), from the gravitational wave signal phase, ϕ(t),
determined within LAL below 0.007% of a full cycle for the continuous gravitational
wave signal recorded during S3 II and later used for injection. As the step-like changes
in the phase ϕ(t) due to the discretisation of the ephemeris data can lead to a phase
error of up to 0.06% (as described in subsection 2.1.1), the error in the PLL can be
dominated by this effect. In Figure 2.13 in the upper graph the difference between the
phase ϕ(t) calculated within LAL and the phase of the microcontroller phase accumu-
lator, ϕACC(t), is plotted for 1 January 2004. In the lower graph the signal frequency
offset to 2f0 is plotted for the S3 II neutron star parameters (see Table 2.2) for GEO600.
Whenever a step-like change due to the discretisation of the ephemeris data occurs, the
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Figure 2.13: The graphs show the PLL performance on 1 January 2004. In the upper graph the
difference between the gravitational wave signal phase, ϕ(t), calculated within LAL and the
microcontroller phase accumulator value, ϕACC(t), is plotted for the neutron star parameters
given in Table 2.2. In the lower graph the frequency offset to 2f0 for that signal is plotted.
It can be seen that the performance of the PLL is better than the phase error due to the
discretisation of the ephemeris data.
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error in the PLL rises. In Figure 2.14 a zoom of the second spike in the upper graph of
Figure 2.13 is plotted. From this plot it can be seen that it takes the PLL about 30 s to
regain its original suppression.
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Figure 2.14: Settling of the PLL after a phase jump in the reference signal ϕ(t) calculated within
LAL due to the discretisation of the ephemeris data. This is a zoom of the second spike in
the upper graph of Figure 2.13.

Figure 2.15 shows the open-loop transfer function of the PLL. It was calculated by
multiplying the transfer function of the digital filter with the transfer function of the
numerically-controlled oscillator (NCO) of the PLL. The digital filter consists of four
infinite impulse response (IIR) filters, which are sequentially applied to the data. The
IIR filter tabs are given in Table 2.4. The sign convention for the filter tabs is such,
that the transfer function, H(s), can be calculated from the IIR filter tabs by

H(s) =
∑N

n=0 anz
−1∑M

m=0 bmz
−1

, (2.12)

where N is the number of the filter tabs, an, in the nominator, M is the number of
the filter tabs, bm, in the denominator, and z = exp sT , where s = i2πf is the complex
angular frequency and T is the sampling interval of the digital filter. The tabs of the IIR
filters have been determined by making a fit with LISO to the desired transfer function
for the IIR filter [62]. The first IIR filter, H1, is an integrator with a single zero at
0.01 Hz and gain 10 dB in the flat region of the filter. The second IIR filter, H2, is a
two pole low-pass filter with a double pole at 0.2 Hz and gain -20 dB. The last two IIR
filters, H3 and H4, are identical integrators with a single zero at 5 mHz and gain 0 dB.
These integrators are implemented to increase the gain of the PLL at lower frequencies.
The NCO is an integrator with the gain 0 dB. The transfer function has a unity gain
frequency of 50 mHz, a gain margin of 34 dB, and a phase margin of 42◦.
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filter an bm
H1 a0 = 3.35209774035 b0 = 1

a1 = −3.14785301656 b1 = −0.9999371431082
H2 a0 = 0.0151660663611 b0 = 1

a1 = 0.0373858357061 b1 = −0.5310582131773
b2 = 0.0145882760949
b3 = 0.0400884182877

H3 a0 = 1.0157083294 b0 = 1
a1 = −0.984291794 b1 = −0.99999937091

H4 a0 = 1.0157083294 b0 = 1
a1 = −0.984291794 b1 = −0.99999937091

Table 2.4: Tabs of the four IIR filters that form the digital filter in the PLL. Filters H3 and H4

are identical integrators with a single zero at 5 mHz.

On the control computer it is calculated within LAL from the amplitude envelope,
a(t), to which binary value the D/A converter should be set on the microcontroller for
the current GPS second. This value is compared to the value that had been calculated
for the previous GPS second. If the two values differ, the new binary value to which the
amplitude D/A converter should be set is sent to the microcontroller. The amplitude
is then immediately changed. To produce the full signal the amplitude envelope signal,
a(t), from the amplitude D/A converter is then multiplied by analog electronic multi-
plication with the sinusoidal signal from the DDS D/A converter. Figure 2.16 shows a
detailed schematic of the microcontroller and control computer setup, which produces
the simulated, continuous gravitational wave signal.

The control computer is connected to the microcontroller through an optically isolated
serial link (RS-232). This allows to keep the electrical grounds of the microcontroller,
the control computer, and the data acquisition system separate, which prevents ground
loops. The data between the microcontroller and the control computer is transfered in
hexadecimal representation to reduce the possibility of errors in the transmission.

The control computer can sent four different commands to the microcontroller. Three
of the four commands write to a buffer on the microcontroller. Their actual execution
is synchronised with the 1PPS indicating the start of a GPS second. These commands
are setting the internal GPS counter, setting a new PIR value, and initialising the phase
accumulator value. The fourth command sets the amplitude D/A converter value and
is not synchronised with the 1 PPS, but executed immediately. The commands sent
from the control computer to the microcontroller all start with a capital letter and end
with a “\n”. The first letter of the command identifies the type of command sent to the
microcontroller. In Table 2.5 the commands are listed along with their identification
letter, size, and the physical quantity they transmit. Here an example is given for
a command send from the control computer to the microcontroller: The command
“K07D00000\n” sets the PIR to a new value. The first letter, a “K”, indicates that the
following eight ASCII characters contain the new PIR value. The characters“07D00000”
are the hexadecimal notation for the decimal number“131072000”, which is the new PIR
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Figure 2.15: Open-loop transfer function of the PLL running on the control computer.

value. This value is written to a buffer on the microcontroller, which is copied with the
next 1PPS to the PIR. With this PIR value the DSS produces a sinusoidal signal of
1 kHz.

The microcontroller sends only one type of string to the control computer. This string
consist of 28 characters and is sent once per second initiated by the 1 PPS to the control
computer. The string contains the values of the internal GPS counter and the phase
accumulator value at the start of the GPS second when it had been sent. The start of
the values are indicated by lower case letters. The first character of the string, a “g”,
indicates the start of the current internal GPS counter value. The next eight characters
represent this GPS second in hexadecimal notation. The tenth character, an “h”, indi-
cates the start of the phase accumulator value at the last 1 PPS. The next 16 characters
represent that phase accumulator value in hexadecimal notation. The 27th character,
an“i”, represents the end of the phase accumulator value. The 28th and last character is
a “\n”. Here an example is given for a string sent from the microcontroller to the control
computer: The string “g2DF7AD0DhDA135FE2C7A1CF6Ei\n” contains the informa-
tion that at GPS second 771206413 (in hexadecimal notation “2DF7AD0D”) the phase
increment accumulator contained the value 15714008952442310511 (in hexadecimal no-
tation “DA135FE2C7A1CF6E”). This phase increment accumulator value corresponds
to 15714008952442310511× 2π/232 rad.

In Table 2.6 all characters are listed that are used in the data transfer between the
control computer and the microcontroller. Their hexadecimal and ASCII notation is
presented. All characters are 4-bit in size. It is described how each character is inter-
preted by the programs running on the control computer and the microcontroller. It is
also indicated if the character is used for communication from the control computer to
the microcontroller and/or from the microcontroller to the control computer.
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Figure 2.16: Schematic of the electronic signal production for the hardware injection of con-
tinuous gravitational waves. A microcontroller with two D/A converters is used to produce
the amplitude envelope, a(t), and the oscillatory part of the gravitational wave signal via its
phase, ϕ(t). Before injection into the interferometer they are combined by analog electronic
multiplication. The control computer maps the amplitude envelope, a(t), onto one of the D/A
converters and controls the phase evolution of the signal by a phase-locked loop (PLL).

As can be seen in Figure 2.10 the amplitude envelope of the sinusoidal signal pro-
duced by the DDS has steps due to the finite amplitude resolution (8-bit) and sampling
clock and therefore the full simulated electronic gravitational wave signal has frequency
components at frequencies higher than the fundamental frequency. In particular the
frequency fCL (≈ 32 kHz) at which the phase accumulator is incremented, shows up
strongly in the electronic signal. As for the signal injection at GEO600 only frequencies
between 100Hz and 2 kHz are of interest, the signal is band pass filtered behind the
electronic multiplication (see Figure I.6 in Appendix I for a schematic of the electron-
ics). A measurement of the transfer function of this band pass filter on the microcon-
troller module is shown in Figure 2.17. At the continuous gravitational wave frequency
1125.647365 Hz (the gravitational wave signal frequency used for the simulation and
recording during S3 II, which was later also used for the injection) the phase lag due to
the bandpass filter is -11.9◦. Therefore when calculating the phase ϕ(t) of the signal on
the control computer within the LAL code a constant phase of 0.207 rad is added to the
constant phase φ0 of the signal to compensate for the bandpass filter.
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physical quan-
tity

size transfer
size

command
string

transfered
string size

synchronised
to 1 PPS

GPS time 32 bit 8 byte IX7X6...X0\n 10 byte yes
amplitude 8 bit 2 byte JX1X0\n 4 byte no
PIR value 32 bit 8 byte KX7X6...X0\n 10 byte yes
phase accumu-
lator value

64 bit 16 byte LX15X14...X0\n 18 byte yes

Table 2.5: List of possible commands from the control computer to the microcontroller. Each
command can be sent individually and independently and is terminated by a new line character
(“\n”) which initiates its interpretation on the microcontroller.
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Figure 2.17: Measured transfer function of the analog bandpass filter behind the multiplication
of the two D/A converter signals.
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hexa- control PC microcontroller
decimal ASCII interpretation ↓ ↓
notation notation microcontroller control PC

49 “I” set GPS time ×
4A “J” set amplitude ×
4B “K” set PIR ×
4C “L” set phase ×

accumulator
67 “g” start of GPS second ×
68 “h” start of phase ×

accumulator value
69 “i” end of string ×
0A “\n” end of command × ×
30 “0” hexadecimal digit × ×
31 “1” hexadecimal digit × ×
32 “2” hexadecimal digit × ×
33 “3” hexadecimal digit × ×
34 “4” hexadecimal digit × ×
35 “5” hexadecimal digit × ×
36 “6” hexadecimal digit × ×
37 “7” hexadecimal digit × ×
38 “8” hexadecimal digit × ×
39 “9” hexadecimal digit × ×
41 “A” hexadecimal digit × ×
42 “B” hexadecimal digit × ×
43 “C” hexadecimal digit × ×
44 “D” hexadecimal digit × ×
45 “E” hexadecimal digit × ×
46 “F” hexadecimal digit × ×

Table 2.6: All characters used for data transfer between the control computer and the micro-
controller. The hexadecimal and ASCII notation of each character is given and how it is
interpreted on the control computer and/or the microcontroller. The last two columns indi-
cate whether the character is used in the communication from the control computer (control
PC) to the microcontroller and/or from the microcontroller to the control computer.
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Chapter 3

Hardware signal injection

As mentioned in chapter 2, to inject a strain signal into the interferometer an analog
electronic signal proportional to the gravitational wave amplitude is used to produce a
force that acts upon one (or two) mirrors of the interferometer, thereby changing the
differential length of the two arms and simulating the effect of a gravitational wave.

In the first part of this chapter the analog signal produced at the GEO600 site is
investigated in detail. Before turning to the actual hardware injection, the analog output
of the direct digital frequency synthesiser (DDS) at the GEO600 site is investigated for
its accuracy in phase and amplitude. Here the correct timing of the signal generation
and recording will be explained, which is essential for producing a signal with correct
phase.

In the second part of this chapter the actuators are described, which convert an
analog electronic signal into a force that acts directly on one or two main mirrors of
the interferometer. At GEO600 two different actuators can be used for signal injection:
the electrostatic drive and a photon pressure actuator. The electrostatic drive produces
a force on the two inboard mirrors by applying an inhomogeneous electric field next
to them, thus pulling the dielectric mirror into the electric field. The photon pressure
actuator produces a force on a main mirror by transferring the momentum of photons
to it and thus pushing the mirror away from the light source of the photon pressure
actuator. So far only the electrostatic drive has been used as an actuator to inject a
simulated, continuous gravitational wave signal.

In the third part of this chapter the amplitude calibration of the hardware injected
simulated gravitational wave signal is described.

3.1 The simulated, continuous gravitational wave signal
generated at the GEO600 site

As mentioned in chapter 2, our setup for the hardware injection aims for a phase error of
less than 1 % of 2π rad of the correct signal phase and an amplitude error below 1 % for
injection times of several months and signal frequencies between 100 Hz and 2 kHz. To
achieve this an important feature of our system is that the phase-locked loop (PLL) that
controls the signal phase automatically relocks to the correct signal phase after power-on
and interruptions, once the internal time of the microcontroller is synchronised to GPS
time. The signal has been measured to be stable over several months. Theoretically
the setup allows injection times arbitrarily long. In order to keep the phase error below
1 % of 2π rad of the correct signal phase, the timing of the signal injection needs to
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be well controlled. For a 1 kHz signal the timing of the signal needs to be accurate to
within 10 µs. This timing accuracy needs to be fulfilled for the signal generation and the
signal recording. In the following the timing accuracy of the signal is explained in detail.
Then the simulated signal generated in software with the time-domain search algorithm
is compared against the output of the direct digital frequency synthesiser (DDS).

3.1.1 Timing issues of the DDS output

There are three essential aspects to providing a good timing accuracy in our hardware
setup: the synchronisation of the microcontroller to GPS time, the internal timing of
the microcontroller interrupts, and the timing of the data acquisition system. In the
following section it is described in detail how these three aspects are dealt with in the
scope of this work.

Synchronisation of the microcontroller

As described in section 2.2 the microcontroller is synchronised to a pulse of the GPS-
locked data acquisition system that coincides with the start of a GPS second. Among
other things, this pulse increments an internal counter of the microcontroller which
provides the current GPS second. The initialisation of this synchronisation is done
manually. In the synchronisation process the current GPS second is read from the
timing card of the data acquisition system [63], which shows the current GPS second on
a digital display with nine digits in hexadecimal presentation. The first three digits give
the current GPS week and the last six digits give the current GPS second of the week.
The GPS week is held internally in the timing card as a 10-bit number; therefore, the
maximum GPS week can be 1024. On 22 August 1999 00:00:00 UTC the 1025th GPS
week started1 [64]. This GPS roll over week is taken into account when converting the
timing card display into the current GPS second.

A program has been written on the control computer with which the internal GPS
second counter on the microcontroller can be set. When running this program one has to
type in a GPS second in the format of the timing card display. This needs to be a GPS
second in the future. In the second before the typed in GPS second, the command is sent
by hitting a key on the control computer to the microcontroller. The microcontroller
writes the GPS second to an internal buffer and with the next GPS pulse of the data
acquisition system the buffer is read and written to the internal counter.

With another program it can be checked whether the synchronisation has been success-
ful. This programme reads out the internal GPS second counter of the microcontroller
and displays it immediately on the control computer in the timing card display format.
If the values of the microcontroller and the timing card agree, the microcontroller is
correctly synchronised.

Any additional pulse or spike on the cable providing the one pulse per second (PPS)
from the data acquisition to the microcontroller can make the internal GPS counter of
the microcontroller asynchronous. If this happens the generated analog gravitational
wave signal from the DDS output for the hardware injection becomes asynchronous,

1The first GPS second was the first second of 6 January 1980 UTC.
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3.1 The simulated, continuous gravitational wave signal generated at the GEO600 site

too. In other words the phase of the signal would be behind by a second. Great care
was taken with the design of the electronics in which the microcontroller is embedded
to prevent such spikes. This includes the feature that the connections between the
microcontroller and the data acquisition system, and the microcontroller and the control
computer are optically isolated (see Figure 2.16 chapter 2). Despite these precautions,
undesirable extra pulses on the 1 PPS can still occur. Since they cannot be entirely
excluded, a feature has been built into the software on the control computer that can
detect additional pulses. On the control computer the phase accumulator value at
the beginning of the last GPS second, tn−1, and the phase increment register value of
that second are stored. Then the phase accumulator value at the beginning of the next
second, tn, is compared to the expected phase accumulator value derived from the stored
phase accumulator value and the stored phase increment register. The expected phase
accumulator is given by

ϕACC(tn) = ϕACC(tn−1) +
fCL

SR
PIR(tn−1) , (3.1)

where ϕACC(tn) is the expected phase accumulator value, ϕACC(tn−1) the stored phase
accumulator value, PIR(tn−1) the stored phase increment register, fCL (32768 Hz) the
external clock frequency of the direct digital synthesiser (DDS), and SR the sample rate
of the PLL (1Hz). A detailed description of this relation was given in section 2.2 and
Figure 2.12. If the expected phase accumulator value deviates from the actual phase
accumulator value by more than 30%, an error message is written. If desired, this error
message can also be sent via the automated monitoring system of the data acquisition
system as an SMS alarm to an operator on duty [63]. The expected phase accumulator
value and the actual phase accumulator value can deviate by a certain amount. This is
because the number of increments of the phase accumulator value can deviate between
two adjacent times when the phase accumulator value is read out. They deviate when
the number of non-maskable interrupts by the DDS clock at the frequency fCL that
occur between reading out the phase accumulator value varies. Allowing a deviation of
30% from the nominal phase accumulator difference ensures that additional pulses on
the 1 PPS signal are detected and no false alarms occur. Since the installation of the
microcontroller at the site of GEO600 in December 2003 no additional pulses or spikes
on the 1 PPS signal have been observed.

Internal microcontroller timing

Two external interrupts are applied to the microcontroller (see Figure 2.16 section 2.2).
One is a non-maskable interrupt running at 32768 Hz, the other, a 1 PPS, marks the
start of a GPS second.

The non-maskable interrupt increments the phase accumulator, thus producing the
sinusoidal signal. This means that the analog electronic simulated gravitational wave
signal produced by the DDS is sampled with 32768 Hz. The generated signal consists of
data points spaced approximately every 30.5 µs in time.

With the 1 PPS interrupt the following three steps are performed immediately in this
order: The phase increment register is set to its new value, the internal GPS second
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is incremented, and the phase accumulator value is read out and sent together with
the current GPS second and amplitude value to the control computer. For the timing
accuracy of the DDS output it is essential to know at which time the phase accumulator
is read out. In Figure 2.11 in subsection 2.2.2, it is shown and explained how the error
signal of the digital PLL is gained. The difference of the phase accumulator value read
at time tn is compared to the phase calculated within LAL for that time. As the phase
accumulator is not read out immediately with the 1 PPS interrupt, the time does not
coincide exactly with the start of a GPS second. Instead it is delayed.

