English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A novel abscisic acid- and dehydration-responsive gene family from the resurrection plant Craterostigma plantagineum encodes a plastid-targeted protein with DNA-binding activity

MPS-Authors
/persons/resource/persons40020

Hilbricht,  T.
Dept. of Plant Breeding and Yield Physiology (Francesco Salamini), MPI for Plant Breeding Research, Max Planck Society;

/persons/resource/persons40180

Salamini,  F.
Dept. of Plant Breeding and Yield Physiology (Francesco Salamini), MPI for Plant Breeding Research, Max Planck Society;

/persons/resource/persons39886

Bartels,  D.
Dept. of Plant Breeding and Yield Physiology (Francesco Salamini), MPI for Plant Breeding Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Phillips, J. R., Hilbricht, T., Salamini, F., & Bartels, D. (2002). A novel abscisic acid- and dehydration-responsive gene family from the resurrection plant Craterostigma plantagineum encodes a plastid-targeted protein with DNA-binding activity. Planta, 215(2), 258-266.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0012-3DC9-6
Abstract
In the desiccation-tolerant resurrection plant Craterostigma plantagineum Hochst. the chloroplasts undergo major ultrastructural changes during dehydration, which are reversible upon rehydration. Such alterations argue the need for efficient protective/stabilising mechanisms to exist. Here we describe a novel gene family that is rapidly and transiently expressed in response to both dehydration and exogenously applied abscisic acid, mostly in the chloroplast-rich palisade layer on the adaxial side of the leaf. Analysis of the putative coding region suggests that the resulting protein is plastid- targeted. This was confirmed using a chimeric green fluorescent protein (GFP) reporter construct in transgenic tobacco plants - hence the gene family is termed Plastid Targeted Protein (CpPTP). Fluorescence microscopy also revealed that CpPTP was localised in structures similar to proplastid nucleoids in transgenic tobacco (Nicotiana tabacum L.) BY-2 cells. The ability of CpPTP to interact with DNA was demonstrated through a DNaseI protection assay. A structure-prediction programme suggests that the mature CpPTP is composed almost entirely of a pattern of hydrophobic and hydrophilic residues that form heptad repeats. which are the hallmarks of a coiled-coil domain. Given the localisation and DNA-binding property of the protein, we propose that CpPTP plays a role during the early stages of dehydration-induced chloroplast remodelling.