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Systemic acquired resistance: the elusive signal(s)
A Corina Vlot1,2, Daniel F Klessig2 and Sang-Wook Park2,3
Systemic acquired resistance (SAR) is a form of inducible

resistance that is triggered in systemic healthy tissues of locally

infected plants. The nature of the mobile signal that travels

through the phloem from the site of infection to establish

systemic immunity has been sought after for decades.

Several candidate signaling molecules have emerged in the

past two years, including the methylated derivative of a

well-known defense hormone (methyl salicylate), the

defense hormone jasmonic acid, a yet undefined glycerolipid-

derived factor, and a group of peptides that is involved in

cell-to-cell basal defense signaling. Systemic SAR signal

amplification increasingly appears to parallel salicylic

acid-dependent defense responses, and is concomitantly

fine-tuned by auxin.
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Introduction
Rooted firmly into their habitat, plants have evolved

sophisticated mechanisms to survive the stresses imposed

on them by different environments. In many cases, intri-

cate hormonal signaling mechanisms ensure adaptation of

the entire plant to a given stress even if only a portion of

the plant is exposed. Several kinds of plant–pathogen

interactions result in the generation and emission of long-

distance signals from the site of infection to healthy

uninfected parts of the plant where subsequent resistance

is induced: for example beneficial mycorrhizal fungi and

root-colonizing rhizobacteria induce pathogen resistance

in above-ground plant tissues (reviewed in [1,2]). In

addition, infection of plant aerial tissues by biotrophic

pathogens results in systemic induction of a long-lasting

and broad-spectrum disease resistance referred to as

systemic acquired resistance (SAR).
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SAR is usually induced by infection of leaves with patho-

gens that induce hypersensitive cell death (HR; hypersen-

sitive response) owing to resistance (R) gene-mediated

defense signaling, although an HR is not obligatorily

required to generate the long-distance SAR signal [3,4�].
Moreover, basal resistance-inducing pathogen-associated

molecular patterns (PAMPs) including the active epitope

of flagellin, flg22, induce SAR-like disease resistance [4�].
A recent study showed that SAR further depends on light

signaling via the phytochrome receptors PhyA and PhyB

[5�]. Whereas SAR signal generation appears to be a general

feature of salicylic acid (SA)-dependent defense signaling,

the mobile signal itself has been elusive for decades.

Several recent major advances towards elucidating the

nature of the SAR signal and its systemic amplification

are the main focus of this review.

Signal generation and transmission
Methyl salicylate

Accumulation of SA is required for SAR, but only in the

signal-perceiving systemic tissue: grafting experiments

showed that tobacco leaves infected with tobacco mosaic

virus (TMV) could transmit a SAR signal despite the

presence of bacterial salicylate hydroxylase (SH) encoded

by the NahG gene. By contrast, expression of this SA-

degrading enzyme in systemic tissue abolished SAR

signal perception [6]. Recently, we showed that the

SA-derivative methyl salicylate (MeSA) is not degraded

by SH in vitro, accumulates in NahG transgenic tobacco,

and acts as a long-distance mobile signal for SAR [7��].
Hydrolysis of MeSA to SA by the MeSA esterase activity

of SA-binding protein 2 (SABP2) in the systemic tissue

triggers SAR, most likely by initiating the SA positive

feedback loop (Figure 1). SA feedback inhibition of

SABP2 [8] in the primary inoculated tissue ensures the

accumulation of sufficient amounts of the signal, as SAR is

abolished when MeSA levels are suppressed in these

tissues by expression of an uninhibitable MeSA esterase

or by RNAi-mediated silencing of the gene encoding the

enzyme that produces MeSA, SA methyl transferase 1
(SAMT1; Figure 1) [7��]. MeSA itself appears to be

biologically inactive as it fails to induce defense gene

expression or disease resistance in NahG transgenic

tobacco or in Arabidopsis overexpressing a rice methyl

transferase for SA and benzoic acid, OsBSMT1 [9�,10].