To determine this delay one line of the program running on the microcontroller was
changed. Instead of reading the phase accumulator value, a certain value was written to
the phase accumulator. The duration of the process of reading the phase accumulator
value is approximately the same as writing to the phase accumulator. The value written
to the phase accumulator was chosen in combination with the phase increment register
such that, when the new phase accumulator value has been written to the microcon-
troller, the output signal changes from a low voltage signal to a high voltage signal.
Later in the second, the output signal is changed to a low voltage signal again. On
an oscilloscope the 1 PPS marking the start of a GPS second and the output of the
microcontroller were simultaneously measured. The oscilloscope was triggered to the
1 PPS, where the start of a GPS second coincides with the falling edge of the signal.
For the measurement, 64 averages were taken on the oscilloscope. In Figure 3.1 it can be
seen that the change in the microcontroller output is delayed by approximately 26 µs.
For the production of the signal during S3 II this offset was not taken into account.
Therefore the signal recorded during S3 II is delayed by 26 µs. After S3 II the code on
the control computer was changed such that this time delay is automatically accounted
for by calculating the correct gravitational signal phase ϕ(t) within LAL not at a full
GPS second, but at a full GPS seconds +26µs.

Signal recording by the data acquisition system

The time stamps of the data acquisition system given to the recorded data points have
an offset in time. This offset can be measured by comparing the time stamps given by
the data acquisition system with a signal from a GPS-locked Rb clock that marks the
beginning of a GPS second [63]. Thus the time stamps of the data acquisition system
are compared to another GPS-locked reference clock. So far offsets have been measured
varying between −53 µs and +16 µs. The sample rate with which the simulated grav-
itational wave signal is recorded by the data acquisition system is 16384 Hz. This is
equivalent to a sample every 61 µs. The offset of the time stamps is therefore smaller
than one full sample. To correct this offset it needs to be subtracted from the time
stamps given by the data acquisition.

The offset is permanently measured by an automated system [65]. The system imme-
diately detects changes in the offset. So far it has not been completely understood what
causes the offset and why it varies. During all of S3 II the timing offset was +16 µs. As
the reference signal of the Rb clock is permanently recorded, the offset of the timing
stamps can be reconstructed at any given time. This timing stamp offset needs to be
subtracted from the recorded simulated gravitational wave signal (the recorded DDS
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Figure 3.1: Measurement of the time delay with which the phase accumulator of the microcon-
troller is read out in reference to the 1 PPS coinciding with the start of a GPS second of
the data acquisition system. For the measurement, the microcontroller was reprogrammed
such that instead of reading out the phase accumulator value a new value was written to the
phase accumulator. The values were chosen such that this lead to a steplike change of the
microcontroller output from a low voltage to a high voltage signal. The start of a GPS second
coincides with the falling edge of the 1 PPS to which the oscilloscope was triggered. For the
above data 64 averages were taken. As can be seen, the setting of the phase accumulator
value on the microcontroller has a delay of approximately 26µs.

output) when comparing it against the simulated signal generated in software.
In Table 3.1, the two timing inaccuracies concerning the recorded DDS output are

given. These are the only known timing inaccuracies caused by inaccuracies in the signal
production and the signal recording.

3.1.2 Test of the DDS output

In the following section, the simulated signal generated in software with the time-domain
search algorithm, hereafter sLAL(t), is compared against the output of the direct digital
frequency synthesiser (DDS), hereafter sDDS(t). sLAL(t) is the simulated, continuous
gravitational wave signal determined within LAL and exists only in software. sDDS(t) is
the simulated, continuous gravitational wave signal generated by the DDS in an analog
electronic form used later for the hardware injection. sDDS(t) was recorded for this
test with the data acquisition system at the detector site. There are two different
approaches to this test, one is the comparison of the signal in the frequency domain and
the other in the time domain. The comparison in the frequency domain is very accurate
but at the same time very complex. The comparison in the time domain is not so
elaborate but easy to conduct. The comparison in the frequency domain was performed
only once using data from a whole day, to check the accuracy of the generated signal.
The comparison in the time domain is performed only over a few seconds of data at a
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Timing inaccuracies
cause value [µs] measure comment
1 PPS interrupt delay +26 needs to be

subtracted
during S3 II not undone,
after S3 undone by soft-
ware on control computer

inaccurate DAQS tim-
ing stamps

-54 to +16,
usually +16

needs to be
subtracted

varying, but measurable;
+16µs during S3 II

Table 3.1: Timing inaccuracies of the recorded DDS output. Given are the causes of the timing
inaccuracies, their actual value, and how they are undone.

time. The time domain comparison is used as a quick check to verify that the signal
generation is running faultlessly at a certain time. The frequency domain comparison
will be described in detail before the time domain comparison is introduced. For both
comparisons sDDS(t) is checked against sLAL(t).

Frequency domain comparison

The comparison of the software generated signal, sLAL(t), and the DDS output, sDDS(t),
in the frequency domain is performed by a single-bin discrete Fourier transform (SBDFT)
[66]. For the SBDFT conducted every 0.5 s over one day of data, a Fourier transform
was performed for one frequency bin over 2730 data points after applying a Hanning
window to these data points. Thus a complex number is produced every 0.5 s from
which an amplitude and a phase can be derived. The SBDFT was performed over the
DDS output, sDDS(t), and the software produced data, sLAL(t) (which was produced
as the recorded DDS output with a sample rate of 16384 Hz). Then the amplitude and
the phase of the two signals were compared. This test was performed for 1 January
2004 with the neutron star parameters used during the S3 II signal recording (see Ta-
ble 2.2). As can be seen in Figure 2.6 in chapter 2, sDDS(t) had a frequency offset of
approximately 71.25 mHz during that time. The SBDFT was therefore performed at
the frequency 2f0− 0.07125 Hz, which corresponds to 1125.576115 Hz with f0 being the
spin frequency of the neutron star.

In Figure 3.2 the phase evolution of the two signals is compared. In the upper graph
the phase of sLAL(t) and sDDS(t) is plotted for 1 January 2004. In the lower graph
the difference of the two signals is taken and expressed in percent of a full cycle. In
the lower graph the known time delay of 42 µs is taken into account. The remaining
0.64 % correspond to a delay of the recorded signal of approximately 5.7 µs. Every
four hours a spike occurs in the phase difference which is due to the discretisation of
the ephemeris data (see subsection 2.1.1). During the most rapid change of the signal
frequency (compare subsection 2.1.3) the phase difference deviates from the otherwise
almost constant offset. The overall phase error stays below 1 %.

In Figure 3.3 the amplitude envelope of the two signals is compared. In the upper
graph the amplitude envelope of the recorded and software generated signals are plotted
for 1 January 2004. In the lower graph the difference of the two signals is taken and
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Figure 3.2: Frequency domain comparison of the phase of the simulated signal generated in
software, sLAL(t), and the DDS output, sDDS(t), on 1 January 2004. Every 0.5 s a single-
bin discrete Fourier transform around the expected frequency was performed from which the
phase was derived. In the upper graph the phase evolution of sLAL(t) and sDDS(t) is plotted.
In the lower graph the difference of the two signals is taken and expressed in percent of a full
cycle. The 0.64 % constant offset corresponds to a delay of approximately 5.7 µs of the DDS
output, sDDS(t). The spikes every four hours are due to the discretisation of the ephemeris
data.
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Figure 3.3: Frequency domain comparison of the amplitude envelope of the simulated signal
generated in software, sLAL(t), and the DDS output, sDDS(t), on 1 January 2004. Every 0.5 s
a single-bin discrete Fourier transform around the expected frequency was performed from
which the amplitude was derived. In the upper graph the amplitude of sLAL(t) and sDDS(t)
are plotted. In the lower graph the difference of the two signals is taken and expressed in
percent of the maximal amplitude during that time stretch.
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3.1 The simulated, continuous gravitational wave signal generated at the GEO600 site

expressed in percent of the maximal signal amplitude on 1 January 2004. In the lower
graph it can be seen that the steps in the amplitude envelope of the recorded signal lead
to steps in the difference of the two signals. The overall amplitude error stays below
1 %.

Time domain comparison

In the following section, the simulated signal generated in software, sLAL(t), is com-
pared against the DDS output, sDDS(t). In principle this is the same test as performed
in subsection 2.1.3 except that instead of the software part of the hardware injection
now the recorded DDS output used for the hardware injection is compared against
the time-domain search algorithm. The phase of the signal, as well as the amplitude
envelope of the signal, will be compared. For the amplitude comparison, the discretisa-
tion of the amplitude envelope is investigated to see how it affects the amplitude error
(see subsection 2.1.2 for the description of the amplitude envelope discretisation).

For the comparison of the simulated signal generated in software, sLAL(t), and the
DDS output, sDDS(t), the following effect of the data acquisition system needs to be
taken into account. Depending on the channel of the hardware of the data acquisition
system on which the DDS output, sDDS(t), is recorded, a constant DC offset is intro-
duced. This offset introduces an error to the amplitude envelope of the signal. When
the phase difference between two sinusoidal signals is determined by comparing the dif-
ference between a zero crossings of the two signals in one point, an amplitude offset
leads to an apparent phase offset. This relation is depicted in Figure 3.4. Therefore
for a correct comparison of sLAL(t) against sDDS(t) this amplitude offset needs to be
undone.

Since the installation of the microcontroller on the site of GEO600, the DDS output
was always directly recorded on channel 22 of the data collecting unit alchemist in
the central building. The DDS output was recorded with 16-bit resolution covering a
dynamic range of ±2 V. The uncertainty in the amplitude of one sample due to the data
acquisition system is thus approximately 61 µV. The DC offset introduced by the data
acquisition system is of the order of a few mV and varies over a day in the order of a
few 100 µV due to temperature drifts [67].

To determine the DC offset, the mean of the recorded DDS output is determined over
a certain number of seconds. For high accuracy, not all of the data are used. Instead
the starting sample is chosen to be the first positive sample of the first full cycle in those
seconds. The last sample is chosen to be the last negative sample of the last full cycle in
those seconds. Software simulations of this process show that the thus determined offset
over 2 s has an error below ±5 µV. For this simulation a sinusoidal signal with a peak
amplitude of 2 at the frequency of the recorded simulated, continuous gravitational wave
signal was produced with a sample rate of 16384 Hz. This signal was digitised with 16-
bit resolution. Then the DC offset of that sinusoidal signal was determined in the above
described way. This was repeated for small shifts in time of the sinusoidal signal, until
the first and the last samples had changed. In this simulation the maximal observed
DC offset stayed below ±5 µV.

For each time interval over which a time domain comparison of sLAL(t) and sDDS(t)
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Figure 3.4: Graphical display of a positive DC offset in the amplitude leading to an apparent
phase error at a zero crossing of a sinusoidal signal. Depicted is a pure sinusoidal signal and
the same signal with a positive amplitude offset. At the zero crossing of the negative gradient
of the two signals it looks like the signal with the positive amplitude offset is in phase behind
the pure sinusoidal signal.

is made, the DC offset of the recorded DDS output, sDDS(t), is calculated in the way
described above. These DC offsets also include asymmetries of the two D/A converters
of the microcontroller.

For a direct comparison of the two signals in the time domain the different amplitude
scaling of the signals needs to be taken into account. In the following paragraph it
is explained, how the different scaling is undone to allow a direct comparison of the
two signals. The simulated signal generated in software, sLAL(t), is in strain. In the
code the amplitude has been set arbitrarily to h0 = 1. Depending on the neutron star
parameters the maximal amplitude of the software generated h(t) signal is a fraction
of h0. The DDS output recorded with the data acquisition system is in volts. The
conversion factor to convert the DDS output into strain was determined in the following
way. In subsection 2.1.2 it is shown how the amplitude envelope is mapped onto one
of the D/A-converters of the microcontroller. The maximum of the signal falls exactly
onto the 8-bit integer 0 or 254. The amplitude in the microcontroller was set to its
maximum. The microcontroller was set to a fixed phase increment value producing a
sinusoidal signal with a fixed frequency. The frequency was chosen such that it falls
in the frequency range of the simulated, injected gravitational wave signal generated
by the DDS during S3 and later injected. Then the DDS output was recorded with
an oscilloscope and averaged 64 times. The maximum of the recorded signal and the
maximum fractional part of h0 of the software generated h(t) signal were then used to
compute the conversion factor from voltage to strain. For the neutron star parameters
used for recording during the S3 II was determined to be 0.41 V−1 ± 1.5%.

When taking the timing effects, the DC offset of the recorded DDS output, and the
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3.1 The simulated, continuous gravitational wave signal generated at the GEO600 site

amplitude conversion factor into account, the simulated signal generated in software,
sLAL(t), and the DDS output, sDDS(t), can be compared directly. To take the timing
effects into account from the time stamps of the recorded DDS output, sDDS(t), the
microcontroller delay, and the timing offset of the data acquisition system are subtracted.
The DC offset introduced by the data acquisition system and the asymmetries in the
microcontroller D/A converters is subtracted from the recorded DDS output and the
conversion factor to transform the DDS output into strain is applied. The two simulated
gravitational wave signals can then be compared directly to each other in the time
domain.

In Figure 3.5 the software generated signal and the DDS output are plotted on 1 Jan-
uary 2004 at 07:30:56. At this time the amplitude envelope of the gravitational wave
signal was maximal. It can be seen that the recorded DDS output data points are earlier
in time than the software generated data points. This is due to the timing offset of the
microcontroller and the data acquisition system. When zooming into the plot at a zero
crossing, it can be seen that the recorded DDS output is approximately 6 µs behind the
software generated signal. This is in good agreement with the 0.64 % (corresponding
to 5.7 µs) phase offset discovered in the frequency domain comparison. With the signal
frequency being 1125.647365 Hz the signal has a period of 888µs. Thus the recorded
DDS output has a phase error of less than 1 % of 2π.
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Figure 3.5: Direct comparison of the simulated signal generated in software, sLAL(t), and the
recorded DDS output, sDDS(t). As the known timing effects are undone for the recorded DDS
output, the data points of the DDS output appear earlier than the data points of the software
generated signal. The software generated signal was calculated with a sample rate of 16384 Hz
starting at a full GPS second.
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Figure 3.6: Difference between the DDS output, sDDS(t), and the simulated signal generated
in software, sLAL(t), expressed in percent of the maximal amplitude of the time stretch from
which the data is taken. In the left-hand graph the data is from 1 January 2004 from 07:30:55
onwards. At this time the amplitude envelope of the signal is maximal. In the right-hand
graph the data is from 1 January 2004 from 07:08:25 onwards. During this time the D/A
converter producing the amplitude envelope is changed by one integer. The software generated
signal was calculated at times 48 µs earlier than the time stamps given by the data acquisition
system to the recorded DDS output. This takes the 26 µs offset of the 1 PPS interrupt on the
microcontroller, the 16µs offset of the data acquisition time stamps, and the observed phase
error of approximately 6 µs of unknown origin into account. The amplitude error is for both
times of the order 1.5 %, which corresponds to the error of the amplitude calibration for the
recorded DDS output.

In subsection 2.1.3 in chapter 2 it was shown how a phase error can translate into an
amplitude error. In order to estimate the error between the amplitude envelope of the
software generated signals and the DDS output, the known phase offset of 6 µs is taken
into account. The software generated signal is generated at times −48 µs off the time
stamps of the recorded DDS output (−26 µs for microcontroller interrupt offset, −16 µs
data acquisition timing stamp offsets, −6 µs unknown, but measured offset). Then the
difference of the two signals is expressed in percent in reference to the maximum of
the signal in that time stretch. In Figure 3.6, the amplitude error between the software
generated signal and the DDS output is plotted at two different times over a few seconds
on 1 January 2004. In the left-hand graph the difference is plotted over three seconds
from 07:30:55 onwards. During this time the amplitude envelope of the signal was
maximal. In the right-hand graph the amplitude error is plotted over four seconds from
07:08:25 onwards. In the middle of this time stretch the value of the D/A converter
producing the amplitude envelope is changed by one integer. At the time when the
change occurs a step is visible in the amplitude error. In theory no change in the
amplitude error should occur, as the amplitude is changed when the value is exactly
between two 8-bit integer values onto which the amplitude envelope is mapped. But
due to asymmetries in the D/A-converter and the signal recorded in the data acquisition
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3.2 Actuators for the hardware signal injection

an effect is visible. It can be seen that the amplitude error is for both time stretches of
the order 1.5%. This corresponds to the error of the amplitude calibration of the data
acquisition system with which the DDS output is recorded.

3.2 Actuators for the hardware signal injection

At GEO600 all main interferometer mirrors are suspended as triple pendulums [68].
To apply a force directly to a main mirror, an electrostatic drive or a photon pressure
actuator can be used. The electrostatic drive can apply a force to the two so-called
inboard mirrors East and North, MCE and MCN respectively (see the the optical lay-
out of GEO600 in Appendix G for their location). The photon pressure actuator is
situated in the North end building and can apply a force to the so-called Mirror Far
North, MFN. Figure 3.7 shows a schematic of the suspension of the main mirrors of
the interferometer and the actuators by which a force can be applied to them. For
both actuators, the transfer function needs to be considered, that describes the relation
between an externally applied force to the mirror and the mirror displacement.

Pendulum transfer function

In the following, the pendulum transfer function from a force, Fex(t), applied externally
to the centre of a mirror suspended as a pendulum to its longitudinal displacement, s,
will be derived. The parameter s is the distance on the circle described by the pendulum,
the dashed curved line in Figure 3.8. The distance s of the mirror is given by s = lϕ,
where ϕ is the angle of excursion and l is the pendulum length. For small excursion
angles ϕ, s corresponds, to first order, to the displacement x along the optical axis of
the mirror, as x = l sinϕ. At GEO600 all excursion angles of the suspended mirrors are
very small and therefore s can be regarded as displacement along the optical axis of the
mirror.

The equation of motion for a pendulum is given by

Fex(t) = m
g

l
s(t) + γṡ(t) +ms̈(t) , (3.2)

where m is the mass of the mirror, g the acceleration in the gravitational field of the
Earth, and γ the coefficient of friction of a viscous damping. The restoring force Fr =
mg sinϕ pictured in Figure 3.8 is approximated in Equation 3.2 to first order for small
angles, yielding Fr = mgs/l.

If the externally applied force, Fex, is harmonic, that is of the form

Fex = Fex(ω) exp(iωt) ,

s(t) will follow this excitation with the same frequency due to the linearity of the equa-
tion of motion. Here ω is the circular frequency connected with the frequency f of a
signal by ω = 2πf . Therefore the assumption

s(t) = s(ω) exp(iωt)
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Figure 3.7: Schematic of the inboard and far end mirrors and their actuators. The main mirrors
of the interferometer are suspended as triple pendulums. To allow an actuation with an
electrostatic drive the inboard mirrors are suspended as so-called double triple pendulums,
two triple pendulums hanging next to each other. The far end mirrors are suspended as single
triple pendulums. These mirrors can be acted on using the photon pressure of an external
light source.
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Figure 3.8: Schematic of a mirror suspended as a pendulum to show the relevant parameters for
the determination of the pendulum transfer function from force applied to the centre of mass
of the suspended mirror to its displacement.

can be made for the displacement s. With the angular resonance frequency ω0 =
√
g/l,

Equation 3.2 can be rewritten giving the transfer function Tlong(ω) from externally
applied force to longitudinal displacement

Tlong(ω) =
s(ω)
Fex(ω)

=
1

m[(ω2
0 − ω2) + i γ

mω]

=
1

m[(ω2
0 − ω2) + iω0

Q ω]
.

(3.3)

In the last step of Equation 3.3 the quality factor Q was introduced which is defined as

Q = 2π
stored energy

energy dissipation per oscillation period
=
ω0m

γ
. (3.4)

If less energy is dissipated per oscillation period, the better is the quality factor Q, and
the stronger is the resonance of the pendulum at its resonance frequency. In Figure 3.9
the pendulum transfer function from an externally applied force in Newtons to the
mirror displacement in meters as given in Equation 3.3 is displayed in a Bode plot for
a pendulum with a resonance frequency of ω0 = 1 Hz, a Q of 10 and a mirror weight
5.6 kg. It can be seen that above the resonance frequency the amplitude of the transfer
function drops with 1/f2.
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Figure 3.9: Bode plot of a pendulum transfer function from an externally applied force to the
mirror displacement along the optical axis of the mirror, suspended as a pendulum. The
transfer function is given for a resonance frequency ω0 = 1 Hz, a Q of 10 and a mirror weight
5.6 kg.

If the external force, Fex, is not directly applied to the centre of the mirror, a torque
is present which leads to a rotation θ of the main mirror in addition to the resulting
longitudinal displacement. The torque depends on the distance dc from the centre
where the external force is applied. The equation of motion for the angular motion of a
pendulum is given by

Dex(t) = Iθ̈(t) + γθ̇(t) + κθ(t) , (3.5)

where Dex = |
−→
dc ×

−→
F ex| is the externally applied torque, I the moment of inertia, and

κ the torque constant of the pendulum. The term κθ gives, according to Hooke’s law,
the restoring force of the pendulum when an external torque is applied.

Making the same assumption (s(t) is of the form s(ω) exp iωt) that lead from Equa-
tion 3.2 to 3.3, Equation 3.5 can be rewritten giving the transfer function Ttorque(ω)
from an externally applied force Fex [N] perpendicular to the mirror surface at distance
dc from the centre to a rotation θ [rad] as,

Ttorque(ω) =
θ(ω)
Fex(ω)

=
dc

Iω2 − iγω − κ
.

(3.6)

For simplicity the distance dc is divided into a dz and a dy component. The dz

component is perpendicular to the optical axis of the main interferometer and parallel
to the ground. A force impinging on the mirror at a non-zero dz value leads to a yaw
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Figure 3.10: Schematic of a main mirror with its axis of rotation and moments of inertia.

around the z-axis depicted in Figure 3.10. Let the moment of inertia of the mirror
around this rotation axis be Iz. At GEO600 such a movement of a mirror is also
referred to as rotation. The dy component is perpendicular to the optical axis of the
main interferometer and perpendicular to the ground. A force impinging the mirror at
a non-zero dy value leads to a pitch around the y-axis as depicted in Figure 3.10. Let
the moment of inertia of the mirror around this rotation axis be Iy. At GEO600 such a
movement of a mirror is also referred to as tilt. Equation 3.6 can than be rewritten as

Ttorque(ω) =
dz

Izω2 − iγzω − κz
+

dy

Iyω2 − iγyωy − κy
. (3.7)

According to [69] the moments of inertia of a solid cylinder are

Iz = Iy =
1
4
mr2 +

1
12
md2 , (3.8)

where r is the radius of the cylinder, d the thickness, and m the mass. As can be seen in
Figure 3.10, the mirrors are not perfect cylinders. At both sides parallel to the z-axis,
they are flattened. Therefore their actual moment of inertia will be smaller than the
one given in Equation 3.8. As Equation 3.7 will be used only to determine what the
maximal rotational movement for a given applied force is, the values of Equation 3.8
can be used for Iy and Iz to set this upper limit.

3.2.1 Electrostatic drive

A charge, q, in an electric field, E, experiences the force F , where,

−→
F = q

−→
E . (3.9)
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If a dielectric is brought into an electric field, due to dielectric polarisation surface
charges build up on the surface of the dielectric against the electric field. Inside the
dielectric the electric field is reduced to E/εr, where εr is the (relative) dielectric constant
of the dielectric. The energetic more favourable state is when the dielectric is between
the capacitor plates. Thus the dielectric is pulled towards the capacitor as long as it
its in the inhomogeneous part of the electric field. Figure 3.11 depicts this situation
schematically for the special case of a parallel plate capacitor. The electric field is given
by the voltage, U , that is applied to the capacitor. A dielectric brought close to the
capacitor, and into the electric field of the capacitor, is polarised. If the dielectric is in
the inhomogeneous part of the electric field, that is not between the two plates but next
to them, it is then pulled as already stated towards the capacitor where the electric field
is stronger. The force that acts on the dielectric is given by

F = εrε0U
2 A , (3.10)

where ε0 is the dielectric constant of vacuum and A is a geometric factor depending on
the electrode design and the distance between the plate capacitor. Depending on the
applied voltage, the force on the dielectric can be changed, but the force can only pull
the dielectric into the stronger part of the electric field of the capacitor.

PSfrag replacements
FF

EE
mainmain
mirrormirror

Figure 3.11: Sketch of the mechanism of the electrostatic drive. If an electric field is produced
by a parallel plate capacitor next to a dielectric, the electric field produces surface charges
on the dielectric due to polarisation. Here the dielectric is an interferometer main mirror. If
the mirror is in the inhomogeneous part of the electric field it is pulled towards the capacitor
where the electric field is stronger.

At GEO600 this mechanism is utilised for the electrostatic drive. The two inboard
mirrors MCE and MCN are suspended as double triple pendulums as depicted in Fig-
ure 3.7. Both triple pendulums are almost identical in suspension, shape and weight.
The triple pendulum that suspends the actual mirror is further away from the beam
splitter (see Appendix G for the optical layout of GEO600). The distance between the
two triple pendulums is fixed between 3 and 5 mm. The mirror is made of the dielectric,
fused silica. The triple pendulum closer to the beam splitter is the so-called reaction
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3.2 Actuators for the hardware signal injection

pendulum. The reaction pendulum suspends the reaction mass, a mass identical to
the main mirrors, except that it is not coated with a reflective surface. Instead the
reaction mass is coated on its surface closest to the main mirror with eight comb-like
thin gold electrodes (see Appendix H). Between pairs of electrodes, forming a capac-
itor, a voltage of up to 1 kV can be applied, producing an inhomogeneous field in the
area of the mirror. As the force applied to the mirrors is proportional to the square of
the voltage applied to the capacitors, the force depends on the difference between the
voltages applied to the two electrodes of one capacitor. To allow a bipolar displacement
of the main inboard mirrors a constant bias force is applied to the mirrors. This is
achieved by applying a constant DC voltage to all comb-pair capacitors. One electrode
of the capacitor is put on ground and to the other a high voltage is applied (for example
500 V). Signals to the electrostatic drive are either directly applied or amplified by a
high-voltage amplifier before being applied. If the signal is applied directly, the so-called
low-voltage path of the actuator is used. The signal is applied to the electrode that is
put on ground for producing a constant DC voltage. This path is used for very small
signals such that the conversion of voltage to force is approximately linear. For signals
like an injected simulated, continuous gravitational wave signal, the low-voltage path of
the electrostatic drive is used. If a high gain is desired the so-called high-voltage path
of the actuator is used. In this path, the signal is amplified by a high-voltage amplifier
and passed through a square-root circuit before being applied to the electrode with the
high-voltage offset. The square-root circuit transforms the quadratic proportionality
between applied voltage and resulting force (as can be seen in Equation 3.10) into a
linear proportionality.

In the following paragraph, it is shown that using the low-voltage path does not
significantly affect the accuracy of the amplitude of the hardware injection, although
in the low-voltage path the square-root of the applied voltage is not taken. For a
sinusoidal signal with 200 mV peak amplitude being applied to the low-voltage path, a
sinusoidal signal with 9.9 mV peak amplitude is applied to the electrodes of the ESD
(see Appendix I Figure I.9 and Figure I.10). If at the same time the constant offset of
the electrostatic drive is 500 V, the error in amplitude due to not taking the square-root
of the voltage applied to the low-voltage path is less than 0.1 %. This is well below the
overall accuracy of the electro static drive, which is approximately 5%.

Each of the four capacitors of the electrostatic drive is situated on one quadrant of
the surface of the reaction mass. By applying different combinations of voltages to the
four capacitors different degrees of freedom of the mirror can be controlled, such as
longitudinal displacement, yaw (rotation), and pitch (tilt). The force is then given by
Equation 3.10. For details on the geometry of the electrodes of the capacitors and the
correct geometric factor giving the capacitance, see Appendix H and [70]. In order to
get a longitudinal displacement of the main inboard mirrors, the same signal needs to be
applied to all four capacitors. In Appendix I in Figure I.8 through I.10 the electronics
of the so-called low-voltage path for the various degrees of freedom can be found.

By using an electrostatic drive the masses remain free from any attachments. When
using a standard coil-magnet system magnets are attached directly onto the main mir-
rors, thus degrading the Q of the masses and thereby its thermal noise properties.
GEO600 is currently the only large scale laser-interferometric gravitational wave detec-
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tor that uses an electrostatic drive as actuators.

3.2.2 Photon pressure actuator

A photon of the wavelength λ has momentum,

p =
h

λ
, (3.11)

where h is Planck’s constant. If a photon impinges normally on a mirror and is reflected,
twice the momentum of the photon is transferred to the mirror. If a laser beam with
the power P is shone normally on a mirror with total reflection and no absorption the
force,

F = 2
P

c
, (3.12)

is applied to the mirror, where c is the speed of light. This force applied to the mirror
surface is called radiation pressure. It can be used to act on a mirror suspended as a
pendulum. By modulating the laser power, the applied force is modulated. If Equa-
tion 3.12 is inserted into Equation 3.3, the mirror displacement due to the externally
applied radiation pressure can be obtained as,

s(ω) =
2P (ω)

mc[(ω2
0 − ω2) + iω0

Q ω]
. (3.13)

For modulation frequencies ω � ω0 and ω � ω0/Q, Equation 3.13 can be approxi-
mated by

s(ω) = −2P (ω)
mcω2

. (3.14)

At GEO600, first experiments have been conducted with a photon pressure actuator
with a light power of approximately 500 mW. The photon pressure actuator has not been
used while the detector was running in science mode. No hardware signal injections have
been performed with the photon pressure actuator so far.

3.2.3 Implications of the actuator transfer functions on the hardware signal
injection

The electrostatic drive and the photon pressure actuator can be used for hardware signal
injection. Both have a transfer function from applied force to a main interferometer
mirror to its displacement proportional to 1/f2 above the resonance frequency of the
pendulum, formed by the suspended mirror.

The 1/f2 dependency does not need to be taken into account for the hardware injec-
tion of simulated, continuous gravitational wave signals. In subsection 2.1.1 it has been
shown that the maximal Doppler shift due to the orbital motion of the Earth around
the Sun is ∆f/fSSB = 1.0 × 10−4 in one sidereal year, where ∆f is the frequency shift
and fSSB the gravitational wave signal frequency at the solar system barycentre. This
leads to a maximal amplitude error of ±0.02% for signal frequencies well above the res-
onance frequency of the main mirror suspension pendulums. Therefore the frequency
dependency of the transfer function of the actuators does not need to be taken into
account.
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3.3 Amplitude of the injected simulated, continuous gravitational wave signal

3.2.4 Noise of the microcontroller on the analog simulated gravitational
wave signal

The simulated gravitational wave signal generated by the microcontroller is directly
applied to the actuators of the main mirrors of the interferometer. This signal is directly
translated into a longitudinal displacement of the interferometer mirrors. Therefore the
signal must not contain noise in the detection band that reduces the interferometer
sensitivity. Figure 3.12 gives the spectrum of the microcontroller signal when the injected
signal was about one third of its maximal amplitude and the PLL was running on the
microcontroller. The neutron star parameters for the signal generation are those of
the recorded signal during S3 II (see Table 2.2). In the same plot the spectrum of
the microcontroller signal is plotted for a zero amplitude and the PLL being turned
off. During this measurement the phase increment register was fixed and had a value
producing a sinusoidal signal with a frequency as in the other plot. It can be seen that
the actual signal is at least three orders of magnitude above the noise. As the signal
shows up in the spectrum of the output of the interferometer only after integration
times of several 100 seconds with a signal-to-noise ratio below 10, no significant noise is
introduced into the interferometer by the hardware injection.

3.3 Amplitude of the injected simulated, continuous
gravitational wave signal

The simulated, continuous gravitational wave signal produced by the microcontroller
simulates all neutron star parameters correctly except the absolute amplitude of the
signal. On the control computer the signal amplitude is set arbitrarily to h0 = 1. To
determine the amplitude h0 of the signal which is actually being injected, one needs
to take the amplitude factors of the microcontroller and the calibration factor of the
actuator into account. As so far only the low-voltage path of the electrostatic drive has
been used for the injection of a simulated, continuous gravitational wave signal, only the
calibration factor of the low-voltage electrostatic drive is of relevance. In the following,
the calibration factors for the performed hardware signal injection are described.

Amplitude factors of the microcontroller

To determine the amplitude of the injected signal on the microcontroller side, two factors
need to be taken into account. The first is the maximal possible amplitude for h(t)
expressed in fractions of h0 at the detector site for given neutron star parameters. The
second is the maximal voltage of the signal provided by the microcontroller.

On the control computer the amplitude of the simulated gravitational wave signal is set
arbitrarily to h0 = 1. Before the signal injection is started and the amplitude envelope is
mapped into the D/A converter (see subsection 2.1.2), the maximal possible amplitude
of the signal at the detector site is determined. As can be seen in Equation 2.2, this is not
necessarily h0 due to the inclination of the neutron star and the beam pattern functions.
The effects due to the inclination and the beam pattern functions are combined in the
factor called Fbp. As the amplitude envelope is mapped onto the D/A converters such
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Figure 3.12: Amplitude spectral density of the microcontroller signal with an effective noise
bandwidth of 0.75 for 50 to 850Hz, 3.0 for 850 to 3700Hz, and 48 for 37 to 54.9 kHz (the
effective noise bandwidth is defined by Equation C.4). The line “medium” gives the spectrum
of the analog simulated gravitational wave signal while the signal was about one third of its
maximal amplitude. While the spectrum was taken, the PLL was running on the microcon-
troller and the neutron star parameters were set to the same values as the recorded signal
during the S3 II. The line “low” gives the spectrum of the microcontroller signal when the
amplitude was set to zero and the PLL was turned off. The phase increment register was
set to a value producing a signal at the frequency of the signal recorded during S3 II without
taking Doppler shifts into account.

that the dynamic range is optimally used, the maximal amplitude value produced by
the microcontroller does not correspond to h0 but Fbp. Therefore the signal provided
by the microcontroller needs to be divided by Fbp to determine h0 of the injected signal.

The maximal voltage of the signal is frequency dependent due to the band pass filter
after the electronic combination of the signal amplitude envelope and oscillatory part
(see Figure I.6). To determine the maximal voltage, the phase increment register on
the microcontroller is set to the value of the gravitational wave signal, not taking any
Doppler shifts into account, and the PLL is turned off. Then the maximal voltage of
the signal at the output used for the injection is determined on a digital oscilloscope.
This was done averaging 64 times over one cycle of the signal. This factor will be called
Vmax. The calibration factor of the low-voltage electrostatic drive needs to be multiplied
by Vmax to determine the mirror movement caused by the injected signal.

66



3.3 Amplitude of the injected simulated, continuous gravitational wave signal

Amplitude factors of the low-voltage electrostatic drive

The frequency dependent calibration factor of the high-voltage path of the electrostatic
drive, Fhv(f) [m/V], that relates applied voltage to mirror displacement has been deter-
mined several times [70, 71]. It is used for the calibration of the interferometer data to
produce h(t) data [25]. With the knowledge of the calibration factor of the high-voltage
path the calibration factor of the low-voltage path can be determined. For this, only
the ratio between the low and high-voltage paths, Rlh, needs to be measured.

Before determining the ratio between the low and high-voltage paths of the electro-
static drive, the calibration factor of the North and East electrostatic drive need to be
balanced. The distance between the inboard East and North mirrors to their reaction
mass have the largest effect on the calibration factor. At GEO600 a signal can be ap-
plied to the East and North high-voltage path or the East high-voltage path only. To
balance the East and North electrostatic drive, a sinusoidal signal at a fixed frequency
is applied to the East high-voltage path only. In the Michelson differential error point
in-phase of the high-power photodiode, the height of the injected signal is determined
in an amplitude spectrum. Then the same signal is applied to the East and North high-
voltage path. If the signal applied to East and North yields a value in the spectrum
more than twice the size of the same signal applied to East only, the North mirror and
its reaction mass are closer to each other than the East mirror and its reaction mass.
Then the North mirror needs to be moved away from the reaction mass. If the signal
applied to East and North yields a value in the spectrum less than twice the size of the
same signal applied to East only, the North mirror and its reaction mass are further
apart from each other than the East mirror and its reaction mass. Then the North
mirror needs to be moved closer to its reaction mass. After moving the inboard mirror
the procedure needs to be repeated until the North and East electrostatic drives are
balanced.