Analyses of an 18-member gene family in Arabidopsis
termed At methyl esterase 1-18 (AtMES1-18) showed that

MeSA likely is a conserved SAR signal (AC Vlot, et al., in

press). At least five family members displayed MeSA

esterase activity in vitro, and three of these restored

SAR proficiency to SAR-deficient SABP2-silenced
www.sciencedirect.com
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Figure 1

Long-distance SAR signaling through phytohormones, lipid metabolites and peptides. Working model of (putative) SAR signaling components,

including MeSA, JA, glycerolipid-derived factors and AtPEPs, and their systemic recognition/amplification. Small molecules are shown in red while

proteins/enzymes are in blue. See Section ‘Concluding remarks’ for details.
tobacco. Furthermore, under expression of MeSA

esterases enhanced MeSA accumulation and partially

compromised SAR in Arabidopsis. In addition to serving

as an endogenous SAR signal, MeSA can serve as an

airborne signal that is emitted from infected plants and

induces defense gene expression in neighboring wild

type plants [9�,11]. Taken together, MeSA appears to

be a major communication signal for defense both within

and between plants.

Lipid signaling

A mutation affecting the lipid-transfer protein DIR1

(DEFECTIVE IN INDUCED RESISTANCE 1) ren-

ders Arabidopsis incapable of generating/transmitting a

functional SAR signal, but does not affect resistance in

the inoculated leaf (Figure 1) [12]. The lipid-derived

molecule that interacts with DIR1 is unknown, but

mutations in several genes encoding enzymes involved

in chloroplast galactolipid metabolism (FAD7, SFD1,

SFD2, MGD1) similarly abolish SAR without affecting

basal resistance (Figure 1) [13��,14]. Leaves of infected

sfd1 or fad7 Arabidopsis fail to emit a conserved SAR signal

that induces defense gene expression or pathogen resist-

ance in Arabidopsis, tomato, and/or wheat [13��]. How-

ever, petiole exudates from infected dir1 plants restore

systemic defense signaling of comparable exudates from
www.sciencedirect.com
sfd1 or fad7 mutants indicating that a glycerolipid-derived

factor may interact with DIR1 to trigger SAR.

Another potential lipid-derived SAR signal is the oxyli-

pin-derived defense hormone jasmonic acid (JA), which

might be an early signal establishing systemic immunity

(Figure 1) [15��]. Early accumulation of JA in phloem

exudates and JA-dependent gene expression in the

systemic leaves of infected plants correlates with SAR,

while SAR is compromised in several JA signaling

mutants. Tobacco lipid-transfer protein 1 (LTP1) induces

disease resistance, but only when applied to plants

together with its ligand JA [16]. Therefore, it was hypoth-

esized that protein–lipid complexes such as LTP1-JA and

potentially DIR1-JA are involved in long-distance SAR

signaling [15��,16,17]. However, the link between JA and

SAR remains unclear since SAR is not altered in all JA

signaling mutants [4�,18]. Also, the glycerolipid-derived

factor in petiole exudates that apparently induces SAR in

conjunction with DIR1 does not co-purify with JA, and JA

does not reconstitute an active defense signal in petiole

exudates from infected sfd1 or fad7 mutants [13��]. Taken

together, two lipid-associated signals may work in parallel

with each other and MeSA to regulate SAR, but whether

one of these signals is a jasmonate derivative has yet to be

resolved.
Current Opinion in Plant Biology 2008, 11:436–442
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Both galactolipid metabolites and JA could perform dual

roles in SAR signal regulation. Accumulation of a set of

complex galactolipids, Arabidopsides, carrying JA-precur-

sors 12-oxo-phytodienoic acid (OPDA) and/or dinor-

OPDA, is differentially regulated upon wounding or

pathogen infection of Arabidopsis [19,20,21]. Kourtchenko

et al. [21] suggested that the level of JA and thereby the

nature of its interaction with (Me)SA [15��,22] during

pathogen infection and SAR development can be tightly

controlled via synthesis and degradation of the HR-

associated Arabidopsides E and G. JA in turn induces

the expression of genes encoding SA methyl transferases

in different plant species thereby enhancing the accumu-

lation of MeSA in Arabidopsis and the emission of MeSA

from tomato leaves [9�,23,24]. Thus, in addition to its

putative independent role in SAR signal transmission, JA

induction during pathogen infection [25] strengthens the

MeSA component of the SAR signal.