When the East and North electrostatic drives are balanced, the ratio between the
low and high-voltage path of the electrostatic drive, Rlh, can be determined. For this,
a sinusoidal signal at a fixed frequency with a fixed amplitude is applied to the high-
voltage path and the amplitude of the signal is determined in the amplitude spectrum
of the Michelson differential error point in-phase on the high-power photodiode. Then
a sinusoidal signal at the same frequency is applied to the low-voltage electrostatic
drive. As the low-voltage electrostatic drive is much more sensitive than the high-voltage
electrostatic drive the amplitude needs to be lower than the one injected into the high-
voltage electrostatic drive (the high-voltage drive has a gain approximately 2150 times
larger than the gain of the low-voltage drive). The signal amplitude is determined again
in the amplitude spectrum of the Michelson differential error point. The amplitudes
should be chosen such that the signal in the amplitude spectrum has a signal-to-noise
ratio of at least 10. From these numbers the ratio Rlh can be determined.

The last step in determining the amplitude h0 of the injected signal is to convert
the mirror displacement into strain sensitivity. This relation is given for a Michelson
interferometer in Equation 1.1 as

h = 2∆L/L ,
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where L is the length of one arm and ∆L is the length change in one arm. This yields
for h0,

h0 = 2
1
Fbp

Vmax Rlh Fhv(f)/L . (3.15)

As Fhv gives mirror displacement of one mirror per applied voltage, Vmax × Rlh × Fhv

gives the mirror displacement of one mirror for the applied voltage to the low-voltage
electrostatic drive. The same voltage is applied to the East and North electrostatic
drive.

3.3.1 Signal amplitude of 11-12 June 2004 injection

During 11-12 June 2004 a successful hardware injection of a simulated, continuous grav-
itational wave signal was performed. The injection parameters of the neutron star were
those of the signal recorded during S3 II. For the parameters see Table 2.2. The max-
imal amplitude of h(t) on the control computer for h0 = 1 was 0.691. The maximal
voltage of the signal around 1125.647365 Hz on the microcontroller was 0.1828 V. The
ratio Rlh between the low and high-voltage electrostatic drives was determined to be
4655 × 10−7. The mirror displacement of one mirror per applied voltage of the high-
voltage electrostatic drive was 48 fm/V. This yields an injected signal amplitude h0 of

h0 = 2× 1
0.691

× 0.1828 [V]× 4655× 10−7 × 48 [
fm
V

] /1200 [m] = 9.9× 10−21 . (3.16)

The error on the amplitude, which is dominated by the error of Rlh, is approximately
10% [72]. As already mentioned in chapter 2, the amplitude error of the signal injection
is dominated by the error of the actuator used for the injection.

In chapter 4 the results of the successfully injected continuous gravitational wave
signals are presented. For the injection the electrostatic drives with the above given
signal amplitude were used.
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Results of the hardware injection experiment

From 11 June until 12 June 2004 a simulated, continuous gravitational wave signal
was successfully hardware injected at GEO600 and subsequently extracted from the
h(t) data with the continuous wave time-domain search algorithm. In this chapter, the
extraction of the injected signal is described. The time-domain search algorithm for
continuous gravitational waves will be described briefly. The time domain algorithm
is restricted due to the nature of the signal on small frequency ranges in the data.
Frequency bands that are contaminated with so-called“line noise” (noise that appears as
a line in the frequency spectrum of the data) is not optimal for continuous gravitational
wave searches. To collect the knowledge of existing line noise in the detector, a database
of all known line noise has been created. This database will be described. At the end of
this chapter the detection of the hardware injected simulated, continuous gravitational
wave signal with the time-domain search algorithm is presented.

4.1 The time-domain search algorithm

The time-domain search algorithm for continuous gravitational waves was written to
conduct targeted searches for continuous gravitational waves emitted by spinning neu-
tron stars. The search algorithm has been developed at the University of Glasgow by
Réjean Dupuis and Graham Woan and was the first that produced astrophysical results
on GEO600 and LIGO data [73]. The advantage of this algorithm is that it needs
comparatively small computational power in contrast to the frequency-domain search
algorithm for continuous gravitational waves. This is because the time-domain search
algorithm performs a targeted search, while the frequency-domain search algorithm does
an all-sky search. For a detailed description of the time-domain search algorithm for
continuous gravitational waves see [74].

A targeted search looks for signals from a known source. In the case of continuous
gravitational waves, known sources are spinning neutron stars which are pulsars. From
the electromagnetic emission of the pulsar, several parameters that are believed to deter-
mine the shape of the gravitational wave signal are known. As described in chapter 1 the
continuous gravitational wave signal from a non-axisymmetric, non-precessing, spinning
neutron star depends on nine parameters of the neutron star. These are the position of
the neutron star given by its right ascension α and declination δ, spin frequency f0 and
spin-down parameters ḟ and f̈ for a certain epoch, amplitude h0 and constant phase φ0

of the gravitational wave signal, the angle ι between the neutron star’s spin direction
and the propagation direction of the gravitational wave, and the polarisation angle ψ of
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the wave. The position α and δ, and the spin-down parameters f0, ḟ , and f̈ of a pulsar
are known very accurately from electromagnetic observations. This knowledge is used
in a targeted search, leaving only four unknown parameters for the gravitational wave
signal, which are h0, φ0, ι, and ψ.

The time-domain search algorithm consists out of two steps. In the first step, the
intrinsic frequency of the pulsar is removed from the data. This is achieved by hetero-
dyning the data. The data is multiplied in the time domain with the cosine and sine
of the phase evolution of the gravitational wave pulsar signal given by Equation 1.8.
Thus the knowledge of f0, ḟ , and f̈ for a certain epoch is made use of. After filtering
and resampling, a complex data set is obtained. The data volume is significantly re-
duced leaving the antenna response functions of the interferometer as the only remaining
time-varying quantity of the signal template in the complex data set.

In the second step, the complex data set is fitted to the remaining set of signal
templates. These signal templates are a function of the position α and δ of the neutron
star, the position of the detector, moving with the rotation of the Earth, and the four
unknown neutron star parameters h0, φ0, ι, and ψ. The different combinations of the
unknown parameters form the set of remaining signal templates. A fit is made to these
four unknown parameters. In this step a Bayesian approach is taken [75]. A Gaussian
distribution is chosen as the likelihood function. The standard deviation of the data is
calculated before the fit and enters the likelihood function as a known parameter. For
the noise, the assumption is made that it is stationary over 30 minutes worth of data.
A uniform prior for the parameters φ0, cos ι, and ψ is chosen as the prior probabilities.
For h0 a uniform prior with an upper limit is chosen. The posterior probability is
marginalised over the other parameters to gain the probability density function of one
of the parameters.

In the past months a more sophisticated statistical approach had been developed.
In that approach a Student’s-t distribution is chosen as the likelihood function. This
approach does not assume stationary noise, but weighs the noise. As the coding of
this new statistical approach had not been publicly available within LAL at the time
when the analysis of the hardware signal injection was performed, only the Gaussian
distribution approach was used to extract the hardware injected signal from the data.

The maximum of the probability density function of one parameter yields the so-called
best fit of that parameter; the form of the function is a measure of the belief that the
parameter lies in the neighbourhood of a particular point. The best fit of a Bayesian
data analysis approach should not be mistaken with the fitted value from a conventional
χ2-fit. The result of a Bayesian data analysis approach yields the probability density
function over a certain range of the parameter which is fitted. From this the degree of
belief with which the parameter lies in a certain range can be derived.

Thus the result of the time-domain continuous gravitational wave search algorithm is
therefore the degree of belief with which a detection is obtained for a certain parameter
range. For the case of the continuous gravitational wave time-domain search algorithm
no detection is made when the probability density function of h0 does not drop to near
zero close to h0 = 0. Then the degree of belief can be given with which no detection
for a certain signal amplitude of the gravitational wave was made for a signal from a
neutron star with known parameters. A detection is made when most of the probability
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density function is displayed away from h0 = 0 and the function is near zero close to
h0 = 0. Then the degree of belief can be given with which a detection for a certain
amplitude range was made.

4.2 Noise

Non-Gaussian noise such as line noise close to the expected continuous gravitational
wave frequencies reduces the effectiveness of the search algorithm to identify possible
continuous gravitational wave signals from pulsars. This noise usually arises from excited
resonances in the detector hardware. In the first part of this section sources for known
line noise of GEO600 are described.

In the case of the hardware injection of a simulated, continuous gravitational wave
signal, the analog electronic signal can be picked up electronically. In that case the
signal enters the interferometer data as noise. A blind test was performed to ensure
that the signal is only entering the interferometer data via the actuation of the main
mirrors. In the second part of this section the blind test is presented.

4.2.1 Line noise

As mentioned above, line noise in the vicinity of the frequency band where a continuous
gravitational wave signal is expected, can reduce the effectiveness of the search algo-
rithm. One effect is that using a Gaussian distribution for the likelihood function is not
any longer a good estimate, therefore leading to a faulty posterior probability. When
performing a search the knowledge of the spectrum of the investigated data is, therefore,
of great importance. Once lines are identified, it can be investigated if they are avoid-
able, hence if a change in the hardware of the detector can avoid their emergence. If
they are not avoidable, it can be considered whether they should be removed in software
by filtering certain frequency bands or applying a line removal algorithm [76, 77]. To
have an overview on the known and identified sources of line noise, a detector frequency
database was built.

Detector frequency database

In the scope of this work the GEO600 frequency database was set up. This database
contains information about known resonance frequencies of the GEO600 detector hard-
ware. It is written in mysql and allows mysql-based search commands through a web
interface [78]. The database contains measured and modelled resonance frequencies. For
each frequency, the physical component that exhibits the resonance is given. A distinc-
tion is made between mechanical and electronic resonances. Besides information about
the location of the physical component, references to the measurements and models are
given. The resonance frequencies are listed with their Q value and errors if available (see
Equation 3.4 for the definition of Q). Currently there are 577 entries to the database
out of which about a third are modelled values.

Typical resonance frequencies of the detector are pendulum resonances of the sus-
pended mirrors, violin modes of the suspension fibres, internal mirror modes, and inter-
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nal modes of the mechanical parts of the suspension and the vacuum system. Environ-
mental line noise which can couple into the interferometer data such as vacuum pump
frequencies and power lines are also included.

The violin modes of the suspension fibres contribute the largest line noise in the
frequency band of interest for continuous gravitational wave searches at GEO600, which
is 100 Hz to 2 kHz. The pendulum resonances are of the order 1 Hz and the internal
mirror modes are above 2 kHz. On the data of the second science run S2 of LIGO,
an upper limit was set on the gravitational wave emission from 28 pulsars [79]. In the
database, it can be seen that of these 28 pulsars twice the spin frequencies of the pulsars
B0021-72N and B1821-24 are close to the fundamental violin mode of the fused silica
suspension of MFE (mirror far East, for its location see the optical layout of GEO600
Appendix G). In the future the fundamental violin modes should be monitored to see
if they drift closer to the spin frequencies of the pulsars [80].

4.2.2 Blind test

As the simulated, continuous gravitational wave signal for the hardware injection is
first produced electronically and then applied to the actuator for injection, one needs
to be sure that the signal only couples into the interferometer via the actuator. Other
paths such as electronic coupling into other interferometer channels or electronic pick
up in the data acquisition system need to be excluded. During the investigations of
electronic coupling and pick up, it became clear that under certain setups the simulated
signal couples into h(t) in undesired ways. In particular, electronic pick up in the data
acquisition was observed when the simulated, continuous gravitational wave signal was
recorded directly with the data acquisition during injection at the same time. When
the signal was only directly recorded and not injected, it appeared in the interferometer
channels and h(t).

The valid setup found for signal injections without undesired coupling or pick up
into h(t) is the following. The microcontroller producing the simulated, continuous
gravitational wave signal is situated in rack C in the control room. Only the signal of the
microcontroller used for the injection is connected. No signal is directly recorded during
injections. The signal can be tested by direct recording shortly before the injection
and after the injection to ensure that the microcontroller behaved correctly during the
injection.

For the blind test, the microcontroller was run in this setup, except that the signal
from the microcontroller to the actuator had been removed. The microcontroller was
running producing a simulated gravitational wave signal with the signal parameters used
for the hardware injection given in Table 4.1 (these are the same parameters as used for
the S3 II recordings). The blind test was performed from 14 June 2004 19:30:00 UTC
until 15 June 2004 8:30:00 UTC. The detector was in lock during the whole time of the
blind test. No signal with the neutron star parameters at which the microcontroller had
been running during this time could be found. Figure 4.1 gives the probability density
functions for the fitted parameters h0, φ0, cos ι, and ψ. The probability density functions
do not promote a particular value for the fitted parameters. From the probability
density function for h0, it can be seen that, with 95 % confidence, no signal with an
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Figure 4.1: Probability density functions of the data of the blind test of the simulated, continuous
gravitational wave hardware signal injection. To show that no undesired electronic coupling
or pickup occurs, the microcontroller was producing a signal with the hardware injection
parameters (see Table 4.1) with no signal being connected to the actuator or data acquisition
system. It can be seen from the h0 plot that by the time-domain search algorithm no signal
could be found.
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Chapter 4 Results of the hardware injection experiment

Injected and extracted pulsar parameters
injected best fit unit

α 0.776235274 - [rad]
δ -0.616383646 - [rad]

2f0 1125.647365 - [Hz]
ḟ −2.87× 10−11 - [Hz/s]
f̈ 0.0 - [Hz/s2]

epoch 751680013 - GPS second
h0 9.9× 10−21 ± 10% 9.3× 10−21 [1]
φ0 1.993746459 2.29 [rad]
ψ 0.372640504 0.23 [rad]

cos ι 0.669357543 0.675 [1]

Table 4.1: Parameters used to produce the simulated, continuous gravitational wave signal for
the hardware injection and the best fits for the reconstructed values. The best fits are the
maximal values of the probability density functions plotted in Figure 4.3. They cannot be
considered as fitted values.

amplitude of h0 = 3.1 × 10−21 or smaller and the neutron star parameters position
α = 0.776235274, δ = −0.616383646, spin-down parameters 2f0 = 1125.647365 Hz, ḟ =
−2.87 × 10−11 Hz/s, f̈ = 0.0 Hz/s2 at epoch GPS second 751680013 is present in the
data.

4.3 Extraction of the continuous gravitational wave signal

From 11 June 2004 18:00:00 UTC to 12 June 2004 21:05:06 UTC, a continuous gravi-
tational wave signal was injected of a neutron star with position α = 0.776235274, δ =
−0.616383646, at the frequency 2f0 = 1125.647365 Hz, spin-down parameters ḟ =
−2.87 × 10−11 Hz/s, f̈ = 0.0 Hz/s2 at epoch GPS second 751680013, amplitude h0 =
9.9 × 10−21, φ0 = 1.993746459, and ψ = 0.372640504. The interferometer was in lock
over the entire period. Figure 4.2 shows the amplitude spectral densities of h(t) starting
at 11 June 2004 20:50:00 UTC. At this time the amplitude of the injected signal was
maximal. The left-hand plot is over 10 s worth of data over the full frequency range.
The sharp lines with a signal-to-noise ratio of about 100 in that plot are calibration
lines which are permanently injected into the interferometer for calibrating the interfer-
ometer data. Around the injected frequency the noise is of the order 10−20 hrms/

√
Hz.

In the right-hand plot of Figure 4.2, the amplitude spectral density of h(t) is given over
100 s worth of data between the frequencies 1110-1140Hz. For an integration of 100 s
the injected signal becomes distinguishable from the noise if the signal is at its maxi-
mal amplitude. For the determination of the amplitude spectral densities, a Hanning
window was used.

Figure 4.3 gives the probability density functions for the fitted parameters h0, φ0, cos ι,
and ψ. The vertical dashed lines indicate the parameter values used for the injection.
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Figure 4.2: Amplitude spectral density of h(t) on data starting at 11 June 2004 20:50:00 UTC. At
this time the amplitude of the injected signal was maximal. The left graph gives the spectrum
over 10 s worth of data over the full frequency range. The sharp lines with a signal-to-noise
ratio of about 100 in that plot are calibration lines which are permanently injected into the
interferometer for calibrating the interferometer data. The right graph gives the spectrum
over 100 s worth of data around the injected signal frequency. The injected signal is clearly
visible. For the determination of the amplitude spectral density a Hanning window was used.

Figure 4.4 shows the probability density functions for the parameters (h0, φ0), (h0, ψ),
and (h0, cos ι). The left-hand graphs show colourmaps of the probability density function
over the full parameter space used for the calculation. In the right-hand graphs the
contours for 33%, 10 %, and 3% of the maximum of the probability density function are
plotted. As in the contour plots two parameters are estimated, the error of a contour
corresponds to its maximal y- and x-range. These errors are indicated by the vertical
and horizontal lines for one of the three contours in each right-hand graph. The asterisks
indicate the parameter values used for the injected signal. It can be seen that for (h0, φ0)
and (h0, ψ) the injected parameter values fall within the area where the values of the
contour are well above 10 % of its maximum. For (h0, cos ι) the injected parameter values
falls within the area where the values of the contour are well above 33 % of its maximum.
As the parameters (h0, cos ι) are strongly correlated the contours are elliptical.

Table 4.1 lists the parameters used to produce the simulated, continuous gravitational
wave signal for the hardware injection along with the best fits for the reconstructed
values of h0, φ0, cos ι, and ψ. The best fits are the maximal values of the probability
density functions plotted in Figure 4.3. As the probability density functions describe
the degree of belief with which a fitted parameter lies in a certain value range, the best
fits should not be mistaken as fitted values. Instead of giving a single value with an
error margin as the result, the probability density functions are given.

A simulated, continuous gravitational wave signal was hardware injected into the in-
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Figure 4.3: Probability density functions of the hardware injection for the injected signal pa-
rameters h0, φ0, cos ι, and ψ. The vertical dashed lines indicate the parameter values used
for the injection.

terferometer by actuating on the two end mirrors of the interferometer arms, thereby
changing the differential length of the two arms and simulating the effect of a gravi-
tational wave. The injected signal was successfully recovered from the data with the
time-domain search algorithm for continuous gravitational waves. In particular, the am-
plitude and the phase were recovered with values consistent with the parameters of the
injected signal, thus proving the full detection chain for continuous gravitational waves
at GEO600.
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Chapter 5

Increasing the calibration accuracy - A photon
pressure actuator

As mentioned before, the accuracy of the electrostatic drives used for the hardware sig-
nal injection and the injection of the calibration lines for an online calibration is about
5 %. The overall absolute calibration of h(t) is accurate to within 10 %. When moving
from the first direct detections of gravitational waves to gravitational wave astronomy,
it is of great interest to improve the accuracy of the amplitude calibration of the mea-
sured gravitational wave signals. One application where high accuracy is needed is the
determination of the Hubble constant by using inspiraling neutron star binaries as stan-
dard candles. The accuracy with which the Hubble constant can be determined depends
partly on the accuracy with which the amplitude of the gravitational wave signals of
such an event is measured [81, 82]. Some scientists point out that the component of the
gravitational wave driving the test mass back and forth in the propagation direction of
the gravitational wave (also referred to as the gravitational Lorentz force) needs to be
taken into account, in order to prevent misestimation of the parameters of the radiating
system [83]. The gravitational Lorentz force will lead to corrections of the order of up to
10 %. Therefore to be able to distinguish the gravitational Lorentz force corrections an
accuracy better than 10 % is needed. Besides these two examples, a good calibration has
always been essential in astronomy conducted in the electromagnetic spectrum to draw
correct physical conclusions from the observations [84]. This argument can be directly
applied to gravitational wave astronomy. Overall, it is desirable to have a calibration
that is as accurate as possible.

The GEO600 goal is a calibration accuracy of the order of 1%. In this chapter
the theoretically achievable accuracy for an online calibration using a photon pressure
actuator (PPA) is investigated. To use the radiation pressure from a periodic light
source for the external excitation of an interferometer mirror has been first suggested
by Albrecht Rüdiger [85]. The requirements on the minimal actuation force, and hence
the minimal power of the PPA, are presented. Then the possible theoretical accuracy of
a PPA is investigated taking into account the error in the pendulum transfer function
of the suspended main mirrors not knowing the correct resonance frequency and quality
factor Q of the pendulum, the accuracy of absolute power measurements, the light power
reflected by the interferometer main mirror, apparent longitudinal displacement of the
main mirror due to mirror rotation and thermally induced longitudinal length changes
in the interferometer main mirror. In the next section the current setup of the PPA is
described. The accuracy of the current setup is estimated and first measurements with
the current PPA at GEO600 on the main interferometer are presented. At the end a
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Chapter 5 Increasing the calibration accuracy - A photon pressure actuator

possible setup for an advanced PPA is given.

5.1 Power needed for online calibration

To do an online calibration of the GEO600 detector, a permanent injection of at least five
calibration lines is necessary. A calibration line is produced by a defined longitudinal
displacement of one or two main mirrors of the interferometer at a fixed frequency
leading to a differential length change of the interferometer at that frequency. The
calibration converts the measured differential length change of the interferometer to
the corresponding apparent gravitational wave strain. The GEO600 calibration scheme
samples the injected lines once per second. As the signal-to-noise ratio (SNR) of the lines
contributes to the overall calibration accuracy, the SNR of the lines needs to be chosen
to allow the desired calibration accuracy. For a calibration accuracy of the order of 1%,
an SNR of approximately 100 in a 1 s long fast Fourier transform (fft) is necessary. For
a detailed description of the calibration process see [25].

As described in section 3.2, a PPA can be used to apply a force directly to one or two
of the main mirrors at GEO600. The force, and thus the displacement of the mirrors, is
proportional to the power reflected by the mirror (see Equation 3.12). As a light source
for the PPA, a current pumped laser diode is used. To produce a calibration line at a
certain frequency, the pump current of the laser diode is modulated at that frequency.
For a mirror suspended as a pendulum the force applied to the mirror is proportional
to 1/ω2 for excitation frequencies well above the pendulum resonance frequency. Here
ω = 2πf , where f is the excitation frequency (see Equation 3.14). For calibration lines
at high frequencies, more power is needed to achieve the same longitudinal displacement
as for calibration lines at lower frequencies.

In the following, the power needed to produce five calibration lines at 200, 400, 600,
800, and 1000Hz with a SNR of 100 is determined for a PPA applied to one of the
far mirrors under normal incidence for the GEO600 design sensitivity [86]. For this
calculation, various factors need to be taken into account. First of all, the noise at the
design sensitivity needs to be converted from amplitude spectral density to amplitude
spectrum (see Appendix C). The factor for this transformation depends on the sample
rate (SR) with which the data is taken, the length N of the data segment over which one
fft is performed for the online calibration, and the window winn that is used to obtain the
amplitude spectral density. The factor needed for the transformation from amplitude
spectral density to amplitude spectrum is given by the square root of Equation C.4,
which corresponds to √

SR
∑N

n=1 win2
n∑N

n=1 winn

.

It also needs to be considered that the fft gives the rms-value (which is equivalent to
the DC power in a signal, see section C.2) of each Fourier component. To determine the
power needed for a peak-to-peak (pp) excursion by the PPA, the noise spectrum needs
to be multiplied by 2

√
2 (see section C.2). Then the gravitational wave amplitude strain,

h, is converted into mirror displacement according to Equation 1.1 for a Michelson inter-
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5.2 Theoretical accuracy

ferometer. For the far mirrors, an additional factor of 2 needs to be taken into account,
as the laser beam is folded in the interferometer arms and hits the far end mirrors twice
per round trip (see Appendix G for the optical layout of GEO600). The actual power
needed to achieve the desired mirror displacement is then given by Equation 3.14.

In Appendix D, the matlab script is given that was used to calculate the needed power
for the described online calibration. One input to the calculation is the design sensitivity
curve of GEO600 [87]. When GEO600 reaches its design sensitivity, a reflected mod-
ulated laser power of 2.9W is needed to produce the calibration lines described above.
For this calculation a mirror mass of 5.32 kg, a SR of 16384Hz, an integration of 1 s for
the fft, and the usage of a Hanning window were assumed. Due to a necessary threshold
current and nonlinearities for high modulation depths, the total power of a laser diode
cannot be used for modulation. Therefore it is assumed that approximately 80 % of the
total power of the laser diode can be used for modulation. Thus, a laser diode with at
least 3.5W is needed. This does not take into account the fact that not all of the power
will be reflected at the interferometer main mirror. If the phase relation between the
calibration lines is chosen in an advantageous way, the total maximal power that needs
to be modulated at one time can be reduced. The factor that can be gained from a
defined fixed phase between the calibration lines is of the order two.

The high reflectivity of the interferometer main mirrors is specified for wavelengths
from approximately 980 nm to 1190 nm for light under normal incidence. The current
PPA is a laser diode with 980 nm wavelength. Due to the availability of laser diodes and
high-power fibre-coupled laser diodes at 980 nm, the wavelength for an advanced PPA
is also chosen to be 980 nm.

5.2 Theoretical accuracy

In this section the theoretically achievable accuracy of a PPA is investigated. First it
is shown that Equation 3.14 is a very good approximation for the pendulum transfer
function when using a PPA. Thus, the accuracy of the PPA depends on how well the
parameters in Equation 3.14 can be determined. These are the reflected power, P , at the
interferometer main mirror, the mirror mass, m, and the modulation frequency, f . As
the modulation frequency of the injected lines is locked to the same frequency standard
as that used to drive the acquisition process of signals, the error on f is negligible.
Therefore only the reflected power, P , and the mirror mass, m, are investigated in
detail. For the accuracy of the PPA it also needs to be considered if shining a power-
modulated laser beam onto an interferometer main mirror leads only to longitudinal
displacement and if so, whether it is only via the transfered photon impulse. The effect
of apparent longitudinal displacement due to rotation (pitch and yaw) excited by photon
pressure is investigated. Also the effect of thermally induced length changes by a power
modulated laser beam is estimated. At the end of this section the various effects are
compared quantitatively.
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Figure 5.1: Graphical display of the investigation of the approximated transfer function accuracy
from applied light power to the centre of a mirror to its longitudinal displacement. T1 is
calculated according to Equation 3.14. T2 and T3 are calculated according to Equation 3.13,
where T2 has a resonance frequency of f0=0.6 Hz and a quality factor of Q=2. T3 has a
resonance frequency of f0=0.8 Hz and a quality factor of Q=6. For all transfer functions the
mass, the laser power and the speed of light were set to 1 kg, 1W, and 1m/s respectively.
In the upper left-hand graph the amplitude is plotted for all three transfer functions. In the
upper right-hand graph the difference between the amplitudes of T2 and T1, and T3 and T1
is plotted and expressed in percent of the amplitude of T1. In the lower left-hand graph the
phase is plotted for all three transfer functions. In the lower right-hand graph the difference
between the phases of T2 and T1, and T3 and T1 is plotted in degree. The phase of T1 was
chosen to be -180◦ to compare with the pendulum response phase, which approaches 180◦

well above the resonance frequency f0.
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5.2.1 Pendulum transfer function

In subsection 3.2.2, the transfer function from externally applied radiation pressure to
the centre of a mirror (suspended as a pendulum), to its longitudinal displacement, is
given. In Equation 3.13 the transfer function is given for all frequencies. In Equa-
tion 3.14, the transfer function is approximated for frequencies well above the resonance
frequency of the pendulum. The transfer function for the PPA will only be needed for
frequencies well above the resonance frequency. This is the frequency range over which
the calibration lines are injected (200 Hz to 1 kHz). The PPA cannot be used to move
one of the main mirrors through at least two adjacent dark fringes (for this a longi-
tudinal displacement of 266 nm for the far mirrors is necessary), as this would require
a total power of at least 125W. Therefore the exact knowledge of the DC gain of the
transfer function and thus of the resonance frequency of the pendulum does not play
a role for the accuracy of the PPA, as it is not used at low frequencies. Nevertheless,
Equation 3.13 and Equation 3.14 differ. In the following paragraph, the difference be-
tween the two transfer functions is calculated for different resonance frequencies, f0, and
quality factors, Q, of the pendulum.

The difference is estimated in the following way. One transfer function, T1, is com-
puted with Equation 3.14. Two other transfer functions, T2 and T3, are computed
according to Equation 3.13, where T2 has the parameters f0=0.6 Hz and Q=2, and T3,
f0=0.8 Hz and Q=6. The upper and lower limits of f0 and Q correspond to how well
those parameters of the inboard mirrors are currently known [67]. The mass, the power,
and the speed of light are set to 1 kg, 1W, and 1 m/s respectively. Then the difference
between the amplitudes and the phases of T2 and T1, and of T3 and T1 is taken. The
difference above 200 Hz stays below 0.0065 % for the amplitude and below 0.03 degree
for the phase, as can be seen in Figure 5.1. Therefore the error due to the approximation
of the pendulum transfer function is negligible.

The end mirrors are actually suspended as triple pendulums with multiple wires. It is
unknown if the coupling between the different pendulum modes of the suspension play a
role at frequencies above 200 Hz. It is also not clear if the transfer function of the actual
suspension deviates from the transfer function of a simple pendulum. Currently there
is no appropriate simulation to model this aspect of the suspensions [88]. Therefore
all considerations concerning the accuracy of the PPA due to the simplification of the
mirror suspension are neglected.

5.2.2 Absolute intensity measurement

To measure the power reflected by the interferometer main mirror with an accuracy of
1 %, it needs to be made sure that no power is lost in the beam path due to cutting
off the beam, and also that the photodiode used for the absolute intensity measurement
has an accuracy of 1 % or better. A Gaussian laser beam has more than 99.5 % of its
total power in the area where the intensity of the beam reduces to 1 %. If an absolute
intensity measurement better than 1 % is aimed for, it needs to be made sure that the
beam is not cut off within the area where the beam is equal or above 1 % of its maximal
intensity. Therefore the aperture of the beam path needs to be chosen carefully.
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Chapter 5 Increasing the calibration accuracy - A photon pressure actuator

At the PTB1 in Braunschweig, a method based on Fourier transform spectroscopy
has been developed to calibrate silicon photodiodes from 200 nm to 1000 nm with an
uncertainty of 0.05 % within 10 minutes [89]. It needs to be checked whether this is
also possible with InGaAs photodiodes, which might be used instead of silicon photo-
diodes. As the response of a photodiode is temperature and wavelength dependent, the
photodiode and laser diode need to be temperature stabilised.

It is known that the response of a photodiode is not perfectly flat over its active
area [90]. Therefore, the accuracy of the absolute power calibration of a photodiode
given above as 0.05 % can only be reproduced if a beam with the same size hitting the
same area on the photodiode is used as the one with which the calibration was performed.
This is typically not possible. To estimate the effect of the changing response of the
photodiode over its active area a simulation with measured data was done.

The measured data were provided by Michael Tröbs from the Laser Zentrum Han-
nover. The data give the response of a photodiode over its active area with a resolution
of 10 µm× 10 µm at the wavelength 1058.25 nm. The beam diameter on the photodiode
was approximately 20µm for the measurement. Possible photodiodes for the PPA with
a wavelength of 980 nm are the G8605-15 InGaAs photodiode from Hamamatsu with
a diameter of 5 mm and the IPL10050 silicon photodiode from Integrated Photomatrix
Ltd. with an active area of approximately 6mm× 6 mm [91, 92]. In Figure 5.2 the mea-
sured intensity response of these photodiodes over their active area is given in percent of
their maximal response. It can be seen that the response decreases significantly towards
the edges of the active area. Although the measurement was done at 1058.25 nm, the
data can be used to simulate the error for an absolute power measurement at 980 nm,
as the slope of the photo sensitivity of silicon and InGaAs is approximately the same at
1058.25 nm and 980 nm.

From Figure 5.2 it is clear that if a Gaussian laser beam changes its position on the
active area of the photodiode the total measured power changes. The intensity profile
of a simulated Gaussian laser beam was convoluted with the measured response of the
photodiodes. The position of the laser beam was changed in steps of 100 µm on the
surface of the photodiode. The simulation was done for beam diameters of 0.92mm,
1.84 mm, and 3.04mm. The beam diameter here is defined by the points where the
intensity of the beam dropped to below 1 % of its maximal intensity. In Figure 5.3,
the results of the simulation with the measured data are presented for the silicon and
InGaAs photodiode. The plots show the differences between the simulated measured
power for the laser beam position at position (0,0) and the simulated measured power
for the laser beam at positions (x, y). Above a certain threshold the differences were
set to zero in order to use the full dynamic range of the colour plot for differences of
the order 1 %. For the silicon photodiode roughly over a range of 4 mm × 3 mm into
the x- or y-direction, respectively, the absolute power changes by less than 1 %. For the
InGaAs photodiode roughly over a range with the diameter 2mm the absolute power
changes by less than 1 %.

It can be seen that the beam diameter can be optimised to allow maximal offsets in
the x- and y-direction while staying below the 1 % deviation in absolute power mea-

1The PTB is the German national metrology institute.
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Figure 5.2: Measured response of a photodiode over its active area. The response is given in
percent, where 100% correspond to the maximal measured response of the photodiode. The
measurements were done with a resolution of 10 µm × 10 µm at the wavelength 1058.25 nm
with a beam diameter of approximately 20µm on the photodiode. The upper graphs give
the response of an IPL10050 silicon photodiode from Integrated Photomatrix Ltd. with a
quadratic active area of approximately 6mm× 6 mm. The lower graphs give the response of
a G8605-15 InGaAs photodiode from Hamamatsu with a circular active area with a diameter
of 5 mm. In the right-hand graphs a zoom of the area where the intensity is between 90-100 %
is given. For these plots the intensity was set to 90% for all values below 90 %, to use the full
dynamic range of the colour bar for the 90-100 % response range. The measured data were
provided by Michael Tröbs from the Laser Zentrum Hannover.

85



Chapter 5 Increasing the calibration accuracy - A photon pressure actuator

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5
−0.2

0

0.2

0.4

0.6

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1 0

0.2

0.4

0.6

0.8

−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2 −0.4

−0.2

0

0.2

0.4

0.6

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5
0

0.2

0.4

0.6

0.8

−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2 −0.6

−0.4

−0.2

0

0.2

0.4

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5
0

0.2

0.4

0.6

0.8

PSfrag replacements

offset [mm]offset [mm]

offset [mm]offset [mm]

offset [mm]offset [mm]

o
ff
se

t
[m

m
]

o
ff
se

t
[m

m
]

o
ff
se

t
[m

m
]

o
ff
se

t
[m

m
]

o
ff
se

t
[m

m
]

o
ff
se

t
[m

m
]

difference [%]difference [%]

difference [%]difference [%]

difference [%]difference [%]

∅ 0.92mm

∅ 1.84mm

∅ 3.04mm

Figure 5.3: Differences between the expected measured power of a laser beam at position (0,0)
and positions varied in the x- and y-direction on the active area of a photodiode. The plots
were produced by convolving a simulated Gaussian laser beam with the measured data given
in Figure 5.2. Above a certain threshold the differences were set to zero in order to use the full
dynamic range of the colour plot for differences of the order 1 %. In the upper graphs the laser
beam had a diameter of 0.92 mm, the graphs in the middle 1.84 mm, and in the lower graphs
3.04 mm. The beam diameter refers to a drop in intensity below 1 % of its maximal power.
The left graphs show the results for the IPL10050 silicon photodiode. The right graphs show
the results for the G8605-15 InGaAs photodiode.
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surement. This is expected as a laser beam with a very small diameter can still resolve
the graininess of the response of the photodiode. A laser beam with a large diameter
covers with relatively small offsets in the x- and y-direction areas of the photodiode,
where the response is changing rapidly. It is assumed that in principle an absolute power
measurement with an accuracy of 1 % should be possible if great care is taken in the
whole setup and calibration process [93].

5.2.3 Determining the amount of reflected power

As mentioned before, only the photons reflected transfer their momentum to the mirror
(actually, the photons that are absorbed also transfer their momentum, but with an ab-
sorption of 6 ppm/cm in the mirror substrate this effect is negligible [94]). At GEO600,
the main mirrors are situated in a vacuum system. To determine the amount of light
reflected by a mirror, the light power leaving the vacuum and the transmittance of the
vacuum viewports need to be known.

To measure the light power leaving the vacuum, a fixed amount of light power should
be split off from the beam leaving the vacuum. For this, preferably a cube beam splitter
or a prism should be used to prevent influences from second-order surface reflections.
The ratio with which the beam splitter or prism reflects and transmits can be determined
in a relative intensity measurement. For this, an attenuated laser beam can be used.
The full dynamic range of the photodiode should not be used for this measurement to
prevent a change in temperature of the photodiode through high power dissipation (a
ratio of the order of 99:1 is desired). The more robust solution is probably a prism, as
its temperature dependence should be smaller than that of a cube beam splitter.