Peptide signaling

The apoplastic aspartic protease CDR1 (CONSTITU-

TIVE DISEASE RESISTANCE 1) reportedly generates

a small peptidic mobile signal that induces systemic

defense gene expression in Arabidopsis (Figure 1) [26].

The substrate of CDR1 is currently unknown, but it is

tempting to speculate that it processes the newly dis-

covered PROPEP proteins into their active peptide forms

AtPep1-6 [27�,28�]. PROPEP1-4 are differentially

regulated by various defense signals, including MeSA,

MeJA and flg22, as well as by their own processed pep-

tides, and the corresponding AtPeps are hypothesized to

support a positive feedback loop amplifying and/or per-

petuating PAMP-induced defense signaling (Figure 1)

[28�,29]. At least one cell surface, membrane-associated

AtPep receptor, a receptor-like kinase, has been identified

so far [29,30��]. This finding strongly implies a role for the

AtPeps in cell-to-cell defense signaling, but their role in

SAR remains to be assessed.

Vasculature-associated signaling

A hypothetical function of nitric oxide (NO) in systemic

defense signaling [31] was recently reinforced in a study

linking the level of protein S-nitrosylation, that is the

formation of S-nitrosothiols (SNOs), to SAR [32�]. SNO

levels were induced in both infected and systemic tissues

of SAR-induced Arabidopsis, and suppression of SNO

accumulation by over expression of S-nitrosoglutathione

reductase (GSNOR) compromised SAR. Since GSNOR is

localized to phloem companion cells and xylem parench-

yma, and GSNOR over expressing plants accumulated

elevated levels of it in their vascular system, it was

hypothesized that GSNOR plays a role in SAR signal

transport through the vasculature [32�,33]. In support of

this notion, NO is induced in phloem of Vicia faba after

treatment with H2O2 or SA, while phloem exudates of

H2O2-treated Cucurbita maxima contains elevated levels

of nitrated proteins [34]. By contrast, Feechan et al. [35]
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noted an inverse correlation between SNO levels and

both basal and R gene-mediated resistance. Though

contradictory, these findings suggest that SNOs might

play a role in SAR signaling, but their mechanism of

action is unclear.

Other signals that are less well characterized in the

context of SAR signaling are generated by MAP kinase

signaling cascades. For instance, MAP Kinase Kinase 7

(MKK7), a negative regulator of polar auxin transport, is

involved in basal resistance and SAR [36��]. Expression of

MKK7 localizes exclusively to the vasculature of infected

Arabidopsis leaves, consistent with a putative role in SAR

signal transmission. Moreover, conditional over expres-

sion of MKK7 induces defenses in both the over expres-

sing and systemic, non-MKK7-expressing tissues [36��].
The demonstration that MKK7 expression is upregulated

by HR-inducing bacteria further supports a role in SAR

signal generation/transmission.

By contrast, the MAP Kinase MPK4 was hypothesized to

be a negative regulator of SAR [37]. Recent genetic

analyses suggest that MPK4 regulates both SA signaling

and the JA/ethylene defense pathways via EDS1 and

PAD4 [38]. Thus, a specific role for MPK4 in generat-

ing/transmitting the systemic SAR signal seems unlikely.