Besides the light power leaving the vacuum, the transmittance of the vacuum viewport
needs to be known. Theoretically the transmittance of the viewport can be measured
very accurately with a relative intensity measurement. The accuracy of such a measure-
ment is assumed to be 0.1 %. Thus the absolute light power reflected at the interferom-
eter main mirror is theoretically measurable with an accuracy of at least 1.1 %. This
includes an error of 0.1 % for passing of the viewport and 1 % for the absolute intensity
measurement.

5.2.4 Mirror mass

The accuracy of the PPA also depends on how accurate the mass of the main mirror
is known, to which the photon pressure is applied. Theoretically, the mirror mass can
be determined with a commercially available scale to an accuracy of 0.1 %. None of
the currently suspended far mirrors (see mirror far North (MFN) and mirror far East
(MFE) in Appendix G), were weighed before their installation.

5.2.5 Effect of mirror rotation on the mirror’s longitudinal displacement

If the beam of the PPA does not hit the main optic exactly centred, a torque is applied.
This leads to a rotation, θ, of the mirror. The rotation of a cylindrical mirror can
lead to apparent longitudinal displacement of the mirror. The axis perpendicular to the
surface of a cylindrical mirror through its centre of mass is referred to as the optical
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axis (the equivalent to the x-axis in Figure 3.10). Movements along this axis are called
longitudinal displacements xd. In the following paragraphs, the relationship between
mirror rotation, θ, and apparent longitudinal displacement, xd, is derived. A rotation,
θ, of the mirror around its axis of symmetry, parallel to the flat surfaces of the cylindrical
mirror, leads to a longitudinal displacement, xd, if the thickness, d, of the mirror is non-
zero. From Figure 5.4 one can see that

cos θ =
d
2

d
2 + xd

⇔ xd =
d

2
1− cos θ

cos θ

for θ � 1 ⇒ xd ≈
d

4
θ2 .

(5.1)
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Figure 5.4: Schematic of the effect of rotation on the longitudinal displacement of a cylindrical
mirror.

This formula is only valid for

θ ≤ arccos
(

d√
2r2 + d2

)
, (5.2)

where r is the radius of the mirror. Figure 5.5 shows the longitudinal displacement
xd in dependence of θ for a GEO600 main optic with thickness d = 10 cm and radius
r = 9 cm.

As the longitudinal displacement, xd, due to the thickness of the mirror scales with
θ2, the effect is very small. As can be seen in Figure 5.4, the longitudinal displacement,
xc, at distance, dc, away from the centre of the mirror due to rotation is larger than xd.
With y = xd/ tan θ, the longitudinal displacement, xc, at the distance, dc, away from
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Figure 5.5: Plot of apparent longitudinal displacement of a GEO600 main mirror as a function
of its rotation. The mirrors have a thickness of d = 10 cm and a radius of r = 9 cm. The
apparent longitudinal displacement is the displacement of the mirror centre along its optical
axis.

the centre is given by

tan θ =
xc

dc + y

⇔ xc = dc tan θ + xd

for θ � 1 ⇒ xc ≈ dcθ +
d

4
θ2 .

(5.3)

Since for xc, the longitudinal displacement scales with θ, the effect is much bigger than
for xd.

The rotation θ that is induced by the beam of the PPA if the beam does not hit
the main optic exactly centred, can be quantitatively described with the calculations
performed in chapter 3. When inserting Equation 3.12 into Equation 3.6 the angle θ is
given by

θ(ω) =
2Pdc

c(Iω2 − iγω − κ)
. (5.4)

Here it can be seen that the further away from the centre the beam hits the main mirror,
the bigger is the resulting rotation. How big the apparent longitudinal displacement
is, as seen by the main interferometer due to this rotation, depends on how well the
interferometer beam is centred on the main mirror.

In the above calculation, the assumption was made that if a main mirror experiences
a torque produced by the PPA, the resulting rotation can be split into a rotation about
the mirror’s axis of symmetry, perpendicular to the ground, and parallel to the ground
(which correspond to the z- and y-axis in Figure 3.10, respectively). Thus the distance
dc at which the mirror is hit away from its centre is split into a distance parallel and
perpendicular to the ground. It is unclear if this is a good approximation. The main
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main mirrors (fused silica)
ρ 2.2× 103 [kg m−3] density
C 772 [J kg−1K−1] specific heat capacity
κ 1.4 [W m−1K−1] conductivity
αab 6 [ppm/cm] absorption coefficient
αex 5× 10−7 [K−1] expansion coefficient
d 10 [cm] mirror thickness

Table 5.1: Material properties of the main mirrors, which are made of fused silica.

mirrors are suspended by wires that break off at the mirror 1 mm above its centre of
mass (see section 3.6 [80]). As already mentioned for the case of the longitudinal transfer
function in subsection 5.2.1, in particular no appropriate simulation to model this aspect
of the suspension exists.

5.2.6 Temperature distribution in a mirror illuminated by a modulated laser
beam

At GEO600 the modulated laser light is applied to one of the far mirrors through the
viewport (see Figure 5.8). As the high reflective coating of the mirror is on the inside of
the interferometer, the light of the PPA passes twice through the mirror substrate. By
modulating the light, the heat deposited in the optic is also modulated. This can lead
to a time-dependent temperature distribution and thus a time-dependent length change
due to the temperature dependent expansion. In the following paragraphs, a rough
estimation of the order of magnitude of this length change (which is indistinguishable
from longitudinal displacements) is made.

For the calculations, the assumption was made that the vacuum and the mirror ex-
tend infinitely in the radial direction. Therefore, the calculation is applicable when the
laser beam is much smaller than the radial dimension of the mirror, and the thermal
length of the mirror substrate is less than the mirror dimension for the used modu-
lation frequencies. The estimation is based on the theory of photothermal deflection
spectroscopy [95].

The temperature distribution can be derived via the diffusion equation

∇2 T (r, t)− 1
k

∂T (r, t)
∂t

= −Q(r, t)
κ

, (5.5)

with the thermal diffusivity k

k =
κ

ρC
. (5.6)

Here, T (r, t) gives the temperature rise above the ambient temperature at r = (x, y, z),
κ is the conductivity, ρ the density, C the specific heat capacity, z the propagation
direction of the laser beam, and Q(r, t) the heat deposited per unit volume and time in
the absorbing medium. In the vacuum, no heat is deposited, therefore Q(r, t) is zero in
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Figure 5.6: Temperature change induced in a main mirror by a modulated laser beam traversing
orthogonally back and forth. The graphs for two different modulation frequencies are given.
It is assumed that the input laser beam has a radius of 1/e2 of 1 cm and is modulated with
1 W peak-to-peak change in light power. The material properties given in table 5.1 were used
for the calculation.

this region. In the substrate, for a sinusoidally power modulated Gaussian laser beam,
Q(r, t) is given by

Q(r, t) = 2
P

πa2
exp

(
−2r2

a2

)
cos(ωmt) exp(−αab z) , (5.7)

where P is the modulated power, r =
√
x2 + y2, αab is the absorption coefficient, ωm

the angular modulation frequency and a is the 1/e2 radius of the Gaussian laser beam.
As z is the propagation direction of the laser beam, the term exp(−αab z) describes the
absorption along the propagation. The term cos(ωmt) gives the modulation depth at
time t. The remaining term describes the Gaussian power distribution. With 1.1.3.4
(3.) of [51] it can be seen that∫ ∞

−∞
dx

∫ ∞

−∞
dy 2

P

πa2
exp

(
−2(x2 + y2)

a2

)
= 8

P

πa2

∫ ∞

0
dx

∫ ∞

0
dy exp

(
−2(x2 + y2)

a2

)
= 8

P

πa2

(√
π

2
a√
2

)2

= P .

(5.8)

In [95], a special case is considered where the distribution is decomposed into distri-
butions that act independently of each other and show a radially uniform temperature
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distribution. The effective thermal length, lth, of that distribution is given by

lth =
√

κ

ρC

2
ωm

. (5.9)

With the properties for fused silica listed in Table 5.1, this gives an effective thermal
length for the main mirrors of 3.6× 10−5 m for modulations at 200 Hz and 1.6× 10−5 m
for modulations at 1 kHz. If the heat diffusion into the vacuum is neglected and the
thermal length, lth, is much smaller than the beam profile, the temperature distribution
integrated along the z direction can be described by (Equation (13) of [95])∫ d

0
dz T (r, t) = 2P

[1− exp(−αab d)]
πωmρCa2

exp
(
−2r2

a2

)
sin(ωmt) , (5.10)

where d is the thickness of the mirror. The temperature distribution follows the beam
profile because there is no diffusion of heat. The maximal difference in temperature,
∆T , is then given by

∆T =
4
d
P

[1− exp(−αab d)]
πωmρCa2

exp
(
−2r2

a2

)
. (5.11)

In Figure 5.6, the temperature change in a mirror with the material properties given
in Table 5.1, for a modulation frequency of fm = 200Hz and fm = 1kHz, are plotted for
a PPA beam with a modulated power of P = 1W and a beam radius a = 1 cm, where
fm = 2πωm. In the case of the lower modulation frequency, the effective thermal length
is larger, which leads to the situation that the area over which a temperature change
against the ambient temperature takes place, is larger. This temperature change can
be transformed into a length change of the (by the PPA beam) illuminated part of the
mirror

∆L = αex d ∆T , (5.12)

where αex is the expansion coefficient of the mirror substrate. This is only an approxi-
mated value, as it is assumed that the cylindrical part in the mirror that is illuminated by
the PPA beam can expand independently of the surrounding material (see Figure 5.7).
The generated stress in the material due to the expansion is neglected. The approxi-
mated maximal length change on one side of a far mirror, for P = 1W of modulated laser
power and a beam radius a = 1 cm, is then 8.9×10−17 m at 200Hz and 1.8×10−17 m at
1 kHz. This is of an order which is significantly larger than the relative length change
detectable by GEO600 [86]. It should be kept in mind though, that this maximal lon-
gitudinal displacement due to temperature changes is an upper limit and the length
change is only at a single point on the mirror surface. The displacement drops to zero
over the area which is illuminated by the PPA beam and is zero outside the illuminated
area (see Figure 5.7). The area illuminated by the PPA beam is significantly smaller
than the total area of the mirror surface. Thus the wave front of the interferometer laser
beam will average over this single, maximal, longitudinal displacement. In contrast to
this the longitudinal displacement due to the momentum transfer by the PPA displaces
the total mirror and not only a single point on the mirror surface. This should be
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PSfrag replacements
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Figure 5.7: Example for a region of a main mirror which is illuminated by the PPA. The small
cylinder within the mirror is the area where time dependent temperature change will take
place due to the modulated laser beam of the PPA. This temperature change can result in an
expansion of this area in the direction along the optical axis of the main interferometer, and
thus lead to an undesired longitudinal displacement of the mirror surface.

kept in mind when comparing the values given for the longitudinal displacement due to
momentum transfer by the PPA and thermally induced length changes.

When comparing Equation 3.14 with Equation 5.11 it can be seen that the longitudinal
displacement due to the photon pressure is proportional to 1/ω2 and the longitudinal
displacement due to temperature changes is proportional to 1/ω. Therefore the portion
of the longitudinal displacement due to temperature changes of the total longitudinal
displacement becomes larger for higher frequencies.

5.2.7 Quantitative comparison of photon pressure actuator accuracy

If great care is taken with the setup of the PPA, an accuracy of the order of a few
percent should be possible. For a setup with high accuracy, the following points need to
be taken care of. The optical properties of all optical components involved in the PPA,
such as the main optics and viewports, need to be measured independently of each other
at the PPA wavelength. The photodiodes used in an advanced setup (see Figure 5.13),
need to be calibrated with high accuracy. Then their response over their active area
needs to be measured and it needs to be determined in which area the Gaussian laser
beam of the PPA should hit the photodiode so that the error of the absolute power
measurement stays below 1 %. The photodiodes need to be temperature stabilised. A
laser diode with high power (of the order of a few Watts) should be used to allow
high signal-to-noise ratios at high frequencies. The laser diode should be temperature
stabilised, to guarantee a constant wavelength of the PPA laser beam. The mass of
the interferometer main mirror to which the PPA is applied needs to be measured. For
high accuracy the pendulum transfer function of the main optic, suspended as a triple
pendulum, should be studied in detail to investigate if modes other than the longitudinal
displacement are excited by the PPA. Also a finite element analysis should be made to
determine the thermally excited expansion of the coating material at the excitation
frequencies of the PPA, as the upper limit for the longitudinal displacement due to
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a thermal length change is only one order of magnitude below the direct longitudinal
displacement (see Table 5.3). The remaining crucial issue is how well the PPA can
be centred on the main mirror to prevent rotational excitation which leads to apparent
longitudinal displacement.

For the previously described effects of apparent longitudinal displacement due to
rotation and thermally excited length change, values were calculated. For the PPA, a
modulated laser beam with 1 W peak-to-peak change in light power was assumed and a
1/e2 beam radius of 1 cm on the mirror surface. The material properties of the mirror
are given in Table 5.1. The geometric mirror properties and the mass used for the
calculation are given in Table 5.2. The calculations were done for 200 and 1000Hz.
In Table 5.3, the direct longitudinal displacement and the upper limit of the thermally
induced expansion is given. Also listed is the rotational excitation of the mirror if it
is hit by the PPA 1 cm away from its centre. The resulting rotation is converted into
apparent longitudinal displacement of the mirror at the centre and 1 cm away from the
centre.

main mirrors
d 10 cm mirror thickness
r 9 cm mirror radius
d 5.32 kg mirror mass

Table 5.2: Geometric properties and mass of main mirrors.

5.3 Current photon pressure actuator

The current PPA is setup in the North end building. As a light source a multi-mode,
1 W laser diode from Thorlabs with wavelength 980 nm is used. The laser diode is a
single-stripe emitter with a beam divergence of 8◦ and 40◦ which is collimated with a
cylindric lens. 2m away from the emitter the beam size is approximately 5 × 5 mm2

(the beam size was estimated by eye using an IR viewing card). The total power in the
collimated laser beam is approximately 500mW. The laser beam is shone under an angle
of approximately 4◦ onto the mirror far North (MFN) (see Figure 5.8). The incoming
power to the interferometer main mirror is measured on a photodiode behind the first
mirror redirecting the laser beam. The light power returning from the interferometer
main mirror is shone directly onto a power meter.

In the following sections, the accuracy of the current PPA is estimated. Then first
measurements with the PPA are presented and some conclusions to these measurements
are drawn.

5.3.1 Accuracy of the current photon pressure actuator

The transmittance of the viewport and the reflectivity of the main mirror were not
measured with high accuracy at 980 nm before they were built into the vacuum system.
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Figure 5.8: Current setup of the PPA measurement.

Therefore the largest uncertainty of the current PPA setup lies in the reflected light
power at the main mirror. To estimate this uncertainty the error of the reflectivity of
the main mirror and the losses at the viewport need to be determined. 980 nm fall on
the edge of the wavelength range of the highly reflective coating of the main mirrors for
normal incidence. For the main mirrors, measured data for the wavelength dependent
reflectivity of the coatings provided by the coating company are available. From that
data, the reflectivity at 980 nm of the far end mirrors is 0.998 ±0.5 %.

For the current viewports (which have an anti reflective coating), only a measurement
of the reflectivity of one viewport is available from the batch when the currently used
viewports were coated by the company LASEROPTIK (see Appendix E). According
to this measurement the reflectivity of the coated viewport at 980 nm is approximately
0.2 %. The anti-reflective coating of the viewports was designed for 1064 nm. No mea-
surements of the losses at 980 nm exist for the viewports. To estimate the transmittance
of the viewport for the current setup, the following approach is taken. We assume that
the same fraction of light power is lost when entering the vacuum as it is when leaving
the vacuum. Here the loss at the viewport (reflectivity and absorption) is called αvp.
Then the light power, Iin, entering the vacuum and the light power, Iout, leaving the
vacuum is measured. The light power after entering the vacuum is (1−αvp)× Iin. With
a reflectivity of 0.998 of the main optic the light power is 0.998 × Iin (1 − αvp)2 after
leaving the vacuum. From this, it can be estimated that the loss at the viewport is

αvp = 1−
√

1
0.998

Iout

Iin
. (5.13)

At the beginning of the measurements, the incoming and outgoing absolute power were
measured. A loss of 27 % on the first day and 28 % on the second day between the
ingoing and outgoing beam was determined. According to Equation 5.13, this gives a
loss of αvp = 0.148 at the viewport. These values suggest that the losses are not only
due to reflectivity and absorption of the viewport. Additionally scattering and perhaps
too small apertures are suspected to contribute to the losses. Nevertheless for these first
measurements the approach is taken in which it is assumed that the same amount of
light is lost on the way from entering the vacuum to the main mirror as it is on the way
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5.3 Current photon pressure actuator

from the main mirror to leaving the vacuum. This is equivalent to assuming a loss of
αvp = 0.148 at the viewport. The absolute power of the outgoing light was measured
with a power meter, and the ingoing power was measured with a photodiode which was
calibrated with the power meter. The accuracy of the power meter is of the order 5%.
Thus the transmittance at the viewports for the current setup is only known with an
error of approximately 10 %.

The modulated power was determined by looking at the amplitude of the photodiode
signal on an oscilloscope. The laser diode was modulated over a range of about 95%.
From earlier measurements in Hannover, it is known that approximately 10% of the
modulation at such a modulation depth are in the first harmonic. During all measure-
ments the power level on the photodiode and the power meter were observed by eye.
Thus it was made sure that the power stayed about the same. It was seen that there is
scattered light on the viewport. This was not taken into account to estimate the error
of the measurement.

The currently used main mirror MFN in the setup of the PPA was not weighed before
its installation. To determine its approximate mass two spare mirrors were weighed [96],
one inboard mirror and one far mirror. Both weighed 5.32 kg. It is not clear with which
accuracy a mass of 5.32 kg can be assumed for MFN. The measurement of the spares
had an error of ±20 g. We assume an error of 1 % for the main mirror mass excited in
the current setup of the PPA.

The overall error of the current setup of the PPA is assumed to be ±20 %. It is
not clear where exactly the PPA beam hits the mirror and how well the interferometer
beam was centred on the mirror at that time. As described in subsection 5.2.5 an
offset of the main interferometer beam can lead to an additional apparent longitudinal
displacement, if rotation is excited by the PPA. Please be aware that neither scattered
light nor rotational excitation errors were taken into account. Errors due to this effect are
not included in the error bars of the graphs of Figure 5.11 and Figure 5.12, representing
the results of the measurements graphically. The error due to the SNR of the injected
signal is taken into account. Therefore, the error bars increase with higher frequencies,
as the SNRs become lower.

5.3.2 First Measurements with the photon pressure actuator

First measurements with the PPA were performed on 17 February 2004 and 19 February
2004 [97]. On 17 February 2004, one measurement was performed at seven frequencies
between 161 and 1387 Hz. On 19 February 2004, three measurements were performed,
measurement I at seven frequencies between 161 and 1387 Hz and measurement II/III
at nine frequencies between 161 and 1815 Hz.

During the measurement on 17 February 2004 and measurement I on 19 February
2004, the beam was approximately parallel to the ground. During measurement I on
19 February 2004 the beam was slightly aligned upwards compared to the beam align-
ment on 17 February 2004. For measurements II and III on 19 February 2004, the beam
was tilted a little upwards and downwards, respectively. When tilting it up for mea-
surement II, the outcoming laser beam was about 5 cm higher than for measurement I
approximately 1.20 m away from the viewport (at the the large lens, which images the
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Chapter 5 Increasing the calibration accuracy - A photon pressure actuator

interferometer beam onto a CCD camera). When tilting the beam downwards the out-
coming beam was about 2.2 cm lower than for measurement I. Tilting the beam further
down was not possible as then it was already visibly clipped somewhere. The beam
positions on the vacuum viewport were approximately like those given in Figure 5.9.
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Figure 5.9: Positions of the laser beam of the PPA on the vacuum viewport during the mea-
surements on 19 February 2004. The view is directly onto the viewport.

In the h(t) data, the height of the peaks produced by the PPA were compared to
the expected peaks due to the measured power, P . The h(t) data had been calibrated
with the calibration lines injected by the electrostatic drive (ESD). The error of the
ESD is ±5 %. The absolute overall error of the calibration with the ESD is ±10 % for
calibration lines with a SNR of approximately 100. For lower SNRs an additional error
was added. For this it was assumed that a line with a SNR of 100 has an error of 1%.

In Table 5.4, the measured values of the lines in the h(t) amplitude spectrum are
given. The SNRs are also given for the lines. This table is good for comparing how
the signal heights and SNRs varied from measurement to measurement for the different
modulation frequencies. The SNR was calculated by determining the average noise
around the peak in the spectrum by taking 21 data points below and above the peak
into account starting at the third data point away from the peak centre. Shortly before
the injection of the line at 1387 Hz during measurement I on 19 February 2004, a small
line appeared at 1387.09 Hz with about half the SNR of the later injected line (see
Figure 5.10). The injected line is not optimally centred around 1387 Hz as the injection
lines are for the other injections. It can be seen that the frequency content of the lower
adjacent frequency bin is much higher than the frequency content of the higher adjacent
frequency bin. It is unclear if spurious line noise affected the determination of the values
of the injected lines in the amplitude spectrum of h(t).

In Table 5.5 and Table 5.6, the calculated longitudinal displacements, ∆L, due to the
applied photon pressure are compared with the measured longitudinal displacements
gained with the ESD calibration for 17 February and 19 February, respectively. The
measurement on 17 February 2004 was done within 14 minutes. On 19 February 2004
the measurement I was done within 14 minutes, measurement II within 37 minutes and
measurement III within 63 minutes. The time stretches for the injections from 161 Hz to
1387 Hz were about the same for all measurements. Between measurement II and mea-
surement III the operating conditions of the interferometer changed (the interferometer
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Figure 5.10: The left graph shows the amplitude spectrum of the Michelson differential error
point around 1387 Hz at 14:07:30 on 19 February 2004. This is shortly before the injection
of a line with the PPA at 1387Hz. The right graph shows the amplitude spectrum around
1387 Hz at 14:09:40, during the injection. In the right graph it can be seen that the injected
line is not symmetric about 1387 Hz. This fact was observed during measurement I.

unlocked and the offset of the 2f signal for the locking process was changed).
For alignment behind the North end mirror a quadrant diode and a CCD camera are

installed. During the measurements, interference filters were put in front of the quadrant
diode and the CCD camera in the North end building to avoid the light from the PPA
affecting the signals of the quadrant diode and camera. These interference filters have
a transmittance of approximately 0.8 at 1064 nm and 10−6 at 980 nm.

5.3.3 Conclusion

In Table 5.5 and Table 5.6 it can be seen that for low frequencies the longitudinal dis-
placement determined by the PPA and by the ESD agree very well. In Figure 5.11 it can
be seen that that at low frequencies the measured values for PPA and ESD agree within
their errors. For the measurement on 17 February 2004 and measurement I and II on 19
February 2004 the longitudinal displacement determined with the PPA becomes signif-
icantly smaller than the longitudinal displacement determined with the ESD at higher
frequencies. For measurement II the longitudinal displacement determined with the
ESD even looks like it turns into a 1/f dependency at high frequencies. This behaviour
is not understood. For measurement III the longitudinal displacement determined with
the ESD follows the expected 1/f2 dependency up to 1571 Hz. The different behaviour
of the different measurements is not understood either. It should be kept in mind, that
the SNRs at high frequencies are very poor for the PPA (see Table 5.4). As already men-
tioned, between measurement II and III on 19 February 2004 the operating conditions
of the interferometer changed.
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17.2.2004
f [Hz] PPArms [m] ESDrms [m]
161 1.66× 10−16 1.69× 10−16

310 4.47× 10−17 3.89× 10−17

580 1.28× 10−17 1.47× 10−17

765 7.34× 10−18 9.55× 10−18

925 5.02× 10−18 7.05× 10−18

1182 3.07× 10−18 5.51× 10−18

1387 2.23× 10−18 4.78× 10−18

Table 5.5: Longitudinal displacements ∆L of the measurement on 17 February 2004. Compared
are the expected longitudinal displacements due to the applied PPA excitation and the lon-
gitudinal length changes measured with the interferometer calibrated with the electrostatic
drive (ESD).

19.2.2004
f [Hz] PPArms [m] ESDrms [m] I ESDrms [m] II ESDrms [m] III
161 1.80× 10−16 1.93× 10−16 1.87× 10−16 1.90× 10−16

310 4.87× 10−17 4.72× 10−17 4.46× 10−18 4.52× 10−17

580 1.39× 10−17 1.51× 10−17 1.71× 10−18 1.27× 10−17

765 7.99× 10−18 1.02× 10−17 1.22× 10−17 7.79× 10−18

925 5.47× 10−18 7.24× 10−18 9.41× 10−18 5.72× 10−18

1182 3.35× 10−18 5.31× 10−18 7.86× 10−18 3.78× 10−18

1387 2.43× 10−18 3.95× 10−18 6.25× 10−18 2.87× 10−18

1571 1.90× 10−18 - 5.45× 10−18 2.00× 10−18

1815 1.42× 10−18 - 4.57× 10−18 2.27× 10−18

Table 5.6: Longitudinal displacements ∆L of the measurements on 19 February 2004. Compared
are the expected longitudinal displacements due to the applied PPA excitation and the lon-
gitudinal length changes measured with the interferometer calibrated with the electrostatic
drive (ESD). Three sets of measurements were made. During measurement I the actuator
beam was about parallel to the ground hitting the viewport on the left side approximately
in the middle with respect to its vertical position. For measurements II and III the beam
was pointed upwards and downwards, respectively, approximately 2 cm away from its position
during measurement I.

101



Chapter 5 Increasing the calibration accuracy - A photon pressure actuator

102 103

10−18

10−17

10−16

102 103

10−18

10−17

10−16

102 103

10−18

10−17

10−16

102 103

10−18

10−17

10−16

PSfrag replacements

frequency [Hz]frequency [Hz]

frequency [Hz]frequency [Hz]

∆
L

r
m

s
[m

]

∆
L

r
m

s
[m

]

∆
L

r
m

s
[m

]

∆
L

r
m

s
[m

]

17.2.2004 19.2.2004 I

19.2.2004 II 19.2.2004 III

ESDESD

ESDESD

PPAPPA

PPAPPA

Figure 5.11: Four measurements done with a PPA; the blue dots represent the longitudinal
displacement measured with the interferometer and calibrated with the electrostatic drive
(ESD). The red dots and lines represent the expected longitudinal displacement due to the
PPA. The error bars on the PPA values do not take thermally induced length changes and
apparent longitudinal displacement due to rotation into account. Also the effect of scattered
light at the viewport is not treated. The red lines follow the expected 1/f2 dependence.

102



5.3 Current photon pressure actuator

102 103

10−18

10−17

10−16

PSfrag replacements

frequency [Hz]

∆
L

r
m

s
[m

]

1/f 2

day1
day2 I
day2 II
day2 III

Figure 5.12: Graphical display of all measured data and one arbitrarily chosen 1/f2 curve

103



Chapter 5 Increasing the calibration accuracy - A photon pressure actuator

For a better understanding of the behaviour of the PPA the measurements should
be repeated with more laser power to get better signal-to-noise ratios, particularly at
high frequencies. At the same time the position of the laser beam of the PPA should be
centred with great care on the main mirror of the interferometer. This is, on the one
hand, to reduce the effect of apparent longitudinal displacement due to mirror rotation
and, on the other hand, to minimise possible excitation of other modes. With the current
setup of the PPA it is not expected to reach an accuracy better than ±10 %. In the
next section a possible setup for an advanced PPA is given which can reach an accuracy
better than ±10 %.

5.4 Possible setup for an advanced photon pressure actuator

A possible setup for an advanced PPA is given in Figure 5.13. The advantages compared
to the old setup are a higher laser power and the usage of a dichromatic mirror. At the
beginning of the optical path of the laser beam, a small amount of the light power is
split off at a beam splitter to monitor the input light power. Then the beam is shone
via the dichromatic mirror under an angle of approximately 0.5◦ onto a far mirror of the
interferometer. The dichromatic mirror reflects at 980 nm and transmits at 1064 nm.
Thus it can separate the laser beam of the PPA with a wavelength of 980 nm and the
laser beam of the interferometer with a wavelength of 1064 nm leaving the vacuum.
The dichromatic mirror allows almost normal incidence of the PPA laser beam onto the
interferometer main mirror. With such a setup the position of the PPA laser beam on
the interferometer main mirror can be well controlled.
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Figure 5.13: Suggested setup for an advanced PPA with a fibre coupled laser diode at 980 nm,
30 W cw and a fibre diameter of 600 µm.

As has been described in subsection 5.2.2 it needs to be made sure that the beam is not
cut off where the intensity is above or equal to 1 % of the total intensity. In Figure 5.14
the radius of the beam (here, the radius indicates where the intensity of the beam
has dropped to 1 %) has been plotted for a possible setup. The propagation of a laser
beam of a multi-mode fibre coupled laser diode was calculated with a set of equations for
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Figure 5.14: Laser beam radius of the suggested advanced PPA; as a laser source a fibre coupled
laser diode at wavelength 980 nm with a fibre diameter 600µm, NA=0.22 is used. The beam
radius refers to where the intensity of the beam has dropped to 1 %. The NA refers to the
beam radius where the intensity has dropped to 5 %. The first lense, indicated by a vertical
line, at approximately 0.15 m collimates the beam of the fibre. The second lense, also indicated
by a vertical line, at approximately 2.15m focuses the beam onto a photodiode. The distances
are chosen as in the possible advanced setup for a PPA given in Figure 5.13.

Gaussian beam propagation where the so-called M2 factor is added [98]. The calculation
was done for a commercially available fibre coupled laser diode with wavelength 980 nm,
30 W cw power, a fibre diameter of 600 nm and a numerical aperture (NA) of 0.22 (the
NA refers to the beam radius where the intensity has dropped to 5 %). With this setup
the PPA beam can be moved at least 2 cm away from the centre of the viewport without
cutting the beam off. The viewport has a diameter of 10 cm, but it is assumed that the
coating is uniform over 8 cm only. Entering the vacuum under normal incidence allows a
better control of the laser beam position of the PPA on the interferometer main mirror,
than entering the vacuum under a fixed input and output angle. In the later case it is as
well harder to make sure that the beam is not cut off. As described in subsection 5.2.5
the laser beam of the PPA should hit the interferometer main mirror at its centre. As the
viewport and the interferometer main mirror are not perfectly aligned with respect to
each other, a change in the position of the laser beam of the PPA on the interferometer
main mirror allows this misalignment to be compensated for.

With such an advanced setup a PPA accuracy of the order 1 % should be realisable.
This is only possible if great care is taken with the setup and the improvements already
mentioned in subsection 5.2.7 are implemented. These include:

• A laser diode with high power (of the order of a few Watts) needs to be used to
allow high signal-to-noise ratios at all frequencies. The laser diode needs to be
temperature stabilised.

• The pendulum transfer function of the main optic, suspended as a triple pendulum,
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needs to be studied carefully to investigate if modes other than the longitudinal
displacement are excited by the PPA.

• At least one photodiode needs to be calibrated with high accuracy and also needs to
be temperature stabilised. Its response over its active area needs to be measured.
Then it needs to be determined which area can be reproducibly hit with the
laser beam of the PPA and in which error this results for an absolute power
measurement.

• The optical properties of the viewport should be measured very accurately at the
PPA wavelength.

• For the case of monitoring also the light power injected into the vacuum the
optical properties of the main optic should be measured very accurately at the
PPA wavelength.

• The mass of the interferometer main mirror to which the PPA is applied needs to
be measured.

• The relative position of the main mirror and the viewport needs to be determined
to be able to centre the laser beam of the PPA as well as possible on the main
mirror.

• A finite element analysis should be made to determine the thermally excited expan-
sion of the mirror substrate and the coating material at the excitation frequencies
of the PPA.

The remaining crucial issue, that might very well dominate the accuracy of the PPA,
is how well the laser beam of the PPA can be centred on the main mirror to prevent
rotational excitation which leads to apparent longitudinal displacement.
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Appendix A

Gravitational waves emitted by a non-axisymmetric
non-precessing spinning neutron star

In this appendix the special case of gravitational waves emitted by a non-axisymmetric,
non-precessing spinning neutron star is calculated. First the neutron star shape and
orientation of spin are described. Then the second (or quadrupole) moment of the
mass distribution of the neutron star is calculated which yields the tensor of the met-
ric perturbation in the far field linear approximation. From this tensor the plus- and
cross-polarisations of the gravitational waves seen by an observer in the far field are
determined. The result is used in chapter 1 in Equation 1.5 to 1.7.

A neutron star is considered which deviates from a perfect sphere by elongation along
an axis of symmetry. In other words the neutron star is an ellipsoid with one semi-
major axis of size a and two semi-minor axes of size b, where a > b. The geometry
of the neutron star is depicted in Figure A.1. Let the z-axis be the axis of rotation,
then the so-called wobble angle is π/2. The wobble angle is the angle between the total
angular momentum vector of the star and the star’s axis of symmetry.

The tensor hTT
jk describing the metric perturbations due to a time dependent quadru-

pole moment is according to equation (36.47) of [24] given by1

hTT
jk =

G

c4
2
R
ÏTT
jk , (A.1)

where R is the distance from the neutron star, G is the gravitational constant, c is
the velocity of light and ÏTT

jk is the second time derivative of the trace-free part of the
second moment of the mass distribution of the neutron star. To determine hTT

jk first
the trace-free part of the second moment of the mass distribution of the non-rotating
neutron star ITT

jk as depicted in Figure A.1 is calculated. According to Equation (36.3)
of [24] it is defined as

Ijk =
∫
d3x ρ (xjxk −

1
3
δjkxixi) , (A.2)

where ρ is the density and the volume integral
∫
d3x corresponds in Figure A.1 to∫

dxdydz. Introducing the stretched spherical coordinates x = b r sinϑ cosϕ, y =
a r sinϑ sinϕ, and z = b r cosϑ with 0 ≤ r, 0 ≤ ϑ ≤ π, and 0 ≤ ϕ < 2π turns the
volume integral in Equation A.2 into∫

d3x =
∫ 1

0
dr

∫ π

0
dϑ

∫ 2π

0
dϕ ab2 r2 sinϑ , (A.3)

1Please note that in Equation (36.47) of [24] c and G have been set to 1.
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Figure A.1: Neutron star with one semi-major axis of size a and two semi-minor axes of size b.

as ρ = 0 outside the neutron star. Equation A.2 then yields for a homogeneous density
ρ the trace-free part of the second moment of the mass distribution

Iyy =
2
15
M(a2 − b2) ,

Ixx = Izz =
1
15
M(b2 − a2) ,

(A.4)

where M is the total mass of the neutron star and all other components of Ijk are zero.
If the neutron star is now rotating counterclockwise around the z-axis with the angular
velocity Ω, the time dependent second moment of the mass distribution is given by

Irot = DIDT , (A.5)

where D is the matrix of rotation

D =

cos Ωt − sinΩt 0
sinΩt cos Ωt 0

0 0 1

 . (A.6)

This gives

Irot =
M

5

 a2 cos2 Ωt+ b2 sin2 Ωt −(b2 − a2) sinΩt cos Ωt 0
−(b2 − a2) sinΩt cos Ωt a2 sin2 Ωt+ b2 cos2 Ωt 0

0 0 b2

− M

5
(a2 + 2b2) 1 . (A.7)

The second time derivative Ïrot yields

hTT =
G

c4
M

R

4
5
Ω2(b2 − a2)

cos 2Ωt sin 2Ωt 0
sin 2Ωt − cos 2Ωt 0

0 0 0

 . (A.8)
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Figure A.2: Relative orientation of the neutron star’s reference frame system spanned by −→x , −→y ,
and −→z with the neutron star in its origin and the observer’s reference system spanned by −→e 1,−→e 2, and −→e 3.

In the far field an observer sees the cross- and plus-polarisation, h+(t) and h×(t)
depending on his relative position to the neutron star. Let the −→e 3-axis of the ob-
server’s reference frame be along the propagation direction of the gravitational wave
and the h+(t) polarisation be along the −→e 1- and −→e 2-axis. The −→e 2-axis of the ob-
server’s reference frame is perpendicular to the −→e 3-axis and parallel to the xy-plane
of the neutron star’s reference frame. The neutron star’s reference system and the ob-
server’s reference system are depicted in Figure A.2. From this it can be seen that
−→e 1 = cos ι cosφ −→x + cos ι sinφ −→y − sin ι −→z and −→e 2 = − sinφ −→x + cosφ −→y . The h+(t)
and h×(t) in the observer’s reference frame are then given by2

h+ =
1
2
[−→e T

1 h
TT −→e 1 −−→e T

2 h
TT −→e 2

]
,

h× = −→e T
1 h

TT −→e 2 = −→e T
2 h

TT −→e 1 .
(A.9)

Solving Equation A.9 yields the two polarisations of a gravitational wave in the far
field

h+ =
16π2G

c4
f2

R

M

5
(b2 − a2)

1
2
(1 + cos2 ι) cos(2Ωt− 2φ) ,

h× =
16π2G

c4
f2

R

M

5
(b2 − a2) cos ι sin(2Ωt− 2φ) .