However, the MAP Kinase Kinase Kinase MEKK1,

which is involved in PAMP-mediated defense signaling

[39,40,41], activates MPK4 in a mechanism that is inde-

pendent of MEKK1 kinase activity [39,40]. Interestingly,

the activities of both MPK3 and MPK6, well-established

SA-mediated defense regulators, are enhanced in the

mekk1 mutant [39]. Moreover, expression of MEKK1, with

the exception of guard cells, localizes predominantly to

the vascular tissue of Arabidopsis leaves, while (HR) cell

death and hydrogen peroxide accumulation occur in the

vasculature and/or guard cells of the mekk1 mutant [39].

Together, the data argue in favor of an antagonistic role of

MEKK1 and MPK4 signaling on MPK3 and MPK6,

possibly affecting SAR signal transmission through the

vasculature.

Signal perception and amplification
SAR and SA-mediated defense signaling partially overlap

[42] since the SA positive feedback loop is essential for

amplifying the SAR signal in systemic tissues. NON
EXPRESSOR OF PR-1 (NPR1) is one of the main reg-

ulators of SA and SAR signaling (Figure 1), and its

functions have been extensively reviewed elsewhere

(e.g. [17,43]). Accumulating evidence suggests that SA

and auxin perform mutually antagonistic roles in disease

resistance [44,45��], and repression of auxin-related genes

was observed in the systemic tissue of SAR-induced

Arabidopsis [45��]. Recently, members of the GH3 family

of acyl-adenylate/thioester-forming enzymes involved in

the amino acid conjugation of, for example the auxin

indole-3-acetic acid (IAA), were implicated in the
www.sciencedirect.com



Mobile defense signals Vlot, Klessig and Park 439
regulation of basal and R gene-mediated resistance as

well as SAR [46–48,49,50�]. GH3.5 can conjugate both SA

and IAA [51], and both signaling pathways were upregu-

lated in plants over expressing GH3.5 after pathogen

infection [50�]. In spite of heightened SA accumulation

and PR gene expression, R gene-mediated resistance in

these plants was suppressed, presumably owing to the

enhanced susceptibility conferred by elevated IAA levels.

In gh3.5 mutants, SAR was partially compromised as

indicated by suppressed PR-1 expression in systemic

tissues [50�]. It should be noted that in an independent

study, over expression of GH3.5 led to elevated SA levels

and PR-1 transcripts and suppression of IAA levels [49].

Another member of the GH3 family, GH3.12, is required

for SA-mediated disease resistance; mutations in this

gene ( pbs3, gdg1, win3) appear to suppress SA and/or

SA-glucoside accumulation and confer enhanced

susceptibility to avirulent and virulent Pseudomonas,
and/or suppress SAR, although not all of the results are

consistent among these studies [46–48]. Identifying the

substrates of defense-related GH3 acyl adenylases, in-

cluding GH3.5 and GH3.12, might shed light on the

mechanism(s) through which auxin and SA signaling

perturb each other to establish either susceptibility or

resistance.

Concluding remarks
Figure 1 summarizes SAR signaling in a model encom-

passing the different components that together may con-

stitute the mobile SAR signal(s). MeSA and the different

lipid-derived components each appear to be conserved

across plant genera ([7��,13��,15��,16], AC Vlot, et al., in

press); genetic manipulations which affect singular com-

ponents abolish SAR in the pathosystems studied to date.

A major future challenge will be to determine how the

different factors interact to facilitate their integration into

a signaling network. An additional challenge involves

translating this knowledge into practical applications. A

recent field study confirmed that SAR increases the

fitness of plants exposed to pathogens, which translates

into enhanced crop yield [52]. However, unlike the fitness

cost of constitutive resistance that associated with indu-

cible resistance generally appears to outweigh the cost of

pathogen infection, although this might depend on

additional environmental factors [53,54�]. In the era of

metabolomics, large-scale surveys might reveal additional

candidate compounds involved in SAR induction (e.g.

[55]); perhaps both established and new signals can be

used to enhance the natural defenses of crop plants while

retaining optimal yield.
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