(A.10)

2For a description of the polarisations of a gravitational wave see [24] section §35.6.

109





Appendix B

Coordinate systems

B.1 Celestial equatorial coordinate system

In the celestial equatorial coordinate system [53], also referred to as the celestial sphere
coordinate system, the origin is at the Earth centre. The z-axis coincides with the
Earth rotation axis and points towards the North pole. The x- and y-axes lie in the
Earth’s equatorial plane defining the celestial equator. As the Earth’s equatorial plane
is inclined towards the orbital plane of the Earth, the Sun describes an apparent annual
path in the sky. When the Sun lies on the intersection line of the celestial equator (the
Earth’s equatorial plane) and the orbital plane of the Earth, the Sun is crossing in its
apparent path the celestial equator. This event occurs two times during one orbit of the
Earth. When the Sun crosses the celestial equator moving northward, the sun is at the
point of the vernal equinox (spring). The x-axis of the celestial equatorial coordinate
system points towards the vernal equinox.

In the celestial equatorial coordinate system, the position of a celestial body is speci-
fied by its declination δ (DEC) and right ascension α (R.A.) (see Figure B.1). Declina-
tion is the analogue of terrestrial latitude. By convention, positions between the celestial
equator and the north celestial pole have positive declination, and those between the
celestial equator and the south celestial pole negative declination; hence, declination
ranges from −π/2 (the south celestial pole) to π/2 (the north celestial pole). Right
ascension is the analogue of terrestrial longitude measured eastward. The point of ori-
gin of right ascension is the vernal equinox. Usually right ascension is given in hours,
minutes, and seconds of time, thus ranging from 0h0min0s to 23h59min59s.

Since the orientation of the Earth’s equator and pole are continuously changing, it
must be specified to which particular epoch the celestial equatorial coordinates refer
to [99]. In radio pulsar astronomy the coordinate systems B1950 and J2000 are com-
monly used [100]. The B1950 and J2000 equatorial coordinate systems are defined by
the mean orientation of the Earth’s equator and ecliptic at the beginning of the years
1950 and 2000. They are also tied to the sky by star coordinates. In addition the J2000
system is also tied to radio sources. The assumed orientation of the Earth on these two
dates is more a matter of definition than actual, since the “mean” orientation does not
include short term motions of the Earth’s spin axis (nutation and smaller effects). The
coordinates of celestial objects in B1950 and J2000 differ by many arc minutes.
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PSfrag replacements

celestial

equator

North celestial pole

South celestial pole

DEC

R.A.

vernal

equinox

Figure B.1: Schematic of the celestial equatorial coordinate system where the position of a
celestial body is specified by its declination and right ascension.

B.2 Cardinal coordinate system

The cardinal coordinate system describes a coordinate system which’s origin coincides
with a point on the surface of the Earth. The xy-plane is tangent to the surface of
the Earth at this point with the x-axis in the North-South direction and the y-axis
in the West-East direction. The z-axis is along the Earth radius pointing toward the
zenith [47]. Figure B.2 shows a cardinal coordinate system for an arbitrarily chosen
point on the Earth’s surface. In the cardinal coordinate system of a gravitational wave
detector the beam splitter is chosen as the origin of the coordinate system.

PSfrag replacements

North

South

−→y CD

−→z CD

−→x CD

Figure B.2: Schematic of the Earth with meridians and parallels of latitude. A cardinal coordi-
nate system at the crossing of a meridian and parallel of latitude is depicted.
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B.3 Detector proper reference frame coordinate system

B.3 Detector proper reference frame coordinate system

In the detector proper reference frame coordinate system the −→z DT axis coincides with
the z-axis of the cardinal coordinate system at the detector location. The −→x DT axis is
along the first arm of the interferometer. The first arm is defined such that the vector
−→e 1 ×−→e 2 points outward from the Earth1, where −→e 1 is parallel to the first arm of the
interferometer and −→e 2 is parallel to the second arm. At GEO600 the first interferometer
arm is the so-called East arm, pointing to 21.61◦ measured counterclockwise from the
East.

The −→y DT axis of the detector proper reference frame coordinate system is perpen-
dicular to the −→x DT and −→z DT axes forming a right-hand coordinate system. Only for
detectors where the second interferometer arm is perpendicular on the first arm the
−→y DT axis coincides with the second interferometer arm. Otherwise the second arm is
parallel to the unity vector −→e 2 = (cos ζ, sin ζ, 0), where ζ is the angle between the
interferometer arms. At GEO600 the angle between the two interferometer arms is
94.33◦[101]; this is graphically displayed in Figure 1.6 of chapter 1.

1This definition of first and second interferometer arm does not correspond to the one used in [101], but
it is consistent with the matrix of transformation given in 5 to derive the antenna response functions.
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Appendix C

Power spectral densities

In the frequency domain noise and signals are described by power spectral densities and
power spectra, respectively. The definition for the normalisation of power spectral densi-
ties and power spectra is given below which corresponds to the normalisation performed
by a spectrum analyser. Then the existing vocabulary on power spectral densities and
power spectra used by individuals in the GEO600 community is summarised.

C.1 Normalisation

C.1.1 Normalised power spectral density

The following normalisation of a power spectral density corresponds to the normalisation
used by the matlab function pwelch [102], which is equivalent to the normalisation a
spectrum analyser performs.

Let the discrete Fourier transform be defined as

Xk =
N∑

n=1

xne−i2π(n−1)(k−1)/N , 1 ≤ k ≤ N , (C.1)

where N is the number of sample points and xn with n ∈ N corresponds to the sample
values, which all together form the sample set represented by [xn]. Then Xk with k ∈ N
are the Fourier components of [xn]. This corresponds to the definition of the discrete
Fourier transform in the matlab function fft [102].

The discrete Fourier transform of a sample set [xn] to which a window has been
applied is then

Yk =
N∑

n=1

winn xne−i2π(n−1)(k−1)/N , 1 ≤ k ≤ N , (C.2)

where winn is the value of the window applied at the sample xn with n ∈ N .
For the case of a real sample set [xn] the normalised one sided power spectral density

PSD is then

PSDk =
2 |Yk|2

SR
∑

n win2
n

, 1 < k <
N

2
, (C.3)

where SR corresponds to the sample rate of the sample set [xn].
For k = 1 the factor of two in Equation C.3, due to converting the two sided power

spectral density to the one sided power spectral density, has to be omitted. In the case
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of N being even the matlab function pwelch calculates the Fourier components Yk for
k ∈ [1, N/2+1] and does not apply the factor 2 to the first and last Fourier components
of the one sided power spectral density, when converting the two sided power spectral
density into the one sided power spectral density. In the case of N being odd pwelch
calculates the Fourier components Yk for k ∈ [1, (N + 1)/2] and does not apply the
factor 2 to the first and last Fourier components of the one sided power spectral density,
when converting the two sided power spectral density into the one sided power spectral
density. As the value of the last Fourier component is not crucial in a plain power
spectral density plot, it is in this context dispensable to give an unequivocal definition
of that very component.

If the physical unit of the sample set xn is measured in [V], the units of the normalised
power spectral density PSD in Equation C.3 are [V2

rms/Hz]1.

C.1.2 Normalised power spectrum

To obtain the normalised power spectrum (NPS) from the normalised power spectral
density (PSD), Equation C.3 needs to be multiplied with the factor

1
N

∑
n win2

n
1

N2 (
∑

n winn)2
SR
N

. (C.4)

This leads to the normalised one sided power spectrum

NPSk =
2 |Yk|2

(
∑

n winn)2
, 1 < k <

N

2
. (C.5)

The discussion of the factor 2 for converting the two sided power spectral density to the
one sided power spectral density in section subsection C.1.1 applies for converting the
two sided power spectrum to the one sided power spectrum as well.

If the physical unit of the sample set [xn] is measured in [V], the unit of the normalised
power spectrum is [V2

rms]. The conversion from power spectral density to the power
spectrum is consistent with [103]. Please be aware that in equation (9) through (11)
and (15) of reference [103] factors of 1/N have been omitted.

C.2 Vocabulary

If PSD is the normalised power spectral density as defined in Equation C.3 with the
units [V2

rms/Hz] and if NPS is the normalised power spectrum as defined in Equation C.5
with the units [V2

rms], the names and units listed in Table C.1 apply.
The expression Vrms corresponds to the equivalent DC power in a signal. If a signal

f(t) is measured in [V] the relation between the equivalent DC power frms [Vrms] and
f(t) [V] is given by ∫ T

0
f2(t)dt = f2

rms T , (C.6)

1The expression Vrms does not mean the root mean square of V. For the definition of Vrms see section C.2
Equation C.6
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C.2 Vocabulary

expression name units√
PSD amplitude spectral density [Vrms/

√
Hz]√

PSD linear spectral density [Vrms/
√

Hz]√
NPS amplitude spectrum [Vrms]√
NPS linear spectrum [Vrms]

Table C.1: Vocabular of spectral densities and spectra.

where T is the length of the time interval in which the signal is regarded. For a signal that
is sinusoidal and periodic in T the relation between V and Vrms becomes V =

√
2Vrms.

Therefore this relation applies for the units of Fourier components obtained by a discrete
Fourier transform. The values Vpp for value peak-to-peak, Vpk for value peak, and Vrms

for value rms for normalised amplitude spectra are related in the following way

Vpp = 2Vpk = 2
√

2 Vrms . (C.7)

Taking the amplitude spectrum as defined in Equation C.5 of only a pure sinusoidal
signal with amplitude ±1 [V] at the frequency f0 and multiplying the result with

√
2

gives the value 1 [Vpk] in the amplitude spectrum at the frequency f0, if the frequency
f0 falls exactly into a frequency bin of Yk.
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Matlab script to determine power needed for online
calibration with a photon pressure actuator

% radiation pressure actuator values
c = 2.997e8; % speed of light [m/s]
m = 5.32; % mirror mass [kg]
combf = [200; 400; 600; 800; 1000]; % calibration line frequencies [Hz]
SNR = 100; % signal-to-noise ratio of comb lines

% fft conversion factors
SR = 16384; % sample rate of data acquisition system [Hz]
T = 1; % length of data segment over which fft is taken in [s]
N = T*SR; % length of data segment over which fft is taken in samples
rms_to_pp = (2*sqrt(2)); % transfers noise Delta x_rms into Delta x_PP

% conversion factor to transform amplitude spectral density to
% amplitude spectrum; it is assumed the measurement of the amplitude
% spectrum was done with a Hanning window
dens_to_spec=sqrt(sum(hanning(N).*hanning(N))/sum(hanning(N)).^2*SR)

% load design sensitivity and current noise detector noise level
% noise given in h_rms/sqrt(Hz)
design_sens = load(’design_sens.txt’);

% convert noise into mirror motion of a far mirror
design_mov = 600*design_sens(:,2);

% calculate necessary actuation in [m] for design sensitivity curve
design_combf = combf-design_sens(1,1)+1;
design_combx = SNR*dens_to_spec*design_mov(design_combf);

% calculate power needed for this actuation
design_combP = rms_to_pp*m*c*(2*pi*combf).^2.*design_combx/2;
design_Ptotal = sum(design_combP) % [W]
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Appendix E

Reflectivity of viewport

Figure E.1: Graphical display of the measured reflectivity of a coated viewport under normal
incidence; the data has been provided by the coating company LASEROPTIK.
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Appendix F

Transformation between transfer function notations

The following sections describe how to convert the parameters of two different notations
of transfer functions into each other. The two notations are the single-complex zero and
pole notation as given in Equation F.1 used in the GEO600 Detector Data Base [104]
and the frequency Q-value notation as given in Equation F.2 used by LISO [62].

F.1 Notations

F.1.1 Single-complex zero pole notation

The following notation is the single-complex zero and pole notation used in the GEO600
Detector Data Base

H(s) = kDB

∏k
n=1(s− zn)∏l
m=1(s− pm)

, (F.1)

where s is the complex angular frequency s = iω = i 2πf with f being the frequency in
Hz, kDB is the gain factor of this notation, zn are the zeros and pm are the poles of the
transfer function. If the zeros zn or poles pm are real numbers they represent single zeros
or single poles, respectively. If a zero zn is a complex number it represents together with
its complex conjugate value a double zero. That is zn together with zn+1 = z∗n forms a
double zero. If a pole pm is a complex number it represents together with its complex
conjugate value a double pole.

F.1.2 Frequency/Q-value notation

The following notation is the frequency/Q-value notation used in LISO. It corresponds
to the more intuitive notation where the frequency of a pole and zero and a double pole
or zero can roughly be read directly from a plot of the transfer function. For a Q of 0.5
this is approximately at the frequency where the amplitude dropped to -6dB or rose to
6dB, respectively.

H(s) = kLISO

∏k
n=1(1 + s

ωZn
)∏l

m=1(1 + s
ωPm

)

∏v
n=1(1 + s

Qn ωZn
+ s2

ω2
Zn

)∏w
m=1(1 + s

Qm ωPm
+ s2

ω2
Pm

)
, (F.2)

where s is the complex angular frequency, kLISO is the gain factor of this notation (called
factor in LISO *.fil files), ωZn = 2πfZn with fZn being the frequency of the zero in Hz
and ωPm = 2πfPm with fpm being the frequency of the pole in Hz.
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Appendix F Transformation between transfer function notations

A single zero appears in this notation only as a fZn. A single pole appears in this
notation only as a fPm. Single zeros and poles are represented in the first fraction of
Equation F.2. A double zero or pole appears in this notation as a pair (fZn, Qn) or
(fPm, Qm) respectively. Double zeros and poles are represented in the second fraction
of Equation F.2.

F.2 Transformation between the two notations

When changing from the one to the other notation, the values of the single and complex
zeros and poles and the gain factors need to be converted to the values of the other
notation.

F.2.1 Transformation from single-complex zero pole notation to f/Q-value
notation

Single zeros transform in the following way:

fZn = −Re(zn)
2π

,

kLISO = kDB (−Re(zn)) .
(F.3)

Complex zero pairs transform like this to a (ωZn, Qn) pair:

fZn =

√
Re(zn)2 + Im(zn)2

2π
,

Qn = −
√

Re(zn)2 + Im(zn)2

2Re(zn)
,

kLISO = kDB (Re(zn)2 + Im(zn)2) .

(F.4)

Single poles transform in the following way:

fPm = −Re(pm)
2π

,

kLISO =
kDB

(−Re(pm))
.

(F.5)

Complex pole pairs transform like this to a (ωPm, Qm) pair:

fPm =

√
Re(pm)2 + Im(pm)2

2π
,

Qm = −
√

Re(pm)2 + Im(pm)2

2Re(pm)
,

kLISO =
kDB

(Re(pm)2 + Im(pm)2)
.

(F.6)

For single or complex poles with the value 0 in the data base notation one needs to
add poles in LISO at very low frequencies, that is frequencies well below frequencies
from which onwards the transfer function is supposed to be valid.
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F.3 Example

The next equation shows how the gain factor accumulates for more than one single or
complex zero or pole. As single and complex zeroes, both denoted earlier as z, appear
in the same equation, the notation zSG is introduced for a single zero and zCP for a
complex zero. For single and complex poles, both denoted earlier as p, the notation pSG

is introduced for a single pole and pCP for a complex pole. This is how the gain factor
is transformed for more than one single or complex zeroes or poles:

kLISO = kDB

k∏
n=1

(−Re(zSGn))
v∏

n=1

(Re(zCPn)2 + Im(zCPn)2)

l∏
m=1

1
(−Re(pSGm))

w∏
m=1

1
(Re(pCPm)2 + Im(pCPm)2)

.

(F.7)

F.2.2 Transformation from f/Q-value notation to single-complex zero pole
notation

To convert from f/Q-value notation to single-complex zero pole notation the equations
in subsection F.2.1 need to be solved to determine the Re and Im parts of the single or
complex poles and zeros and kDB.

This yields for complex zeros

z1,2 = −2π fZn

2Qn
± i

2π fZn

2Qn

√
4Q2

n − 1 ,

kDB =
kLISO

2π fZn
.

(F.8)

For complex poles one obtains

p1,2 = −2π fPm

2Qm
± i

2π fPm

2Qm

√
4Q2

m − 1 ,

kDB = kLISO 2π fPm .

(F.9)

F.3 Example

A transfer function with a double pole at 100 Hz and 0 gain at DC is represented in the
two different notations in the following way:

LISO fP1 = 100, Q1 = 0.5, kLISO = 1

DB p1 = −628.3185, p2 = −628.3185, kDB = 3.9478× 105

For a graphical representation of this transfer function see Figure F.1.
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Figure F.1: Bode plot of a transfer function with the parameters fP1 = 100, Q1 = 0.5, and kLISO = 1
in LISO notation and the parameters p1 = −628.3185, p2 = −628.3185, and kDB = 3.9478 × 105 in
single-complex zero pole notation.
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Appendix G

Optical layout of GEO 600

Figure G.1: Inboard mirrors (MCN, MCE) of the optical layout of GEO600
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Figure G.2: Complete optical layout of GEO600
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Figure G.3: Mirror far north (MFN) of the optical layout of GEO600
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Appendix H

The electrostatic drive
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Figure H.1: Schematic of the electrostatic drive showing details of the capacitor quadrants
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Electronics
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Figure I.1: Connectors and power supply of the microcontroller electronics
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Figure I.2: Reprogramming switch of the microcontroller electronics
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Figure I.3: Data acquisition inputs on the microcontroller electronics
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Figure I.4: Opto-isolated serial interface of the microcontroller electronics
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Figure I.5: Signal output of the microcontroller electronics
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Figure I.6: Power supplies of the microcontroller electronics
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Figure I.7: Circuit to quadruplicate the 222 Hz signal of the data acquisition system
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Figure I.8: Auto alignment quadrant driver of the electro static drive
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Figure I.9: MCE electro static drive quadrant driver.
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Figure I.10: MCN electro static drive quadrant driver
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